The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of A Canonical Form For The Reduction of Linear Scalar
Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/87204/

Monograph:

Field, A.D. and Owens, D.H. (1977) A Canonical Form For The Reduction of Linear Scalar
Systems. Research Report. ACSE Research Report 59 . Department of Automatic Control
and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A CANONICAL FORM FOR THE REDUCTION OF

LINEAR SCALAR SYSTEMS

by

A.D. Field B.Sec.,

M.Sc. (Tech.)
D.H. Owens B.Sc., A.R.C.S

C.S., Ph.D., A.F.I.M.A.

Department of Control Engineering,
University of Sheffield,

Mappin Street,

Sheffield S1 3JD.

Research Report No. 59

April 1977

R 629 8 (g)




P 54933
i vii v+

Abstract

Consideration is given to the problem of the reduction of order of -
a scalar system S(A,B,C) described by a transfer function g(s). On the
assumption that the reduced order model is to be used for feedback control
systems design, a canonical form is derived equivalent to a system decom-
position related to the asymptotes, intercepts and finite zeros of the
system root-locus. A mﬁdel reduction procedure, based on the canonical
form, is suggested and shown to be capable of providing a good approximation
to both the dominant pole and dominant zeros of g(s) and to make possible
the matching of the desired number of high and low frequency moments. The
canonical form can also be used to provide an estimate of a suitable reduced

model order. Two.examples are described.
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Key to Diagrams

il

Fig. L decomposition of g(s) into a forward path and a feedback loop.

Elon, 2 decomposition of g(s) into a sequence of nested feedback loops.
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Fig. 33 simulated outputs of feedback loops in example 1.
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Introduction

The problem of approximation of the input—output dynamics of a
single~input-single-output linear, time=-invariant dynamical system
described by the state space model S(A,B,C)

x(t)

Ax(t) + Bu(t) it x(t) & B

I

y(t) = Cx(t) (L
by a reduced order model S(AR’BRCR) of state dimension o, £Sin hés been

the subject of considerable study. Most analytical techniques for sys—
tematic model reduction are initiated by expressing the system state-space
model or transfer function in some defined canonical form and subsequently
applying truncation and/or approximation methods to produce a reduced order
model prossessing a combination of the following properties:

(i) Moment matching about specified points in the frequency domain.(l?lo)

(ii) Dominant pole retention,(lo?13)

(iii) Matching of time domain dynamics.(la’ls)

(iv) Retention of overall open—loop stability characteristics.(6—9’12’13)
The choice of reduced model order is, in general, guided by heuristic rules
or trial and error.

In the opinion of the authors, it is important that any reduction
technique be based on a systematic analysis of the geometric and algebraic
properties of the system state—space model and transfer funmction guided by
Intuitive rules relating system structure to the input-output response, If
the reduced order model is also to be used for feedback controller design
studies, it must retain the important closed-loop characteristics of the
original system. .Some of the most important feedback characteristics of
a system are the asymptotes and intercepts of the system root-locus and the
overall structure of the dominant zeros of the system transfer function. In

this sense it is anticipated that the most suitable canonical form for

S(A,B,C) should be obtained by an investigation of those geometric and
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algebraic properties governing the behaviour of these features of the
root—locus diagram.

In section 2 a suitable canonical form for S(A,B,C) is suggested,
based, in its simplest form, on a decomposition of the system transfer
function and subsequently converted to a state-space canonical form

(17)

analogous to the Schwarz canonical form for (A,B) extended to matrix
triples (A,B,C). An important feature of the result is that the beha-
viour of the unbounded roots and finite zeros of the root—locus are
described by separate well-defined subsystems within the system structure.
In section 3 the application of the decomposition to model reduction is
described. The approach provides a technique for obtaining a reduced
order model satisfying (i) - (iv) above and has the advantage that
simulation of the open-ldop system S(A,B,C) in canonical form ﬁrovideé an
estimate of a suitable reduced model order. 1In section 4, the results are
fllustrated by application to two examples, In particular, consideration
Ls glven to an oscillatory, non=minimum phase 10%h order example illus-—
trating the technique for selecting a suitable reduced model order and the
freedom available for matching high and low frequency behaviour by the
application of preyiously derived reduction methods to subsystems. The
degrees of freedom available offer enough flexibility to cover a wide

range of applications,

Canonical Decomposition of S(A,B,C)

Consider the system model defined by equation (1) with transfer

function

g(s) = C(sI_ - A" B s By B (s—zj) ., By #0 (2)
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where Pj’ 4< j<€ n, are the system poles, zj, 1s 3¢ n_, are the
system zeros, ni< n,and 81 is the overall system gain. It is easily

seen that the inverse transfer function has a unique decomposition

1 1
@) =g by (3)

.-..1 .-
g (s) =g
where hl(s) is a strictly proper transfer function of order n, possessing

poles {zj},and gl(s) is a transfer function of order kl =10 -n posses-

sing no zeros i.e.

