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Most control systems encountered in practice are non-linear to
some extent, and although it may be possible to represent systems
which are only 'mildly' non-linear or whichroperate over a restricted
range by a linear model, in general non-linear processes can only be
adequately characterised by a non-linear model. Since the analysis
of control systems is often dependent upon finding a mathematical
description which defines the relationship between the system input
and output, system identification is of fundamental importance in
control theory. However, whereas system identification methods are
well established for linear systems the identification of non-linear
systems appears to have been largely neglected. This can of course
be attributed to the inherent complexity which results in the analysis
of non-linear systems and the absence of a general theory for such
systems.

It is well known that for a linear time-invariant system, the
output response y(t) to an input x(t) may be computed from a knowledge

of the system impulse response h(t) using the Convolution Integrall

[ee]

y(£) = [ n(o)x(t-1)dr (1)

Methods of measuring h(t) by correlation techniques are well documented,
and numerous parameter estimation scheme52 have been developed to
identify the parameters in the pulse ﬁransfer function representation
of h(t).

‘A functional representation of non-linear systems which is a
generalisation of the linear convolution integral, was first studied

3 A 2
by Volterra™ early in the twentieth century. Volterra showed that the
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explicit input output relationship for a time-invariant non-linear
system which produces a continuous and bounded output y(t) when excited

by a continuous and bounded input x(t) can be expressed as

oo

y(t) = f gl(Tl)x(t-Tl)dTl + Ii g2(Tl,T2)X(t“T1)X(t‘T2)dT1dT

—co 2
+ f . f gn(rl,rz...Tn)x(t—Tl)x(t—Tz)...x(t—Tn)drldrz...dTn
~00 -0
n integrals (2)

where the function gn(Tl,Tz--.Tn) is termed the Volterra kernel of
order n. The Volterra kernels are symmetric, continuous in their
arguments for a11’a>0, and for a non-aticipative system are zero for
any Ti<0. Systems which contain non~-linear memory elements such as
hysteresis or backlash are excluded from the description of eqn (2).

In 1942, Wiener4 applied the functional Volterra series to the
study of a non-linear electrical circuit problem, and was able to derive
expressions for the output moments and autocorrelation functions for a
Gaussian white input process. A major part of Wiener's non-linear
theory was the development of the G-functionals which form an
orthogonal set of Volterra functions for the representation of a
non-linear system when the input is a white Caussian process.

More recently, the functional representation has been investigated
by a number of workers, notably Zadeh5, Bose6, Barrett7, Brilliant8
and Georgeg. Bose introduced the concept of gate functions, which
by partitioning the function space of the past of the input into
non-overlapping cells overcame many of the difficulties of Wiener's
method. An algebra for the analysis of continuous non-linear systems
was suggested by Brilliant, and later George applied this approach and
developed Multidimensional Laplace Transforms. Mention should also

be made of the work of Ku and Wolflo, Alperll, Flakel2 and numerous
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other researchers who have all contributed to the functional series
representation of non-linear systems.

A method of measuring the kermels in Wiener's G-functional
expansion by cross-correlation using a Gussian white noise input,

was developed by Lee and Schetzen13 and used by Widnall14 to determine

the second kernel of a simple system. Kadrils, Gyftopoulos and Hooper16

17 18 ; ; ;
Douce and Weedon™ ', and Krempl have investigated the use of various
discrete level pseudo-random signals in the identification of nopn-
; ; ; ; 19
linear systems, and various authors including Ream » Barker and
; 20 2 . ; ;
Pradisthayon have studied the properties of such signals. A review
of the use of correlation techniques for the identification of non-
: . : 21
linear systems has been complled by Simpson and Power”",

Although the functional series expansion of non-linear systems 1is
now well established very few researchers have attempted to identify
practical non-linear systems based on this representation. This can
be attributed to the practical difficulty associated with the
identification of the System kernels and the excessive computational
requirements necessary to characterise non~linear systems using the
Volterra series. Consequently, various authors have turned their
attention to a restricted class of non-linear systems; notably cascade
Systems composed of linear subsystems with memory and non-linear no-

3’24, Webb25, and

22 ; 2
memory subsystems, Cooper and Falkner » Gardiner
26 % ; ; o "
Economakos have investigated the identification of such systems.
However, the identification schemes derived by these authors necessitate
a series of tests on a system using different input amplitudes, This

will inevitably result in a long measurement time and may be prohibitive

in an industrial environment,

£
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In the present study correlation analysis is used to identify
the component linear and non-linear subsystems in this class of
non-linear systems when the input processes have white noise properties.
It is shown that correlation analysis decouples the problem into the
identification of the linear subsystems and the characterisation of
the non-linear element. Parameterisation of the identified linear
system impulse responses and the non-linear system characteristic is
discussed and the results are extended to include the case of

coloured noise inputs.

