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Abstract

It is well known in classical feedback control that many high
order linear time-invariant systems can be approximated, for the
purpose of feedback design, by a low order state-space model due to
the presence of approximately cancelling poles and zeros in the system
transfer function. The paper presents an equivalent technique in the
case of a multivariable system described by a strictly proper mxm,
minimum-phase and invertible transfer function matrix G(s) by the
application of the contraction mapping theorem. It is shown that, in
many cases of practical interest, a multivariable first-order type model
is adequate for the purposes of control system design and that such a
model can be determined directly from transient response data or,
equivalently, by the analysis of the high and low frequency characteristics
of the system. The application of the technique is illustrated by the
analysis of a high order binary distillation column model and the dynamics

of a counter-flow heat exchanger.




Introduction

&)

In recent years, several techniques(l have been suggested for the
design of unity negative feedback systems for a plant described by an
mxm strictly proper and invertible transfer function matrix (TFM) G(s)
using the concept of frequency response analysis. A powerful feature of
each technique is its generality and the ability to systematically design
forward path compensatién networks to improve the overall feedback system
response. However, by analogy with classical feedback theory, it is
anticipated that many high-order linear time-invariant systems can be
approximated, for the purposes of controller design, by a low order state
space model due to the presence of approximately cancelling pole-zero
pairs. Furthermore, the validity of the approximation will improve in
the closed-loop situation due to the attraction of poles to the system
zeros(7). This paper uses the contraction mapping theorem(s) in terms of
the inverse transfer function matrix(g) to present and interpret the use
and validity of low order dynamic models for feedback controller design.
The results are presented in a form easily adapted for cémputer—aided
graphical design.

The authors can see little justification, other than computational
ease, in the use of reduced order models in frequency response analysis
unless the reduced model deepens insight into system structure or enables
the use of direct analytic techniques in the choice of controller structure.
In this context, it is demonstrated that the scope of applications of
multivariable first-order type systems(S’ﬁ) can be enlarged to provide a
technique for the systematic design of feedback controller for a large
class of multivariable process plant. The first order model can be deduced
directly from transient response data or by the analysis of high and low

frequency characteristics of the system, and a suitable feedback controller

can be obtained by direct inspection of the reduced system parameters, and
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hence removes the neéd for trial and error design using frequency response
methods. The techniques are illustrated by application to a high order
binary distillation column model and a liquid-liquid counter-flow heat
exchanger.

Feedback Stability and Reduced Order Models

Consider a unity negative feedback system for the control of a
strictly proper, inveftible system described by the mxm TFM G(s) and let
K(s) be the proper, invertible mxm forward path controller. The closed-
loop system is described by the relation
y(s) = {I_+6(s)K()} "G(s)K(s)x (s) 1)
where y(s) is the vector of output transforms and r(s) is the vector of
demand signal transforms. The stability of the closed-loop system can be

(1-4)

assessed by the analysis of the return-difference determinant

Im + G(s)K(s)|. However, in the analysis of reduced order models, it is

more convenient to use the techniques suggested by Freeman in the form
used by Owens(g). Defining Q(s) = G(s)K(s), equation (1) takes the form

y(s) = =Q 1 (s) y(s) + r(s) - (2)
If GA(S) is a strictly proper, invertible reduced model of G(s) and
QA(S) = GA(S)K(S) the equation (2) can be rewritten in the form,

y() = {1 + ¢, ()1 10, ()0 () Iy (s) + r(s)) (3)
Let D be the usual Nyquist contour in the complex plane consisting of the
imaginary axis and a large semi-circle in the right-half plane. Assuming
that Q_l(s) and Q;l are bounded on D and analytic in its interior and that
‘{Im + Q;l(s)}_l = {1+ QA(s)}-lQA(s) is stable, then a sufficient condition
for the closed-loop system defined by equation (1) to be stable can be

(9)

obtained by application of the contraction mapping theorem i.e.

max sup  § '({I+Q;1(S)}_I{le(s)‘q—l(s)})i-| <1 (4)
l<ism s € D j=1 .