8y () = — = @)

S T e T W .

11 1k

Writing equation (3) in the equivalent form,

gi(s)

g(s) = Ti(5)

‘ 1

1 gl(s) E;'hl(s)
it is easily seen (Fig. 1) that gl(s) can be interpreted as a forward
path element and hl(s) as a feedback element describing a inherent state

(17)

feedback within the system structure , hence providing some physical
justification for the decomposition. An important observation in the
following sections is that the parameters kl, Bl, %1 in gl(s) are suffi-
cient to define the asymptotes and intercepts of the system root-locus plot,
suggesting that any model reduction procedure should retain gl(s) exactly.
In practice this can easily be achieved by applying the model reduction
procedure directly to hl(s) to generate a strict}y proper reduced ordex
model hlA(s). A suitable reduced order model for g(s) retaining the struc-
ture of gl(s) igs given by (c.f. equation (5))

gy (s) = (6)

If hlA is proper but not strictly proper then the coefficient %5

1
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becomes Gy Bl hlA(as. The approximation of hl(s) can be regarded as
i
the approximation of the dominant zero structure of the system implying
that some care must be taken if the essential features of the root-locus are
to be retained.

The decomposition defined by equation (3) can be systematically

extended using the polynomial division algorithm,

h(s) 2 g(s)

(7)

-1 TR PN i .
hj_l(s) g; (s) hj(S) . ]

W
=

B.
J

defined whenever hj—l(s) # 0. The decomposition is unique if hj(s), 13- 2. 0
is defined to be strictly. proper and gj(s) , J > 1, possesses no zeros and

is of the form,

v i (8)
g;(s) = k1

SJ+CL.SJ ¥ owwwa B

The system transfer function takes the canonical form,

5() = [g;"(8) - 3= {g,"(8) = 7 Lovvn = 3— 1&g (8) = 30, ()} 1717H
; e 3 )

and can be represented as a sequence of nested feedback loops as shown in

Fig. 2. The algorithm terminates at the smallest integer & » 1 such that

hg(s) = 0., If the system S(A,B,C) is controllable and observable then

Il >

=z 2 :
n Nelle = (10

j=1 4
If, however, the system is either uncontrollable or unobservable then n is
equal to the dimension of a minimal realization of g(s) i.e. the polynomial
division algorithm factors out the uncontrollable and unobservable modes of

the system.
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The algebraic canonical form for g(s) defined above has an
immediate interpretation in terms of a canomical form for the matrix triple

(A,B,C). Using the notation of Fig. 2 with B, = Bo =1, yo(t)ﬁzu(t) and

1
Y£+l(t) = 0, the (loop output) yj(t) is generated by Bj—zyj-l(t) + yj+l(t)
through the dynamics gj(s) i.es, 18358,
xj(t) = ijj(t) + Bj e, (Bj_zyj_l(t) + yj+1(t))
1T Ly
y.(t) = e x.(t) s K AE)E R (11)
] Bj“l kj J J

where e is a unit vector of approppriate dimension with zero elements
r
y ; th ) ;
everywhere apart from a unit element in the r position, and Aj is a

companion matrix of dimension kj x kj’ of the form,

A, =10 @ ¢ = & 1 =+ = 0 =F,
] k.
J

1 0] -

0 1
(12)
0 —ajz

G D 1 ~a,

i J1 ]

Combining equation (11) to form a composite state space model with state

i(t)T= {xl(t)T, TR xﬂ(t)T}T yields the following result.

