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Abstract

Diagonal dominance plays a fundamental role in the design of
multivariable feedback control systems by the method of dyadic
expansion and the Inverse Nyquist array by providing a systematic
procedure for the structural simplification of the return—-difference
determinent. It is shown that, by the use of equivalent transforma-
tions and origin shift methods, sufficient conditions for closed-1loop
stability using diagonal dominance methods can be obtained which remove

many of the difficulties arising in previous formulations.




Introduction

The relevance of the concept of diagonal dominance as a theoretical
tool for the design of unity negative feedback systems for the controi of
a linear time—invariant system described by an mxm transfer function matrix
G(s) was first established by Roéenbrock (1969) in the form of the inverse
Nyquist array stability criterion which has since been developed (Rosenbrock
1970, 1974) into a systematic method for computer aided control systems
design. In essence (MacFarlane, 1970), diagonal dominance makes possible
the simple evaluation and modification of the number of encirclements of the
return-difference determinant evaluated on the standard contour in the
complex plane. A more recent development (Owens 1975a) indicates how a
combination of the techniques of equivalence transformation and the ideas of
diagonal dominance can provide an approach to feedback design by systematic
manipulation of the system characteristic loci (MacFarlane and Bellettrutti,
1973) over a selected set of frequency intervals. Major practical problems
in the application of these techniques are, in the case of the inverse
Nyquist array, the choice of a simple precompensator structure to achieve
diagonal dominance at all frequencies and, in the case of the method of
dyadic expansion (Owens, 1975a), the maximization of the frequency interval
over which the transformed system is diagonally dominant. This paper
illustrates how equivalence transformations and origin shift methods can
be used to derive sufficient conditions for closed-loop stability which
contains previous results as special cases and which can remove many of the
difficulties ariging in their application.

Feedback Stability

Consider a unity negative feedback configuration for the control of an
invertible system described by the mxm transfer function matrix G(s) and
let K(s) be the mxm forward path controller. Write K(s) in the form similar

to that used by Owens (1976) in the analysis of multivariable root-loci,
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K(s) = KP(S) {K, () + K,(s)} : ek (L
It is well known that the stability of the closed-loop system is
described by the zeros of the return difference determinant
|Im + G(s) K(s)|. More precisely, if po(s) is the open-loop characteristic
polynomial and pc(s) is the closed-loop characteristic polynomial,
p.(8)

O = |I_ + G(s) K(s)| i kD

N

If |G(s)|# O, |Kp(s)[$50 andL]Kl(s)l # 0 and, following Rosenbrock
(1969, 1970, 1974), denoting the inverse of a transfer function matrix L(s)

(whenever it exists) by L(s), then, from (2),

p.(s) =0 _(s) [T+ G(s) K (s) (K (8) + Ky(s))]

po() 16G) K ()] ° |ﬁp<s) G(s) + K (s) + Ky ()]

0o (8) [6(e) K () Ky ()] * |1, + Ky (8) {K (s)G(s)+Ky(s)]]
e £3)
It is assumed that Kp(s)Kl(s) and KZ(S) are minimum phase and stable.
Let D be the usual Nyquist contour in the complex plane consisting of the
imaginary axis (with suitable indentations to exclude zeros and poles of
various terms in (3) ) and a large semi-circle in the right-half complex
plane.  The following equality now follows directly by application of stan-

dard encirclement theorems (Rosenbrock 1974)

nc=nz+nr R (4)

where n, is equal to the number of poles of pc(s) within D, n, is the number
of system zeros of G(s) within D and n_ is the number of clockwise encircle-

ments of |I + Kl(KpG -+ KZ)[ about the origin of the complex plane as s varies

over D in a clockwise manner.

~A

Suppose now that I + Kl(KpG + KZ) is diagonally dominant on D then

(Rosenbrock 1969, 1970, 1974)

n = % na
r b i
i=1

; ; ; Eh o
where ni is the number of clockwise encirclements of the 1 diagonal term

s T d)

A A

of Kl(KPG + KZ) about the (-1,0) point of the complex plane i.e.
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n =mn + gzi n, s k0)
from which the closed-loop system is asymptotically stable if, and only if,

n_=o or, equivalently,
n o+ = =0 (7)

S Ean, =
i=l

If Kz(s)Eij then this stability criterion is identical to that used in
the inverse Nyquist array technique. If KQ(S)'* 0, then the criterion is
identical to the inverse Nyquist array criterion applied to a unity negative
feedback system with forward path inverse transfer function matrix
a = ﬁl(ﬁpa + KZ)' It is in this context that the results play a useful role
in attaining stability of the closed-loop system, in the sense that Kz(s)
provides additional degrees of freedom to achieve diagonal dominance. The
following procedure is a practical approach to regulator design.