In terms of controller design the result outlined about states that if a

minimum phase multivariable system G(s) is approximated by a minimum phase
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reduced model GA(S) and a forward path controller K(s) is designed to
ensure that the reduced closed- loop system {I + QA(S)}hl{QA(S)}=
{I + QA (s)} is stable, then application of K(s) to G(s) yields a
stable closed-loop system (equation (1)), provided condition (4) ig
satisfied. The result is of great generality and has potentially wide

application, but it does leave open questions of the best technique for

approximating G(s) and the possibility of satisfying equation (4). 1In
practice however, given a choice of G (s) the stability, condition (4)
can ea511y be checked by graphical analysis of the frequency responses
{1 o QA (s)} [Q (s) - qQ (s)}, Or, more probably, by simulation of the

closed-loop system and its reduced form,

of a suitable controller structure, In this context it ig natural to
consider the use of reduced models for which there exists a known analytic

design method, Examples of such models are the first and second order

(5,6)

type multivariable systems Consider, for example, the use of a

first order type reduced model. A multivariable first order lag can be

5,6)

defined( to be a mxm invertible system with inverse TFM

G;l(s) =As + A , lel #0 (5)

It has been shown(5’6) that the use of a proportional controller of the
form

K(s) =k AO - Al » (k scalar) (6)

yields a closed-loop System with TFM

-1, -1
{1 +¢ (s)K(s)} G, (s)K(s) = e LT, =k Ay ALY (7)
so that, by suitable chojce of gain parameter k, the closed-loop system

can be designed to exhibirt arbitrarily small steady state errors and
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Consider the use of a first order model for the representation of
a plant G(s) of the form

_l N
G "(s) = s AO + A+ AOH(S)

1
|AOJ # o , H(o) = o , H(s) proper and stable (8)

and define GA(s) by equation (5). The matrices AO, A1 can be deduced
directly from G(s) using the formulae,
A;l = lim s G(s)

S—)-oo_l (9)
Al = 1lim G “(s)

s+ o

or, if G(o) 1is finite and non-singular |,

A_1 = 1lim G(s) = G(o) (10)
1
s *o

Equivalently A—l,Agl'represent the initial rate and steady state values

1
respectively of the system in response to unit step inputs. They can henée
be evaluated analytically, by simulation® of a realization of G(s) or
estimated from experimental data.

Choosing, for example, the controller of equation (6) to ensure that
GA(S) is adequately controlled, the stability of the closed-loop system of
equation (1) can be assessed by examination of condition (4). Noting that
by using equations (5)-(8),
o+ @1 i o) - ¢ He))

(K(s) + G, ()} R(DK () {8 (s) - €1 (s))

= =1

s+k

H(s) (11)

condition (4) becomes,
|Hi.(s)|

1 s+k (12)

m
max sup 5

lgigm s €D j=

It is easily verified that it is always possible to choose k > o to satisfy
equation (12) and hence guarantee the stability of the closed-loop system

by choosing
k > max sup ? ]Hi.(s)]
lgign s ¢ D j=1 3

(13)
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In particular, if H(s) is small in the sense that the right-hand-side of
equation (13) is small, then GA(S) will be a good approximation to G(s)

in both the closed and open-loop and by analogy with classical terminology,
the system can be regarded as possessing a high degree of pole-zero
cancellation. In more general situations, H(s) may be significant and
(equation (13)) higher gains are required to ensure stability. The
matching of open-loop responses in this case will be poor, but it is
anticipated that these errors will be reduced in the closed-loop as is the
case in classical feedback systems.

In summary, given an mxm invertible proper, minimum-phase process
plant G(s) of the form of equation (8), the following simple procedure can
enable the design of a high performance closed-loop control system,

STEP ONE: Compute G-l(s) and hence (equation (8)) Ao’ Al, H(s). Alternatively
compute AO,Al from frequency or transient response data.

STEP TWO: Construct the reduced model Ggl(s) = Aos -+ Al and compare the
open—loop response of G(s) and GA(s) to obtain an estimate of
the effect of H(s).

STEP THREE: Choose a controller of the form defined by equation (6) (or the

(5_6)) and, by

equivalent proportional plus integral controller
examination of equation (7) estimate a suitable gain to ensure
the required response speed, steady state errors and interaction
effects.

STEP FOUR: Check the stability of the closed-loop system {Im+G(s)K(s)}q1G(s)K(s).
either by a direct check of relation (12) or by direct simulation.