Theorem 1
A controllable and observable linear, time-invariant single~input-
single-output system S(A,B,C) in R is similarly equivalent to the system

S(R,ﬁ,é) of the form




A= Al El 0 - 0
B2 A2 E2 0
A
0 B3 3
s 0
T Bely
0 - " - - A
a =@ T ﬁ = e (13)
T Yk 2 T Bl 1
1
where B, = 8. e, ekT . E.= e ekT (14)
] ] i-1 J 141
The following propositions follow from inspection of ﬁ,ﬁ,&:
Proposition 1
The system S(A,B,C) is represented by the triple (A,B,C) with respect
to a basis for R_ of the form,
. 5 %L k, -1
{dl » Ady , .en , A d;sdy,Ad,, vl , A d, } (15)
where d, - 51"1 B ,i>1,
ki ki—l
A d. - dl"]_ R BJ di']']_e Span {di, Ad ? ] A- di} (lﬂ,)

Proposition 2

AA A

If a system S(A,B,C) taking the form of equation (13) is such that

B

= 0 for same 1 < j ¢ &-1, then it is uncontrollable and input-

S

i+l
output equivalent to a.system S(A,B,C) of dimensions n = g ki defined by
i=]




- . R
A A, E, 0 0
B, A, E, 0

& . Ej--]_
0 e s 0 g i 1 Babad
1 o
" = T
B = 81 ey 5 C = ekl

From proposition 2 it follows that, if B, = 0, the poles of

J+1

1is

are a proper subset of the poles of S(ﬁ,ﬁ,ﬁ) and hence, if Bj+1

the poles of S(A,B,C) are a close -approximation to a'proper subset
poles of S(A,B,C). The zeros of S(A,B,C) are characterized by the

invariant subspace in the kernel of C and hence are defined by the

r o e B
L, By o= v & 5 - 0
A, E
33 By By
0 )
P 0
By
i © et 0 By A

A2 EZ 0 = - - - 0
A E
By 55 By
O " &
" ) 0
1] ™. - Ejml
O = % & 0 B A,
} i o

of the

maximal {A,B}

eigenvalues of

(18)

(19)




and hence, (a) if Bj+1 = 0, the zeros of S(A,B,C) are a proper subset of the

— — —

zeros of S(A,B,C) and (b) if Bj+1 is 'small', the zeros of S(A,B,C) are a
good approximation to a proper subset of the zeros of S(A,B,C).

The canonical form defined by equatioms (11)-(13) will be used primarily
as a representation for simulation purposes. The above observations suggest
that, dif Bj+l is small enough, the 'reduced system' S(A,B,C) can provide a
good approximation to the dominant pole and zero structure of S(A,B,C).

This idea is pursued in the next section.

Finally, it is noted for simulation purposes that if S(A,B,C) is subject
to unity proportional negative output feedback u(t) = k {r(t) = ﬁ(Fif =
k{r(t) - 6 x (£)} » the structure of the state-space camonical form remains

the same for the canonical closed-loop system S(A -k BC s K ﬁ, 6) except

that a is replaced by o + k B, and hence the moment-matching pro-
1kk lkl 1
perties of the model are preserved under constant feedback, a particular

(18)

case of a more general result recently published by Shamash 2

Model Reduction

In the feedback decomposition qf g(s) illustrated in Fig. 2, the lower
loops have a decreasing significance in the evaluation of the high frequency
input-outputlbehaviour of the system, suggestions that a useful reduced
model might be obtained by using a lower order approximation of one of the
lower loops hj(s) » say. This general procedure corresponds to approxi-
mation of the blocks Aj+l’ R AR R Ej’ il Ez—1= Bj+1’ ee+ 5 By in
equation (13). In the simplest case, if Bj+1 is small, the discussion of the
previous section indicates that a good representation of the dominant pole-
zero structure can be obtained by setting 6j+1 = 0 and constructing the
reduced model S(A,B,C) of equation (17).

The general approach to model reduction suggested can be summarized

as follows:
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(a) Compute the algebraic canonical form for g(s) by thelalgorithm
deﬁined by equation (7) and store gl(s),..., gg(s) hl(s)""’ hg_lfqz
(b) Retain g, (s) exactly as B;, o,,, k, characterize the asymptotes
and intercepts of the system root-locus under dynamic unity
negative output feedback control.
# (c) By analysis of hiES) , 1 § 1 ¢ 2-1, choose an integer j 2 1, and
hence a suitable subsystem, hj(s), for reduction.
(d) Construction of a pth order reduced model of hj,A(S)’ enables the
construction of a reduced model for g(s) of order -z ki +p,

i=1
namely,

1 1 =1 =1y=1
3 (S) “.ET hj,A(S)} ..} }

-1 S 1
g (s) ={g, (s) =g, () - ... — {g
A 1 B, =2 g, 1 P (20)

j=
The reduced model gA(s) retains the asymptotes and intercepts of the

root-locus of g(s) and can represent a good approximation to the dominaut

pole-zero structure of g(s). It also has other important properties.

Moment Matching Properties

Consider the feedback system of Fig. 1 with gl(s) of rank k1 and
hl(s) strictly proper and let hlA(s) be a strictly proper reduced model of

hl(s) generating a reduced model gA(s) for g(s) defined by equation (6).