2. PROBLEM FORMULATION

The class of non-linear systems considered in the present study
consists of a linear system with impulse response hl(t) in cascade
with a non-linear no-memory element and a linear system with impulse
response hz(t), as illustrated in FIG 1.

|n(t)

. | 1
Non—-linear @
e - e o — T
element hZ(t) { +

FIG 1. A class of non-linear systems

Many chemical and other industrial processes are of this type.
It is assumed that the non-linear no-memory element can be

represented by a transfer characferistic of the form
& 2 k
y(t) = v a(e) + Tpd (E) + .on 7 4 (£) (3)

; : 27 . . ’
According to the theorem of Weierstrass , any function which is

continuous within an interval may be approximated to any required
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degree of accuracy by polynomials in this interval. Thus, even
violent non-linearities such as an ideal half-wave rectifier can,
theoretically, be very closely approximated by a polynomial.

From FIG 1, the output y(t) of the non-linear element can be

expressed as

co

y(t) = Yy i hl(Tl)X(t"Tl)dTl * Y, Ii hl(Tl)hl(Tz)x(t—rl)x(t~T2)dT1dT

=0

2

[es]

foty [ {m hy(r)) o by (e x(E=t)) . x(t-t)dn

-0

1...di

(4)
and the measured system output can be represented by the functional

series

z(t) = Y4 {i hI(Tl)hz(Tz)X(t—Tl—Tz)dTldT2

t Y, {if hl(Tl)hl(Tz)hz(T3)X(t—T1—T3)X(t"T2_T3)dTldedTB
+ .
- T { = fhl(Tl)...hl(rk)hz(Tk+l)x(t-T1-Tk+1)

i x(t—rk—Tk+1)dTl ...,drk+1+n(t)

(5)

Comparison with the Volterra series eqn (2) shows that for this class

of non-linear systems the mth order Volterra kernel is given by

[==]

m
gm(Tl.-.Tm) ™ Imhz(o) le hl(Tp"U)dU (6)

Thus for the class of non-linear systems depicted in FIG 1, the

Volterra kernels have a known structure.
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3. IDENTIFICATION OF THE LINEAR SUB-SYSTEMS

If the input signal x(t) is a zero mean white Gaussian process
with a spectral density of 1 watt per cycle, then its ith dimensional

i . 28 .
autocorrelation function 1is

x(tl)x(tz) ...-x(ti) = 0 for i odd

L I &(t -t ) for i even (7
. n m
i n#m

where the summation is over all the ways of dividing (i+l) objects

into pairs. Thus, for example

x(tl)x(tz) = 6(t2—t1)

x(tl)x(tz)x(tB) =0

x(tl)x(tz)x(t3)x(;4) = 6(t2—t1)6(t4—t3)

+ 6(t3—t1)6(t4—t2)+6(t4~t1)5(t3—t2)

etc.

where — means time average.
It will be assumed throughout that all random signals are ergodic,
such that ensemble averages may be replaced by time averages over one
sample function.

Consider the system illustrated in FIG 1 when the input signal
comprises a Gaussian white signal x(t) with a mean level b. From
the functional series expansion eqn (5), the measured output z(t) can

be expressed as

z(t)

Y1 Ii hl(Tl)hz(Tz){x(t~T1—T2)+b}dT1dT2

gy Ii[hl(Tl)hl(Tz)hz(T3){X(t*Tl*T3)+b}{X(t ~T,~15) +b}dr dr,dr,

S + n(t)

1]

wl(t)+w2(t) T wk(t)+n(t) (8)
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Utilizing the 'a priori' information concerning the structure of the
kernels in the functional series expansion eqn (8), it is shown that
correlation analysis can be used to decouple the identification of

the linear subsystems from the identification of the non-linear

characteristic.