Note that the technique is one of control synthesis' on the basis of
a reduced order model and hence removes the need for detailed frequency
response analysis. 1In this sense the method is easy to apply and,for the

cases defined, it is always possible to ensure closed-loop stability. The

; : ; =1
technique will not cope with any system however, as G ~(s) must take the
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form defined by equation (8) and it is possible to envisage situations
where the control gains required to satisfy equation (12) may be too
high for practical application. In such a situation it is necessary to

(1-4)

use a more general design technique It is felt however, that the
technique will be valuable in the analysis of many industrial processes
(for example thermal and chemical processes) possessing only a small
number of dominant modes.l Two such examples are illustrated in the

following sections.

Application to a Long Binary Distillation Column

Such processes usually comprise a vertical sequence of spatially
discrete stages (trays), for separating a binary mixture into its two
components. (We here assume N+l trays above and M+l trays below the feed
entry point). Complete separation is usually uneconomic and the cbject
of plant and control-system design is to regulate the fractional compo-
sitions X(N) and XI(M) at or near pre-specified reference values close
to 1.0 and 0.0 respectively. If n and m are general tray numbers above
and below the feed-point respectively and if N and M >> 1.0, then the
N + M - 2 material balance equation - one for each non-terminal tray, may

(10,11)

be reduced to a pair of partial differential equation, (p.d.e's),

in n and m, now regarded as continuous variables. These are
" 2 2
Bx/Bt = (L/H)3 x/3n" + (Gr/H)(E v@r) } (14)

ax’/ot= (L* /m)5%x) /om? + (Gi/H) (Vo -2)

where x(n,t) and xl(m,t) are small perturbations in X(n,t) and Xl(m,t).
2(t) and v(t) are perturhations in the liquid and vapour flows L(t) and
V(t) circulating within the column and are the manipulable process
forcing-functions. H denotes the capacity of each tray, Gr and Gi the
steady—-state quiescent distribution 9X/dn and BXI/Bm (constants for well-
designed plant) and L*= L + F where F is the feed flow into the plant
(F<<L,V). A and O  are mixture parameters marginally <1.0 and >1.0

respectively,
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Material balances at the column boundaries (i.e. at n=N, m=M, n=o
and m=o0) yield the following boundary conditions(ll’lz).
Hax(N) /3t + L{3x(N)/3n + x(N) - %} =& (1~ var)
where (Ha/V)axt/at £ K, - o x(N)
1 * 1 1 1
Hox (M) /ot + L {3x (M) /om + (us-l)x (M)/as} = Gr(vas-ﬂ) " (15)

Hax(0) /0t + L' {x(0) - x (o) - dx(o)/an} = 6, (4-va )

1 * 1 1 1
Hax (o) /at + L {x (o) - x(0)- 3x (0)/om} + Fx(o) = GrR—Grvas !

'

X, being a small perturbation in top product x_ and Ha and Hb’ the
capacities of the terminating vessels (accumulator and reboiler) at the
top and bottom of the column respectively.

Equations 14 and 15 provide a complete description permitting the

computation of the process inverse T.F.M, Gﬁl(s) 1.f necessary (step 1).

Although for s = jy such a procedure would be tedious for a wide range of

w, the determination of Al and AO is quite simple. Ignoring the time
derivatives, equation 14 yields two ordinary differential equations,
(d.e's), in n and m which may be easily solved numerically or even
analyticallyll’l2 subject to the now algebraic boundary cﬁnditions (15) so
generating the matrix Al' High frequency analysis is even easier since,

on taking Laplace transforms of equation 14 (in s w.r.t. t), we obtain:

Lim {s [x(s) ]} =71 —urGr . Gr v(s)
§-re0 il(s) a Gl s —G1 i(s)
i . g .

so that the inverse T.F.M 5 Aos, is clearly spatially independent and the
boundary conditions can be disregarded in its.determination.
Figures 1 and 2 show respectively the open-loop responses at n=m=4
to steps in v and d{perturbation in top-product flow rate, D,(=V-L)} of
a column having N=8, M=10, V=2.5, L=2.0, F=1.0, aS=l.2, ur=0.8 (making
Gr = 0.0382 and Gi = ~0.0355), H=Ha=Hb = 1.0. These are computed from the

22 original d.e's of the rocess and are presented alongside those of the
g p
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multivariable first-order lag process GA(S) obtained from equation 5
(step 2) from Al and AO matrices determined in the manner indicated
immediately above. Note the identical steady-states and initial rates
of rise : as expected. Nearly ideﬂtiCalresponses are obtained for
Ha’ Hb < H but when H <<Ha, Hb’ the responses exhibit a much longer
settling time (due to the mismatched boundary capacitances) after the
predicted initial rate of rise. Responses for Ha = Hb = 10H = 10 are
also presented in figures 1 and 2 showing the larger deviations from
those of GA(S). Of more importance however are the discrepancies in the
closed-loop environment,