- It is easily verified that

=1
g(s) = g,(s) = g(s) Bl {hl(s) - hlA(S)} gA(s) (21)
and that g(s) and gA(s) have the same rank. Suppose that hl(s) has the
series expansion about the point at infinity

% gr 2
hl(s) z s M, _ (22)
i=1

where Mi’ i 2 1 , are the system Markov parameters and a series expansion

about the point s = o

= 5 gl
hl(s) i 8 N, (23)

If hlA(s) matches the first m Markov parameters of hl(s) and the time

moments Ni, o1ig n - 1 of hl(s), then it follows directly from




32

= 10 =

equation (21) that gA(s) ma;ches the first 2k1 + m Markov parameters of
g(s) and the first n, time moments of g(s).

The general case of approximation of hj(s) by the reduced model
hj,A(S) is easily examined by application of the above techniques to the
lowest loop in Fig. 2 and applying induction. The general result is as

follows:

Theorem 2

TE hj A(8) is a strictly proper reduced model of hj(s) matching the

first m Markov parameters and n, time moments of hj(s), then the reduced

k.

model gA(s) defined by equation (20) matches the first m 2 i

109,

i=1

Markov parameters and no time moments of g(s).

This result is of great generality and does not presuppose the type
of model reduction procedure applied-tolhj(s), The authors feel that a
steady-state approximation to hj(s), for a suitable choice of j, will often
give a satisfactory reduced model. In general, however, the canonical de-
composition of g(s) will facilitate a preliminary matching of high frequency
behavior to be followed by the analysis and reduction of a lower—order system,
hj(s).

Estimation of Reduced Model Order

A problem frequently encountered in the application of model reduction
procedures is that of choosing a suitable order for the model i.e. one for
which the reduction technique in use will generate a model that preserves the
stability characteristics of the original system. In general, trial and error
methods are employed. The reduction techniques suggested above, while not
yielding any exact characterisations of the models stability properties,
can be used to give very effective guidelines as to which orders will produce

satisfactory models.
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As shown in section 2, if any one of the parameters, Bj+1’ in the
'systems canonical realisation, (13) is very small, then the states
corresponding to blocks Aj+1’ Aj+2’ S Al will be 'almost uncontrci-
lable'. This means that the feedback loops j+1, J*2,...,% in the feed-
back decomposition of Fig. 2, have only small effect on the input-output
behaviour of the system. Consequently, an examination of the relative
magnitudes of the Bj’ 1< j< 2%, in the manner of Arumugam and

(16) may indicate a choice of j to give a reduced model and

Ramamoorty
hence a suitable model order. A better indication is given, however, by
considering a simulated step response (say) of the systems in the canoni-

cal form, (13). The input to the jth loop is just ijZ’ yj_l(t) + v (t).

i+l
If |yj+1(t)] is significantly smaller than lBj—Z : yj_l(t)lat all times, t,
of interest, then a good approximation to the system dynamic behaviour
should be anticipated if the signal yj+1(t) is neglected. Equivalently, a
good rgduced model can be obtained by approximating hj(s) by some low-
order transfer function. Furthermore, close inspection of yj+l(t) and

Bj-2 . ijl(t) will indicate how the reduced model performance will ma ch
that of the original system over different intervals of time. If

lyj+1(t)| << | Bjuz yj_l(t)! for all times of interest, then the model
obtained by simply neglecting hj(s) (termed the 'truncated' model) or by
replacing hj(s) by its steady-state value, hj+l(0) (the 'steady-state
corrected' model) should be highly accurate. Both cases suggest that a

3

suitable reduced model order is simply % ki' The steady—-state corrected

i=1
model will however only match 2 % ki—l Markov parameters and is essen-—
i=1
tially a generalisation to matrix triples (A,B,C) of the model derived by

(16)

Arumugam and Ramamoorty for matrix pairs (A,B).

It is convenient to define the following loop output variablés,




y.(t) = 1 if j is even , j > 2
i Bi23 + Byge.- By By
yl(t) = y(t)
yj(t)
§.(t) = if § i8 pdd ., >3
J Bj_3l Bj_s'l' 82 BO

B _,(t) y, ,(t) Y. _.(0)
Then the identity PR M il—lrET g &€ =1, dndicates
Yi+1(8) Ti+1

that the comparison of B._z yj_l(t) can be replaced by a

J
comparison of [yj_l(t)l and ij+1(t)’ 3

and [yj+1(t)

Examples

The two examples pfesented below illustrate how the above methods can
be applied to obtain redﬁced models., The first example is of a very simplsa
system with approximate pole-zero cancellation. The second is of a more
complex system whose oscillatory nature makes it more difficult to model
successfully.

