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Abstract

The geometric nature of the infinite zeros of the root-loci of
linear multivariable systems is investigatgd using the canonical form
derived by Morse (1973). It is shown that an invertible system
S(A,B,C) has integer order infinite zeros in the generic case equal to
the controllability indices of a pair (A+KC, B), that suitable choice
of proportional output feedback guarantees the absence of other than
integer order zeros and that the orders and asymptotic directions of
the infinite zeros are independent of constant state feedback and

output injection.
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i b Introduction

Recent papers (Shaked and Kouvaritakis 1976, owens 1976, 1977a),
have laid the foundation for the theoretical analysis and computation
of the asymptotic behaviour of the eigenvalues of the linear time-invariant

system S(A,B,C)

%(t) = Ax(t) + Bu(t) i Wt E R, x(t) & Rr"

y(t) = cx(t) . ywer" D

when subject to unity negative feedback with scalar gain p > O. The

closed-loop system takes the form S(A-pBC,pB, C)

I

%(t) {A - pBClx(t) +pBr (t)

il

y(t) = Cx(t) .- (2)

so that the closed-loop poles are the zeros of the closed-loop characteristic

polynomial
o _(s) b |st_ - a + pBC (3]
c n S
or, equivalently, the zeros of the return-difference determinant,
[T(s) | = |1 + pG(s) | e (4)

where G(s) é C(sIn-A)'lB is the mxm system transfer function matrix. It
has been shown (Shéked and Kouvaritakis 1976, Owens 1976 ) that, under
certain well-defined conditions, the unbounded closed-loop poles (ie
iﬁfinite zeros) of S(A-pBC,B,C) as pte have integer order in the sense
tﬁat<s—kp has a finite non-zero limit for some integer k2l on each branch
of the root-locus.

This paper uses the canonical structure for S(A,B,C) derived by
Morse (1973) to identify the orders of the system infinite zeros in terms
of well-defined feedback invariawnfs of -S(A,B,C) under the transformation

group defined by




-1 -1
(C,A,B) v (NCT ~, T(A+BF+KC)T ~,TBM) ()

where N,T,M are constant nonsingular transformations and F,C are state

feedback and output injection maps respectively (Morse, 1973).

D Mathematical Preliminaries

The basic canonical decomposition of S(A,B,C) used in this paper
can be inferred from the paper by Morse (1973). For completeness, the
relevant results and concepts are summarized below. It is assumed that

rank B = rank C = m cacsi (6)
and that the system is invertible in the sense that

v'A RE) = {0} cel?)

*
where v is the maximal (A,B)-invariant subspace in N(C). Here R(Q),

N(Q) denotes the range and null-space of a transformation Q respectively.
It follows directly from previous results (Morse, 1973) that

n *
R =v &7 ' R(B) = ¥ aii8)

where the subspace ¥ is obtained via the algorithm,

A .
3 =10} ’ T, = Am@N T, ) +RE) , i3l

ne>

3 "-T'n s (9)

Moreover, there exists a feedback map F and an output injection map K

such that

* o
{A +BF +KC} vewv

{A +BF +KC}3 = = s (10)

and hence a transformation T such that

T {A + BF + XC} T - 1 s T




..3....

where Al, A, are the matrix representations of the restriction of

4
*

A+BF+KC to the subspaces v , 3 respectively. An important aspect of

the structure of S(A,B,C) is that (Morse, 1973) it is always possible

to choose T,F,K such that

A, = block diag {Jl, Tor wee Jm} ssw (12}
where
( o . 0)
0 :
de = : : 6 »  l€i<m FR G

.

n,.xn,
1 1

and such that there exists nonsingular matrices N,M generating the canonical

representation
NeT ! = block diag {C., C i
iag 17 Cgr +eer C
O *
TBM = dimv xm i LAY
block diag{Bl,B2,...,Bm}
where
Ci = (1'0""'O'o)lxn. i lgi<m
i
0
Bi = : ; 1gi<m a s (1)
(0]
1, X1
1

The ordered integers nlsnzs..snm are the controllability indices of the




s 7 ame

pair (A+KC,B), and

n - dim v s & 2 016D

Il ~18
ta}

‘-I
]

1

»

A simple computation yields the canonical form for G(s) .,

-1 1 1
N C(sI -A-BF-KC) "BM = diag{ — , — , ..., %y } I )
n n n n
1 2 m
s s ]