The Al and AO matrices for both columns (inputs v and d) are

A, =[0.0670 , - 0.630] A =1 0.00770 , - 0.0382

: (17)
0.0592 , =~ 0.550 -0.00731 5 = 00355

and from equation 6(step 3), the controller matrix K is found to be, for

instance:
K = 8.645 , - 8.788| ,k=0.25 or,K=| 56.835 s — 60.643|, k=1.0
" (18)
2,509 , - 2,581 -12.433 , - 13.033
The closed-loop transfer-function from equation 7 is therefore
{k/(s+k)} 1,0 gL 0.088, -0.031
0,1 -0.026, 0.094

predicting the behaviour specified in table T

TABLE I
Predicted Closed-loop Column Behaviour
ke Time Constant |Steady-state error |Interaction
0.25 4.0 32 to 367 8 to 12%
1.00 1.0 8 to 9% 2 to 3%

The closed-loop responses obtained (step 4) for the 22nd-order process

are stable as shown in Figure 3 for the cases H = Ha = Hb = 1.0 and

H = Hb = 10H = 10. These,in the first case, are almost indistinguishable
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from those obtained by use of GA(S), (similarly controlled), and the
effect of boundary capacitance mismatch, so evident on open-loop, is
clearly unimportant when coﬁtrol (of the type proposed) is applied. 1In
fact the multivariable first order approximation has resulted, in both
cases, in a highly satisfactory closed-loop design.

Application to a Gounterflow Liquid/liquid Heat-Exchanger

Although transient responses are informative, for a comprehensive
insight into the approximation involved, we now consider a distributed
process governed by much simpler boundary conditions which permit the
analytical determination of G(jw) for -*swg® and therefore a direct com—
parison with GA(jm), in the frequency domain, under open-and closed-loop
conditions.

Heat balance consideration applied to the heat exchanger concerned

]

; 2l . . .
produce the following p.d.e. description in terms of distance x

and time t:

T3¢1/Bt = —X8¢l/3x + ¢2 - ¢1 + £, _ } -
T8¢2/3t = x3¢2/ Ix +¢1 e ¢2 + £,
where f1 06 ; — 034 W,
' By BO/W 1 6.4, - 0.6 W, (20)

¢1(x,t) and ¢2(x,t), the dependent variables, being perturbations in
the temperatures 61 and 92 of the two liquid streams and wl(t), wz(t) being

manipulable perturbations in the two mass flow rates Wl and WZ' X and T

are parameters dependent on the quiescent state of the process and may be

assumed constant for small variations. A8 = el - 92 = a constant for a

well-designed plant in which, inter alisa, wl = W2 = W. Inlet temperatures

being constant the boundary conditions are simply

¢1(o,t) = ¢2(L,t) =0 (21)
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where L is the effective length of the heat-exchanger. Taking Laplace
transforms, (in s w.r.t. t), of equation 19 and solving the resulting
d.e.'s subject to equation 21 yields+

¢ (Lys) | _ H(s) fl(S) _ |h,+h h fl(s)

1y 5 By
0,(0,5) £ by by £

(coshal - 1) / {qu(acoshaL - BlsinhuL)}

(22)

where hl(s)

and hz(s) {—282 * (u+82)exp(dL)‘(&*BZ)EXp(-dL)}/{ZXu(ucoshuL + BlsinhaL)} (23)

in which « {(gTL/x)2 + 2sTL2/x2}O'5/L, BT(1+T3)/X and g, = Ts/X (24)