QTEP ONE : Compute'a(s) and choose the precompensator Kp(s) such that the
inverse Nyquist array of ﬁpa is diagonally dominant over some
fredquency interval .

STEP TWO: Choose KZ(S)’ if necessary, to improve the degree of diagonal
dominance of KPG + K_ . For example, in many practical appli-

2

cations it is difficult to choose a simple Kp to ensure that
A A
KPG is diagonally dominant on the whole of D. In many cases it

is only possible to attain dominance at high frequencies (say).

The choice of a suitable proper K, can improve the degree of

2

diaponal dominance at low frequencies without spoiling the

diagonal dominance achieved at high frequencies. In effect,
: . Lo I .
Kz(s) 'shifts the origin' of each element of KPG to improve the

degree of diagonal dominance.

STEP THREE: Apply the inverse Nyquist array technique in the form of

ras

Fal
equation (6) - (7) to the composite system KPG + K2 to choose

a diagonal controller Kl(s) satisfies the stability criterion (7).
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It is noted that the technique is similar in structure to the cancel-
lation of off-diagonal terms method suggested by Rosembrock (1974) using
a non-unity feedback matrix F(s). The above technique achieves a similar
objective but includes the 'cancellation component'Kz(s) in the forward path
controller. This approach allows a greater deal of freedom in the choice of
KZ(S) without the possible transient performance difficulties induced by the
inclusion of a non-unity F(s). To illustrate this point, note that the
closed-loop transfer function matrix Hc is given by the relation

H
c

{\ 3 ® s
( 1 + K2) Kl (I + Kl(Kp G + K2))

(I + Kl(Kp G + Kz)) sae (8)

if the gains in K, are much larger than those in K Equivalently, if the

1 2"

system (I + Kl(KpG + KZ)) is highly non-interacting and the gains in K., are

1

much larger than those in K,, then the resulting closed-loop system repre-

2’
sented by Hc is highly non-interacting.
To illustrate the simplicity of the method, consider the problem of the

regulation of a plant described by

G(s) = ed s 2% ¥28 41 a5 ains L)

52 + 35 + 2 A 53 + 232 + 2 +.1
Due to the symmetry of the system, the inverse Nyquist array can be
represented by the (1,1) element together with its Gershgorin circles (Fig. 1)
It is noted that the system is aiagonally dominant at high frequencies but
highly nondominant at low frequencies. Choosing KP(s) = I2 to retain the
dominance of the system at high frequencies and choosing Kz(s) to improve the

dominance at low frequencies,

(2 + 3s)

(1+0.15s) vre 43Q0

K2(S) =

~ ~

the inverse nyquist array Kp G + K, takes the form shown in Fig. 2. Note that

2

the degree of dominance has been significantly improved and the design can
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continue to improve the stability characteristics by suitable choice of a
diagonal controller Kl(s) = diag {kl(s), kz(s)}.

The Use of Equivalence Transformations

The range of applicability of the methods of diagonal dominance for the
regulation of multivariable systems can be greatly increased by the use of
transformation techniques. Suppose that é can be written in the form

G(s) = P, H(s) P, PR,
where Pl’ P2 are constant nonsingular matrices. It is supposed that Pl, P2
are such that the structural properties of ﬁ are much simpler than those of
é. For example, if G(s) is a dyadic transfer function matrix (Owens 1975a)
it is possible to choose ﬁ to be diagonal. Alternatively, it is possible to
choose Pl’ P2 such that ﬁ is diagonal at a specified frequency of interest
and diagonally dominant in the vicinity of that frequéncy by application of
the method of dyadic expansion.(Owens 1975). Applying the techniques of
section 2 to the fransformed system ﬁ(s) will produce a controller for H(s)
of the form i(s) = Kp(s)T{Kl(s) + KZ(S)} satisfies the stability criterion.

It follows directly from the identity

|+ R |= [T+ P,GRK| = |I + GP.KP| e CIE)
that a suitable controller for G(s) is

K(s) = Plﬁp(s)‘ {K (s) +K,(s)} P, wus €13)
in the semse that the resulting closed-loop system (I + GK)—IGK is
asymptotically stable.

To illustrate the application of the technique consider the system
a(s) = 52 + 35 + 1 s + 2 |
(14)
s + 3 2s + 1

and choose P1» P, by inspection from the identity
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continue to improve the stability characteristics by suitable choice of a
diagonal controller Kl(s) = diag {kl(s), kz(s)}.