The equivalence class generated by S(A,B,C) under the transformation group
defined by (5) is completely defined by structural invariants, namely, the

invariant polynomials of Al and the ordered list of integers n_,n reeen

e D)
It is known (Kouvaritakis and Shaked, 1976) that the invariant

polynomials of A , or, more precisely, the zero polynomial,

>

z(s) sz, - 2, s+ (18)

dimv
describes the finite cluster points of the root-locus of S(A,B,C) as

prte, It is shown in the following section that the integers n_,n_,...n

152" " n
are directly related to the orders of the infinite zeros of S(A,B,C).
In general terms, the structural invariants of S(A,B,C) under the trans-

formation group defined by (5) represent a complete description of the

asymptotic behaviour of the system root locus.

3. Structural Invariants and the Infinite Zeros of S(A,B,C)

The simplicity of relation (17) suggests that the use of state
feedback and output injections maps could be used to simplify the form
of equation (4). Taking Laplace transforms of equation (1) with zero

initial conditions yields the identities

se 0 (sIn—A)_lB u(s)

C x(s) wim v (L)

Il

y(s)




-5 -
It is easily verified that
x(s) = (sI_-A-BF) '{-BFx(s) + Bu(s)} ... (20)
and hence that
-1 -1
yv(s) = C(sI_-A-BF) "B{I - F(sI -A) "Blu(s) san (21)
n m n

In transfer function matrix terms,

o R ¢
G(s) = C(sIn—A BF) "B {Im + Hl(s)} vea (22)

where Hl(s) is strictly proper. Similaxr reasoning applied to the system
T T T i
S((A+BF) ,C”,B") can be used to prove that

c(sI -A-BF) ~*
n

B = {I_+H_(s)}C(sI —A—BF—KC)_lB wea (23)
m 2 n
where H2(s) is strictly proper. It follows directly that
G(s) = {I_+H,(s) }C(sI_-A-BF-KC) “B{I_+i, (s)} vl (24)
m 2 n m 1
which is the decomposition used in the following analysis.

Substituting (24) into (4), after some manipulation,

|T(e) | = £(s) |T + H(s) + patagl —— ——seev =} ... (25)
n n n
1 2 m
S =3 s
where
il 0T
£(s) = |Im+Hl(s)|-|Im+H2(s)|- N M |
I = NM
H(s) = NL(I_+H () T(1_+1_(s)) *-1_}m (26)
m 1 m 2 m SET

It is easily verified that I' is nonsingular and that H(s) is strictly
proper.

Suppose that the ordered list n Snzs..snm has g distinct entries

1

i ici <ig
ml<m2<..<mq each of multiplicity di, l<igqg,




- i =
e} m
) md = 7§ n sioe (27)
1= =t i=1 *
and write r = Fll - qu
T I
gl aq
H(s) = [(H, _(s) ... H. (s)
H e | ... (28)
(s) ... H (s)
gl qq

where T,., H,,(s) are of dimension d.xd..
i] 1j i ]

Theorem 1

If the submatrices

PR .

P, = - 14 , 1gigq ... (29)
r r
qgi aq

are nonsingular, then the invertible system S(A,B,C) has midi infinite

zeros of order mi, lgige,

The theorem is proved later in the section and provides a direct
computational technique for the infinite zeros. In essence the result
states that, under mild conditions on T = NM, the structural invariants
nl,..,nm are the orders of the infinite zeros of 5(A,B,C). Noting that
arbitrarily small perturbations to N,M guarantees the nonsingularity of
Pi' lgigq, then the result is seen to be generically valid. Moreover,

the nonsingularity of Pi, lgigg, can be achieved by a suitable choice of




- F s

‘output feedback matrix Ko e.g. the system S(A,BKO,C) with KO =M N
generates the matrix T = Im and hence IPiI =1, l5igq.

Finally, it follows directly from the construction of the canonical
form and the invariance of n_,n reeen under the transformation group

¥ 2
defined by (5) that

Corollary

With the assumptions of theorem 1, the asymptotic behaviour of the
infinite zeros of S(A,B,C) is invariant under state feedback and output
injection transformations of the form

+ K. C
A A + BF, 1§ (30)

In general terms, the asymptotic behaviour of the infinite zeros depends
only upon the structural invariants ni, l<igm, and the matrix T = NM.
The corollary may be used to simplify the system for theoretical o
computational purposes. For example, choosing Fl such that

* *®
(A+BFl)v < v , the analysis of the infinite zeros of S(A,B,C) can be
reduced to the analysis of the infinite zeros of a system S(E,E,E) of

: ' — n,*
state dimension n-dimv in the quctient space R /v .