Alternatively, in terms of inputs Wy and LOWE

@8 Loy [T o (e8| [F(8) -
~ g g 75
9,(0,s) W, (s) TBy” W, (s)
where, from (20) and (22)
gl(s) = (Aa/w){hl(s) + 0.6h2(s)} and gz(s) = —(AB/w){hl(s) + 0.4h2(s)} (26)
For the approximate first-order lag model we deduce, (step 1), from
the Laplace transform of equation 19 that
5 ~ ~ =T =1 o o~ T
Lim {s[ﬁl(x,s),¢2(x,s)J =T [}1(5), fz(si] (27)
S50
and, neglecting the time derivatives in (19) and solving subject to (21)
yeilds:
Lim |$,(L,s)| _ 2|e2x/L , -1| 7! £, (s)
s70 |9,(0,s) -1,1+2%/L £,(s) (28)
Synthesising the reduced-order model, (step 2), from functions 5,20,27 and
28 with w, and W, as inputs therefore gives
w1
, - 0.6,-0.4
c. (s) 8A1,8A2 i QL_O.5+X/L+TS i O
A = 5 W (29)
Ba2:78yg -0.5 , 0.5+X/L+Ts 0.4,-0.6

For an open-loop comparison of the systems the analysis of section 2 can be

simplified by expressing G(s) and GA(S) in the equivalent forms UZGdU1 and

UZGAdUI respectively, where

We here confine attention to outlet temperatures only.
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U, = ,U = u (31).
1 -1, 1 2 | .
i -1, ' ;
and the loci of the elements of Gd (jw) and GAd (jw) compared as in
figure 4 which pertain to the case L = 2X. Now if qul(jw) is expressed
thus:
6, T Gw) = 6,, TGw L, + [e, G 0
a Ad WPy T W) (32)

0 s €, (Jw)
then it is obvious from figure 4 that [el] . [Ez| <<1.0 for all w so that,
like GA(S), G(s) is open-loop stable and, furthermore, the transient
responses inferred from the loci for the true and approximate systems will
be similar. Of more importance however is the comparison of the closed-
loop behaviour of the two systems.

Now from equation 29, for L = 2X

Gy (), (=As +A) = W[4 +3Ts , ~(3.5 + 2T8)

K AB (33)
3.5+2Ts , —(4 + 3Ts)

and, (step 3), choosing a precompensator parameter k = 5/T, (in order to
improve the response rate by between 2.5 and 4.0 times), produces through
equations 6 and 33 a precompensator:

K= _wl 11, - 6.5 (34)
AB

6.5y = 11
which, from equation 7, 33 and 34 » yields the closed-loop T.F.M.

= —

c , C 0.8 , 0.06
c, = AL T CA2L L rqr0140.98) (35)
Cpp - CALI 0,06 , 0.8
The locus CA1_1 is compared in, (step 4) in figure 5 with its true-

1 » : ;
system counterpart ¢y - Interaction is very small in both cases.

Furthermore, if cAlnl(jm) is expressed as clnl(jw) {1 +e(jw)} then,
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since figure 5 reveals that |E(jw)| << 1.0, it follows that the transient
behaviour of the two systems inferred from the loci is very similar. By
way of confirmation, the computed transient responses for the true and
approximate closed-loop system are compared in figure f. Again agreement
is better than in the open-loop situation as a comparison of figures 6 and 7
shows. This is as would be expected since a comparison of figures 4 and 5
reveals that Ie(jw)l < Iel(jm)f and lEz(jm)f.
Conclusions

By application of the contraction mapping theorem, a design technique
has been presented for the feedback control of a multivariable system having
a strictly proper mxm minimum-phase, invertible T.F.M., G(s). A multivariable
first-order type model GA(S) has been found to satisfactorily represent G(s),
for the purpose of controller design, in the case of two spatially-
distributed, (i.e. very high order), processes widely encountered in the
process engineering field: (a), a binary distillation column and, (b) a
counterflow heat exchanger. The approach has been validated in cases (a)
and (b) by computation of the transient responses of G(s) and GA(S) under
open-and closed-loop conditions and also, in case (b), by frequency response
analysis,

A feature of the technique is the ease with which the 2m2 parameters of
GA(s) can be identified, either from measurement of the initial rate and
settling values of the step responses of G(s) or, as in this paper, by the
direct analytical solution of the process equation for low and high-frequency
inputs. These parameters are sufficient to determine the controller struc-
ture, the design exercise being completed using simulation methods.

Finally, it has been shown that good agreement between the closed-loop
responses of G(s) and GA(S) can be obtained despite significant mismatch of
the open-loop responses, indicating that the first order type models can be
used for closed-loop control despite apparent inadequacies in their description

of open-loop behaviour.
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Fig,

3: Closed-loop responses to step inputs Y
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Fig. 4: 1Inverse Nyquist loci of Gd(j w) and GAd(j )10
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Fig. 7: Closed-loop responses of heat exchanger to a unit step
reference change
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