Defining z'(t) z(t) - z(t)
Wi(t) = wi(t) - wi(t)

the first order cross-correlation function is given by

4,10 = Elz'(©)x(t-0)]

= Wi(t)X(t~o) + wé(t)x(t—c) ool + wi(t)x(t—o)

+ n{t)x(t-o) (9)

Evaluating the first term on the rhs of eqn (9)

Wi(t)X(t-U) = {wl(t)-wl(t)}XCt-c)

co

where wl(t) byl ff hl(Tl)hz(Tz)dTlde

=00

Hence

wi(t)x(t—o) = {Yl {ihl(Tl)hz(Tz)x(t—T1~T2)dTldtz}x(t—a)

Yq {ihl(Tl)hz(Tz)x(tﬂTl—TZ)x(t—o)dTlde

% {ihl(Tl)hz(Tz)6(TI+T2—G)d11dT2

o

vy J by (oo by Go-g ) dn, (10)

-0

wi(t)x(t~c)

Considering the second term on the rhs of eqn (9)

wi(t)x(t-0) = {w, ()=, () }x(t-0) = w,(t)x(t-0) - w,(t)x(t-0)




= B =
where
wz(t) =Y, {ifhl(Tl)hl(Tz)hz(T3){X(t_Tl_Tz)+b}{X(t-T2—T3)+b}dT1dT2dT3
- 2
e {ifhl(Tl)hl(Tz)hz(T3){6(T1_T2)+b }drldrszB
=% {i h1 (Tl)hz(T3)dT1dT3+b Y2I£fh1(Tl)h1(TZ)hZ(TB)dTldTZdTB
(11)

Consequently

wé'(t)X(tﬁc) ={Y2{G{Ihl(Tl)hl(Tz)hz(T3){X(t"’fl—’fz)+b}{X(t"T2—T3)+b}

.dTldrszS}x(tha)

T{Yziihl (Tl)hz(TS)dTldTB}X(t—C)

- {b Yzf{£ hl(Tl)hl(T2)h2(T3)dTldTZdTB}X(t_U)

Oy [IJoy Gy (e)hy () €8xyt m0) +6 (x #4-0) e, dr

i}

by, [Ihy (e (rp)hy (o=1))dr o,

+ Y, {i'h1(T1)hl(Tz)h2(0~rl)dT1d12

wz'(t)X(t—cf - 2bY2 {mhl(Tl)dTl{ f hl(TZ)hZ(O_T2)dT2} (12)

=-CO

Similarly, for the third term on the rhs of eqn (9)

1 2 2
= — 1
Wa (B)x(t-0) = {3Y3 f hl (TB)dT3+2b Y4 ff hl(Tz)hl(TB)dedT3J

A Imhl(rl)h2(0~rl)dtl} (13)
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Higher order terms can be evaluated in a similar manner.

Collecting terms

o] o]

bypr (@ = [ By (xhy(omty)dry {y) + 2by, [ by (ryar,

<0

2 G o
+ 373 Imhl (T3)dT3+2b Yq Ii hl(Tz)hl(TB)dedT3

* vevesesaswe)  # D(L)R(E~g) (14)

Assuming that the input signal x(t) and the noise process n(t)
are statistically independent, ETETET?:ET-= oVo. Providing the
linear subsystems are stable, bounded inputs-bounded outputs, the
terms enclosed in square brackets eqn (l4) are constants and the first

order cross-correlation function can be expressed as

(o]

g old) = 8 ] by (t)h, (o=1)dT, (15)

=00

where B is a constant.

Therefore, by applying a white Gaussian process with mean level b
to the system illustrated in FIG 1 and computing the first order
cross—correlation function ¢Xz,(c), an estimate of the convolution
of the linear subsystem impulse responses is obtained. A Gaussian
signal with a mean level b, is used as the input signal to ensure that
all terms in the functional expansion eqn (8) contribute to the first
order cross—correlation function eqn (14). If the input signal had
Zero mean level, cross-correlation over all the even terms in eqn (8)
(.2, ¢Xw,(0), ¢Xw,(0), etc.) would be zero because of the symmetry of

2 4
the Gaussian density function.
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If the system were linear (i.e. ¥, = 0, m = 2,3...) the
identification would be complete. However, in order to characterize
the non-linear systém illustrated in FIG 1 an estimate of the
individual linear subsystem impulse responses is required. This
can be achieved by computing the second order cross—correlation
function which provides a second equation relating hl(t) and hz(t).