The Use of Equivalence Transformations

The range of applicability of the methods of diagonal dominance for the
regulation of multivariable systems can be greatly increased by the use of
transformation techniques. Suppose that é can be written in the form

G(s) =P, H(s) P, s )

where Pl’ P2 are constant nonsingular matrices. It is supposed that P

1! PZ
are such that the structural properties of ﬁ are much simpler than those of
é. For example, if G(s) is a dyadic transfer function matrix (Owens 1975a)
it is possible to choose ﬁ to be diagonal. Alternatively, it is possible to
choose Pl’ P2 such that ﬁ is diagonal at a specified frequency of interest
and diagonally dominant in the vicinity of that frequency by application of
the method of dyadic expansion,(Owens 1975). Applying the techniques of
section 2 to the transformed system ﬁ(s) will produce a controller for H(s)

of the form K(s) = Kp(s)f{Kl(s) + KZ(S)} satisfies the stability criterion.

It follows directly from the identity

|I+Hf<‘|=|I+P2GP1f<| u]1+GP1R92[ vxw (12)
that a suitable controller for G(s) is

K(s) = PyK (s) {K;(s) +Ky(s)} B, iwe 18
in the semse that the resulting closed-loop system (I + GK)leK is
asymptotically stable.

To illustrate the application of the technique consider the system
a(s) = s2 + 35 + 1 s + 2 |
cw e e GRA)
s +3 2s + 1

and choose Pl’ P2 by inspection from the identity
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The Use of Equivalence Transformations

The range of applicability of the methods of diagonal dominance for the
regulation of multivariable systems can be greatly increased by the use of
transformation techniques. Suppose that & can be written in the form

G(s) = P, H(s) P, ce. (11)
where Pl’ P2 are constant nonsingular matrices. It is supposed that Pl’ P2
are such that the structural properties of ﬁ are much simpler than those of
é. For example, if G(s) is a dyadic transfer function matrix (Owens 1975a)
it is possible to choose ﬁ to be diagonal. Alternatively, it is possible to
choose Pl’ P2 such that ﬁ is diagonal at a specified frequency of interest
and diagonally dominant in the vicinity of that frequency by application of
the method of dyadic expansion,(Owens 1975). Applying the techniques of
section 2 to the fransformed system ﬁ(s) will produce a controller for H(s)

of the form K(s) = KP(S)J{KI(S) + Kz(s)} satisfies the stability criterion.

It follows directly from the identity

|1+ BK|= |T + PGPK| = | + PP, o G0
that a suitable controller for G(s) is

K(s) = PlKP(s)'{Kl(s) + KZ(S)} P, R b
in the semse that the resulting closed-loop system (I + GK)—IGK is
asymptotically stable.

To illustrate the application of the technique consider the system
&(s) = 52 + 35 + 1 s + 2
cwwa CL&D)
s + 3 2s + 1

and choose P., P, by inspection from the identity

1% 72




G(s) = B, H(s) P,
= [1 1] [0.45% + s - 0.5 18] Tads w88
.. (15)
o 2| |o.s s +0.5 [0.5 1.0

Note that H(s) is diagonally dominant at high frequencies but not at low

frequencies. Choosing Kp(s) = I, to vetain the high frequency dominance

2
and (say)
KZ(S) = 1.0 -1.5
(16)
<05 0
then
f(I:I+K=0.4sz+s+0.5 0
P 2
(17)
0 s + 0.5

which is diagonal. The choice of a suitable diagonal controller Kl(s) to
to ensure that the system is stable is now a trivial matter by application

of single-loop methods to the individual diagonal terms of (17).
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Conclusions

It has been demonstrated that the concept of diagonal dominance can play
a fundamental role in the regulation and design of multivariable feedback
systems., Noting that a common practical problem in the application of the
inverse Nyquist array technique is the‘choice of a suitable precompensator
to achieve diagonal dominance over the frequency range of interest, two
techniques have been demonstrated to be a wvaluable aid in the stability
analysis. The first technique makes use of a moré geﬁeral controller struc-
ture (equation (1)) first used by Owens (1976) in the analysis of multi-
variable root-loeci. The term Kz(s) is new and is used to structure the inverse
Nyquist array by linear operations to improve the degree of diagonal dominance.
The second technique makes use of the invariance of stability relations under
gsimilarity transformation and the use of equivalence transformations (similar
to those used in the method of dyadic expansion) to improve the degree of
dominance in the system and hence ensure closed-loop stability.

@

An intersting point arising from the analysis is the observation that
the inverse Nyquist array technique and the method of dyadic expansion are
closely related. Bearing in mind that the method of dyadic expansion has close
links with the Characteristic Locus deéign method, it is seen that all
three methods can be partiélly unified in the framework of diagonal dominance

and transformation techniques.
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