Proof of theorem 1:

-~
-

The proof follows similar lines to the analysis of Shaked and
Kouvaritakis (1976), and provides a direct computational solution to the
problem in terms of the system canonical representation. As our
attention is restricted to the infinite zeros, equation (25) indicates
that the return difference determinant can be replaced by the rational

polynomial

A ~H 'm
|7 () | = e, # Q,(s,p) + p block diag{s “I_,..,s T1_1}| ...(31)

-m
and Ql(s,p) = H(s)+0 as p>+o, The nonsingularity of P1 ensures that ps :




cannot have a cluster point at the oxigin of the complex plane as p*ie,
-m.
Consider the case when ps l+0, i>1, when (p>+»)

-=m
[T (s) | > |

P. + p block diag{s ‘1., O, .., O}] ... (32)
1 d
1
If g = 1 then the theorem is proved as n,=mn, = .. = no=m and ps A
where Pl+AIm = 0 ie the system has mn, nlth order infinite zeros of
the form
-n
Yinw Tp = oy
pe

i (33)

where Ai is an eigenvalue of P

1 =: . If g>»1, then P2 is nonsingular
by assumption, and application of Schurs Formula to (32) yields the

relation (p-+te)

1 -1 21
T (s)| > e |ps Idl * Iy {Plz...qu}P2 l i tad]
qu
. where cl is a non-zero constant. Hence, the nonsingularity of P2 ensures
=m
that ps L

can only have finite, non-zero cluster points A generated by

solutions of the eigenvalue equation

T
~1 21
AT + - ¥ :
4 e, Ty = Eigt By -
qu
= |p, + Adiag{I. ,0,..,0}| =0 ss e (35)
1 d
1
-'!Tli =
Suppose now that ps

-+ 0, i*2, and ps is unbounded as p*+®.

Applicationsof Schurs formula to (31) yield the identity,

-m
! 1
|Tl(s)| = |ps Ig * Hll(s) +T

b4
1

11




—‘ﬂ

- [
-m ~m

|P,+a,(s,p) + p block diagls “I  ,..,s 91, } ... (36)
2 q

where Qz(s,p)+0 is p+to, The first factor is nonsingular at high gain

and hence we can replace |Tl(s)[ by

-m -m
|T.(s)| = |p_+Q,(s,p)+p block diag{s 2 yeurs 31 }H
2 2 2 da d
; 2 q
-~ [P2+p block diag{s “I_ R | eeT
2
-m,
If g = 2 then the theorem is proved as ps “-+A where |P2+AId Ii=0 1s
2
the system has d2m2 m2th order infinite zeros of the form
lim s p = —li w3 8)
po
where Ai is an eigenvalue of _PZ' If g>2 then P3 is nonsingular by
assumption and hence, using Schurs formula,
-m I‘32 :
|z ()| + e lps 21, 4T, ~{T,....T. 2. "1 | 1 |} )
2 2 d, 22 - 23 2q° 3 .
qu

where C, is a non-zero constant ie nonsingularity of P3 ensures that
-m,
ps can only have finite, non-zero cluster points A generated by

solutions of the eigenvalue equation,

24 Pas
c, AIdz e Vom Bl s wre r2q}P3 : ¥
T2
= [P, + X block diag {ry +0,..,0} =0 16y (40)

2
The theorem is now easily proved by induction by noting that (37) takes
-m, -m,

: i
a similar form to (31). More exactly, if ps g 0, i>k and ps are

unbounded, lgi<k, as p=+e, and




- 10 -

- -m
lTk(s)] a |Pk + Qk(s,p) + p block diag {s mkI peeaps 371 H

% dq

.. (41)

th i
where ﬂk(s,p)+0 as p>+e, then the system has dkmk mk order infinite

zeros of the form ps A where

[pk + block diag{AI_ ,0,..,0}| =0 : (A9

%

It is of particular interest to note that the strictly proper transfer
function matrix H(s) can be neglected in the analysis and hence that the
asymptotic behaviour of the root-locus can be examined using the

approximation
~my -m
|Tl(s)| « |T + p block diag{s “I. ,..,s 9z }I ee.(43)

dl dq

Equivalently, the asymptotic behaviour of the system root-locus is dictated

by the structural invariants n reseD and the matrix T' = NM

7ty
representing (equation (17)) the input-output couplings in the open-loop
system, This result is obvious in the classical single-iﬁput-single—
output case where m = 1 and n, is equal to the rank of the system transfer

function.