Consider the system illustrated in FIC 1 when the input signal
comprises a Gaussian white signal x(t) with a mean level b, From
the functional series expansion eqn (8), the second order cross-

correlation function is defined as

bzt (9750, E[z" (0)x(t-0)x(t-0,)]

wl'(t)x(t-cl)x(t—02)+w2‘(t)x(t—ol)x(t—cz) o

S i wk'(t)x{t—cl)x(t-az)+n(t)x(t~ql)x(t—62)

(16)

Evaluating the first term on the rhs of eqn (16)

wl'(t)x(t—ol)x(t—cz) = {wl(t)*wl(t)}x(t-ol)x(t—oz)

I}

where w. (t) = byl Ii hl(Tl)hz(Tz)dTlde

Hence

Wl'(t)x(t—ol)X(t—Gz) {Yl {ihl(Tl)hz(Tz){X(f—TI;Tz)+b}dT1dT2}x(t—01)x(t—02)

- {byl {ihl(Tl)hz(Tz)dTlde}X(t-Ul)X(t—Uz)

= vy JIby Gy (o) G ey (o ) xe=0 )

+bx(t—01)x(t—02)}dTldT2

- byl_Ii hl(Tl)hz(Tz)x(t~gl)x(t—c;}dTldrz (17)
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wl'(t)x(t—cl)x(t—cz) = Oxf'cl,oz (18)

Considering the second term on the rhs of eqn (16)

wz'(t)x(t-ol)x(t—oz) {wz(t)—wz(t)}x(t—cl)x(t-cz)

and substituting for wz(t) from eqn (11).gives

wz'(t)x(t*cl)X(t-cz) = L1y {ifhl(Tl)hl(Tz)hz(T3){X(t"Tl"T3)+b}'

{x(t—Tz—fB)+b}dT1dT2dT3}x(t-ol)x(t—oz)

ol
‘{Yz Iihl (Tl)hz(r3)dfld13

+ bzyz fffhl(Tl)h1<T2)h2(T3)dTldT2dT3}X(t—Gl).

x(t*az)

N Iifhl(xl)hl(Tz)hz(TB){5(11—T2)a(al—az)+5(T1+T3—a1)5(T2+T3~02)

2
+ 6(T1+13—02)6(T2+T3 02)+b 6(01—62)}d11drzdr3

T2
- 5(61-02)y2 {{i hl (Tl)hz(TB)dTldTB

+ b7 [[Jby Dby (e b, (x ) dn drydr,)

s {whl(ol—TB)hl(oz—TS)hz(TB)dT3 | (19)
Setting 0; S0, =0 gives

fe=]

Wy Ox(EDx(E0) = 2y, [ b (et b, (r)dr, (20)
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Similarly for the third term on the rhs of eqn (16)

(o] [oe)

w3‘(t)X(t“U)X(t_U) = {mhlz(ohf4)h2(14)dT4{6bY3 {mhl(T3)dT3} (21)

Higher order terms can be evaluated in a similar manner.

Collecting terms

(o] oo

2
§ gt (0:0) = [ by " (0=t )b, (r,)dr; {0+2y,+6by, Imhl(TB)dT3

=00

+ vieees b+ n(0)x(t-0)x(t-0) (22)

Assuming that the input signal x(t) and the noise process are

statistically independent, n(t)x(t-0) = O%¥o it can readily be shown

that n(t)x(t-0)x(t-0) = 0¥ g. Providing the linear subsystems are
stable, bounded inputs bounded outputs, the terms enclosed in square

brackets eqn (22) are constants and the second order cross—correlation

. function can be expressed as
" 3
§(090) = @ Imhl (0-1 )b, (1)) d1, (23)

where o is a constant.

Therefore by injecting a Gaussian white signal with mean level
b into the non-linear system illustrated in FIG 1, and computing the
first and second order cross-correlation functions as defined by
eqns (9) and (16), the individual linear subsystem impulse responses
ulhl(t) and uzhz(t) can be identified uéing eéns (15) and (23) where
Hy and M, are constants. An algorithm for estimating the parameters
in the pulse transfer function representation of hl(t) and hz(t) is

Presented in Section 4.




.

If the input signal is white Gaussian with a non-zero mean level
all the terms in eqn (16) except the first, contribute to B e Cosmy
and hence a result similar to eqn (23) can be obtained for all non-
linearities which are continuous.

Inspection of eqn (19) shows that the mean level of the measured
system output z(t) gives rise to an impulse when Gy =R
Theoretically this would make the second order cross-correlation
function infinite for ¢ = g, =g

output prior to computing the second order cross-correlation function,

9 However, by normalising the system

as in eqn (16), this problem can be avoided.

Notice that wl'(t)x(t-cl)x(t—cz) = 0V ;50 This provides a

9

convenient test for linearity, since if the system is linear (i.e.

e om0y o= 3,808, z'(t)x(t—dl)x(t-cé) = 0N @ and the

150-2’
identification problem is solved by computing just the first order

cross-correlation function eqn (15).

b4, PARAMETERISATION OF THE LINEAR SUBSYSTEMS

In order to identify the non-linear element in FIG 1 it is
necessary to isolate hl(t) and hz(t) from the results of eqns (15)
and (23). Since the identification will normally be performed with
the aid of a digital computer, the first and second order cross-

correlation functions, eqns (15) and (23), will be in sampled data

form

™M=

b () = B
j=o

hy ()h, (i-3) (24)

O h12(j)h2(i"j) (25)

¢xxz'(i’i) -

B~ =

i
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By fitting a pulse transfer function model to the sampled cross-

correlation functions each linear subsystem model can be isolated
; . 30

using a least squares algorithm

Define the following pulse transfer functions

B(z_l)

z {Bh, (t¥*h (t)} u:
1 2 Az Y

(26)

=1
F(z )
=z ) (27)

2
z{ah, “(t)*h_(t)} -
1 2 Btz )

]

Z {ulhl(t)} (28)

Z {uyh,(t)} (29)

N (" h

D,(z"h)

z {ugh, (0} = (30)
where * denotes convolution, z__1 is the backward shift operator and
o,B and My i=1,2,3 are constants.

The sampled first and second order cross-correlation functions
¢XZ,(i), ¢xxz,(i,i) can be visualised as the response r(i) to an impulse
u(o) =1, u(j) =()*fj # 0. Thus for example for the first order

cross—correlation function, from eqn (26)

1

sl = §£E:Tl i) (31)
' A(z )

or expanding
r(i) = bou(i)+b1u(i—1)+b2u(i—2) ... +bmu(i—m)—alr(i-l)
- azr(i-Z) s = amr(i~m) (32)

where u(o) =1, u(i) = 0V i # 0. Substituting the values of u(i)

into eqn (32) gives the matrix equation
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(r@0)) ([ o O .....0 Ju@© o0 o] ( a, |
|
r(l) -r(0) 0 &5 . . .0 | 0 u(0) 0 a,
: -r (1) D e ey O | :
- ' I é
| m
- : | b
) (8]
\r(N)J -r(N-1) -r(N-2) . . .-r(N-m)] 0 . . . . OJ bl
me+1 J
R = Q6 (33)

Solving for 6 using least squar9529 gives é consistent estimate of
the unknown parameters
o = (@' lo'r (34)

A similar approach can be used to estimate the parameters
(ei,fi) in the pulse transfer function representation of the second
order cross—correlation function.

Although the parameters in the pulse transfer function
representations of the linear subsystems eqns (28) and (29) cannot

be determined uniquely from measurements of the input-output sequences

they can be identified to within constant scale factors ul and uz.
From eqns (26) to (30)
A(z-l)DB(zhl) = E(zhl)Dl(z_l) (35)
. = R | -1, _ -1 -m -1
Define T(z ") = Az )D3(z ) = (l+alz ...+am; )(1+d3,1z
=24 -1 -28-m
+...d3,22z } = t0+tlz il +t22+mz (36)
and
=L gl -1, _ -1, | -k -1
u(z ) = E(z )Dl(z Ny = (l+elz +...Tekz )(1+d1,1z
SN -1 -2k
+ oo, * dl,iz ) = uD+ulz ...+u£+kz_ (37)
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]

where &+m =k, t =1, u =1, ti =q; (a,d3) and u,

o b v, (e,dl) for

i =20, 2Hm; Replacing a,e by their estimates a,e, and introducing
error terms Py gives

L = n

o o

qi(a,dB) = Wi(e,d1)+pi(6€,68) 1= g 2eien 204m (38)

Each Ps is a random variable which is a function of the estimation
errors, 63 = a—;, 6e = e-é. Equation (38) provides a set of linear
equations to which the least squares solution can be applied to
estimate the unknown parameters d3,i and dl,i'

By equating coefficients in the identity

B(z DN, () = P(z DN, (2 ) (39)

and following the above procedure least squares estimates for the

unknown parameters n3,1,n3’2...n3,22; nl,l’nl,Z"'nl,l can be obtained.