4, Illustrative Example

Consider the invertible system,

C Q'FH O
QO OO0 0
(oo S o RS B ]
IR e & R
Q B
= O 0O O

1 o o o ... (44)

-1 1 0 O




wi L o

*
and note that v = {0}. Choosing

r

0o 0 © -1‘[
F =
0 0 © oJ
p
0 O =1 0 O
K =
0o 0 0 0
(1 o 1 o]
N = ? M= ---(45)
I. 4 0 lJ
from which, choosing T = 14,
_l »
T (A+BF4+KC) T = O 0O O O
O 0O 1 O
O 0O 0 1
O 0O O o
e 1 0 0 0 1 0
NCT = = T™BM = o o + + = (46)
o 1 0 9
o O
o 1
which is in the required canonical form with nl =1, n2 = 3. Also, by
direct computation,
PRI TR -
NC(SI4-—-A—BF—KC) BM = 1 catiitd 7y
e =
s
and
1 o
' =P, =NM=
& 1. 1
= 3
P2 1 ee. (48]
so that the conditions of theorem 1 are satisfied. It follows directly

that the system has one first order infinite zero of the form s_1p+ll (p>o)

where (equation (42), with k = 1)




- T2 -

-+ (49)

ie Al = -1. In a similar manner the system has one third order infinite

zero of the form snsp > Az (p>~) where (equation (42) with k = 2)

[P2+7\2| = 1% K, = @ + i< (BO)

ie Az = -l. These results are easily verified by direct analysis of the

closed-loop characteristic polynomial

|SI4 - A + pBC| = s4 + ps3 - 52p + 2ps + p2 R A,

and it is noted that, for reasons previously discussed (Owens, 1977b), the

algorithm of Shaked and Kouvaritakis (1976) is not strictly applicable

to this system.

5. The Case of S(A,B,C) not invertible

If S(A,B,C) is not invertible in the sense that (7) does not hold,
it can be deduced from the canonical form due to Morse (1973) that there

exists N, M, T, F, X (c.f. equation (17)) such that

NC(sI_-A-BF-KC) 'BM = diag{ —— , ——, .v, —— , 0,.., O}  ...(52)
n n n n
1 2 g
s S S

*
where £ = m~dimv M R(B) and the structural invariants nl,ng,..,n£ are the
controllability indices of the pair (A+KC,B). It is easily verified that

the results of section 3 remain valid if theorem 1 is reworded,

Theorem 2
If the submatrices

I|ii e Pi,q+l

y . , lgigg+l s 5 (53
- r r
g+l,1i g+l,g+l




- 13 =

are nonsingular, then the noninvertible system S(A,B,C) has midi infinite

zeros of order mi, lgigqg.

Here, for simplicity of notation, the submatrix rq+1,q+l is taken to

correspond to the zeros in equation (52).

B Conclusions

It has been shown that the canonical form derived by Morse (1973)
can play an important role in the analysis of the properties and structure
of multivariable root-loci. More precisely, using the result that a
square, invertible system S(A,B,C) has structural invariants {(under the
transformation group defined by (8)) defined by the invariant polynomials
of the restriction of A+BF to v* and the controllability indices nl,nz,..,nm
of A+KC (for suitable choice of F,K), then, in the generic case, the

indices n reesn are simply the orders of the infinite zeros of the

1508
root-locus of S(A,B,C). Noting that the zeros of S(a,B,C) (ie the
invariant polynomials of A+BF|v*) define the finite cluster points of
the system root-locus, it is seen that the structural invariants provide
a complete description of the asymptotic behaviour of the closed-loop
poles. -
Of particular interest are the observations:
(1) It is always possible to choose a constant output feedback
controlller such that the infinite zeros have orders nl,n2,..,nm.
(ii) The ordizrs and magnitudes of the infinite zeros are independent
of conss;tant state feedback and output injection maps.
(iii) The orders and magnitudes of the infinite zeros depends only

upon 'the invariants Nreeyn and the properties of I' = NM

whidn describes the basic input-output couplings in the system.
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The author feels that the canonical form (Morse, 1973) could be
a useful tool for setting the theory of root-loci on a firm geometric

foundation.
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