Slm;larly, estimates of the parameters n2,1’32,2"'n2,q;d2,1’d2,2"'d2,q
can be computed using the identities
Az Y = Dl(z_l)Dz(qu) (40)
Bz = N (z N,z 7Y (41)

D5 IDENTIFICATION OF THE NON-LINEAR ELEMENT

Consider the schematic diagram of the identification procedure

illustrated in FIG 2.




————

Non-linear

$ process

|

i

!

! i ; Y14 (1)+

—_f‘__lulhl(l) e () i

x(1) | jq(i) !thqk(i) ty(1) w(i)

FIG 2. A schematic diagram of the identification procedure

The error e(i) between the sampled process output z(i) and the output

~

of the model w(i) can be defined as

e(i) = z(i)-w(i) (42)
Y. 3 QI £ o
where w(i) = Wy I bz(j)y(i'j)
j=0
Looa ~ ~9
=4, I h (Iv,"a@@-7)+y, "q“({E~-j)+ ...
g & Sy 1 2
1=0
kL
-ty e (i-3)) (43)
q(i) = n1’1X(R"1)+nl,2X(2—2)u..+nl’£X(i—2)—d1’lq(1~l)

o =d. q(i-2 44

d1’QQ(1 ) (44)
and ¥ = ultuzyt', t=1,2...k. Substituting eqn (43) into eqn (42)
and considering N measurements of the sampled process input and output

glves the matrix equation
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2 ) %
™ AP e B ® i R
(Z(D) (u, = h,(1)q(1=§), u, = & G (m3) e, B (J)qk(1~3) fv. ") [e(D))
Zi g 2, " 2o -0 1
1=0 1=0 3=0
LR 4 Lo ~9 L. “K
Z(2) | |uy T h,(3)q(2-3), u, I b (i)q(2-5)...u. T B (Da -1 [|v,'| [e(2)
2y 02 e Ml 2
j=0 1=0 j=0
s : : Ap
; s
; 5 k
L % B ~9 Riv o K
ZMJ vy T h()qN=3), u, £ h (3)q (N=7)...u L h,(i)q (N-j)] e (N) |
\ | - Migplhew. o ey
j=0 j=0 j=0
Z =¢6 + E (45)

Since all the elements of the 7 and ¢ matrices are either measured
or estimated, a least squares estimate of the coefficients yl',yz'...yk'
in the polynomial series representation of the non-linear element can
be readily computed

6 = (") 14"z (46)
and the identification is complete.

Since the identification of the non-linear element is decoupled from
the identification of the linear subsystems it may be possible to fit a
series of straight line segments, rather than a polynomial to the non-

linear characteristic, This would be particularly advantageous when

the non-linearity conmsists of a deadband or saturation.

by THE HAMMERSTEIN AND WIENER MODELS

The class of non-linear systems illustrated in FIG 1 is often
referred to as the "general model". Special cases of this model,
known as the Wiener and Hammerstein models are illustrated in FIC 4(a)

and 4(b) respectively,
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n(t)
(t) : (t) o (
e t‘_ 1 g Non-linear i alL)
: by 2 B =
element !
FIG 4(a) THE WIENER MODEL
s n(t)
(t) (t) i (
X Non-linear _WEZ e W o #jif)
I element 5 | 2 ! Pl
| | |
AR S N

FIG 4(b) THE HAMMERSTEIN MODEL

The Wiener model, FIG 4(a), consists of a linear system followed
by a non-linear no-memory element. The Volterra series and the
models of Cameron and Martin31, Wiener, Bose and others belong to
this class. By setting hz(t) = §(t) in FIG 1, the general model
reduces to the Wiener model, and the identification procedure outlined
in previous sections is simplified considerably.

If the input signal has the properties of a Gaussian white process
with mean level b, setting hz(t) = 6(t) in eqn (15), the first order
cross-correlation function becomes directly proportional to the impulse

response of the linear element

¢XZ'(U) . Bhl(U) (47)

Similarly, the complexity of the least squares algorithm for estimating
the coefficients in the polynomial series representation of the non—
linear element eqn (45), is reduced for the Wiener model.

The Hammerstein model, FIG 4(b), which consists of a non-linear
nNo-memory element followed by a,linear system has been investigated
32,33,34,35.

by several authors The linear and non-linear elements in
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the Hammerstein model can be readily identified by setting hl(t) = §(t)

in the results derived for the general model.

y EXTENSION TO COLOURED NOISE INPUTS

The identification procedure outlined in previous sections can be
applied with only slight modification even if the input is non-white,
providing that it has a non-zero mean level.

Consider the system illustrated in FIG 5, where the non-white
input x(t)+b is regarded as the output of a shaping filter kz(t) which
is driven by a white Guassian process (;(t)+b/gk where 8 is the shaping

filter gain.

n(t)
kl(t) '——P—- kz(t) _ hl(t) ; NLE - h2(t) wmé%_
ilf}t)"' x(thb + 7 z(t)
oty o %k I - Ry
} SYSTEM A

FIG 5. AUGMENTED NON-LINEAR SYSTEM

Providing the power spectral density of x(t) is factorable{ it can

be expressed as

s () = S;X(w)S;X(m) (48)

+ y ) -
where Sxx(m) 1s the complex conjugate of Sxx(w), and all the poles
+
and zeros of Sxx(m) are in the left half of the complex s-plane.
+
Thus Sxx(m) and l/S;X(w) are each realizable as the traunsfer function

of a linear system where ’
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Ky () = 1/5, (u) (49)
Ky() = 5. () (50)

Since the input to the system enclosed in dashed lines in FIG 5
is a white Gaussian process with mean level b/gk the first and second
order correlation functions between t(t) and the normalised output

z'(t) can be expressed as

brpr (@) = Blk,(D)*h, (£) }*h, (t) (51)

by (5:0) = afl,(£)%h, (8) YPan, () (52)
where

tpt @ = [y (D (rro)an (53)

" +g)dt de (54)

2

Oyt (950) = Ii kz(Tl)kz(T2)¢ngv(Tl+UsT .

Considering sampled values and taking the Z-transform of equs

(48) and (49)

=1
b @) = — [ BE D4 (55)
¢ FF(z ) Az D)
LI PR S e N (56)
i FE'(z D) E(z )
where u(0) = 1, and u(k) = 0¥ k # 0. Estimates of the parameters in

the autoregressive model representation of the shaping filter
Z{kz(t)} = 1/FF(Z—1) can be obtained from measurements of x(k) using

a least squares algorithm,
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Thus by fitting an autoregression FF(z_l) to x(k) an estimate
of the white noise sequence z(k) can be obtained
o -1
t(k) = FF(z )x(k) (57)

and ¢;z'(k)’ ¢Ccz'(k) can be computed. Since FF(z_l) is known, the

first order correlation function eqn (52) can be filtered to give

=
PGz D¢,,,00 = BE )y (58)
Lz Az )
and FF'(z_l) can be absorbed into D3(z_1)
Ny D) N, GTh
¢ y (k,k) = % . = (59)
gtz D, (=) D' (z 1) -

Estimates of the parameters in the pulse transfer functions
B(z_l)/A(z_l) and F(z_l)/E'(z_l) can now be obtained using the

procedure outlined in section 4.

8. CONCLUSIONS

A procedure for the identification of a class of non-linear systems
has been presented. If the non-linear system has the structure of
the general model where the linear and no-memory non-linear elements
are separable the form of the kernels in the functional series expansion
are known a priori and the identification of the linear and non-linear
elements can be decoupled. For a Gaussian white input signal with
a non-zero mean level, estimates of the impulse response functions of
the linear elements can be obtained by computing the first and second
order correlation functions. Once the linear elements have been
identified, estimates of the coefficients in the polynomial series

Tepresentation of the non-linear element can be computed. Identification
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of the linear subsystems is therefore independent of the non-linear
characteristic and consequently the computational burden often
associated with the identification of this class of non-linear systems
is reduced.

The only necessary data for the characterization of this class
of non-linear systems is a record of the white Gaussian input and the
system output. Tests involving multiple amplitude input signals and
hence excessive experimentation times are avoided.

Because the linear, Hammerstein and Wiener models are all sub-
classes of the general model the identification procedure is applicable
to systems with these structures. A comparison with the algorithms
derived by previous authors for this class of systems demonstrates
the simplicity of the present method and emphasises the advantages
of decoupling the identification of the linear and non-linear elements.

The results of preliminary investigations using simulated systems
confirm the validity of the algorithm and the identification of a
non-linear plant is in progress. It is hoped that these results
and an investigation into the extension of the method to include

other common system structures will be published at a

later date.
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