(1) Consider a system described by the transfer function

6.0 (5=2)(s+3)(s+3.9) (s+6)
(s+2423) (8+2-2j ) (s+4) (s+5) (s+8)

g(S)'=

: z
Note that the zero at s = =3.9 and the pole at s = -4.0 'approximately'
cancel. With the notation of preceding sections, the parameters in the

canonical decomposition of g(s) are:

B, = 6.0 ; g,(8) = 6.0 (s + 10.1)7t
B, =30.61 5  gy(s) =~ 30.6 (s-2.96) "
83 = =6,92 3 g3(s) = =6.92 (s + 5.52)_l
B, =2.05 5 g(s) =2.05 (s + 4.41)7"
B, = ~.0% g5 (s) = -0.94 (s + 3,93) ¢

As expected, BS is significantly smaller than the other Bi's,
reflecting the approximate pole—zero cancellation. The simulated outputs

?1(t), 1€ i€ 4, of the feedback loops following a unit step input to the
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system are illustrated in Fig. 3 (95(t) is not shown, as lys(t)] < .005
for all t). The magnitude of ?z(t) is more than 10 times as great as
that of §4(t), suggesting that a suitable reduced order model of state
dimension 3 should be obtainable. An adequate model, g(s), is given by

approximating hg(s) by its steady—state value, where

6.0 (s = 1.98) (s + 4.07)
(s + 2.2+ 2.14)) (s + 2.2-2.143) (s + 7.8)

g(s) =

The step responses of g(s) and g(s) are compared in Fig. 4. It is easily
checked that (i) the dominant pole<zero structures of g(s) and g(s) are
almost identical
(ii) the asymptotes and intercepts of the root—-loci of'g(s)
and g(s) are identical and
(iii) g(s) matches one time moment and 5 Markov parameters of
g(s). Overall the reduction is highly successful.

(2) Consider now a system described by the transfer function,

(s=1) (s44) (3+7.5) (s+12) (s+15) (g+25)
(s+1+gj)(s+1—2§)(s+2)(s+7)(s+10)(s+10)?é+12.5)(s+18)(s+20)(s+30)

g(s) =

While there is again a degree of pole-zero cancellation, the system is verv
oscillatory due to the pair of complex poles near the imaginary axis, and
again has a right-half-plane zero, at 8 = 1. The parameters of the decom-

position are:

B, = 1.0 , g(s) =1.0 (s*+4953+720. 552 +40555+5451) "L
B, = ~109010 ; g,(s) = ~109010 (s+2079) "1

83 =98.49 ; g (s) = 98.49 (s+3;32)_l

B, =-13.86 ; g,(s) = -13.86 (s+18.97) "

By = =52.81 3 gg(s) = -52.81 (s+.107) -

Bg = 019 ; gg(s) = .019  (s-266.8) "

~76445 (s+286.2) T

i

B = -76445 g7(s)
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The simulated wvalues of ?i(t) following a unit step input to the system ara

shown in Table 1.

= il =

As the ratio |§4(t)| / |§2(t)| is small

Time |  §,(t) §,(t) F4(0) | §,(0) ¥5(t) T (t) y,(0)

0,2 .121 E-4 .391 E-1 | .136 E-5 446 E-3 | = 470 E~7 | .346 E-7 | .145 .-5

0.4 512 E~4 .293 .213 E-4 .101 E~1 | - .266 E~5 | .673 E-5 | .305 E~3

0.6 .812 E-4 .715 .763 E-4 .379 E-1 | - 1181 E~4 | .867 E-4 | .404 E-2

0.8 . 850 E-4 1.18 .160 E-3 .745 E-1 | - .560 E~3 | .398 E-3 | .187 E-1

1.0 .629 E~4 | =.1,59 .256 E-3 .106 - .117 E-3 | ,108 E-2 | ,512 E-1

1ig .228 E-4 1.89 .350 E-3 .123 - ,195 E-3 | .215 E-2 | .102

1.4 .256 E-4 2.08 429 E~3 124 - .278 E-3 | .350 E~2 | .167

1.6 .735 E-4 2.16 487 E-3 | _.111- - .355 E-3 | .497 E~-2 | ,237

1.8 114 B=3 | - 2.15 523 E-3 .893 E~1 | - .420 E-3 | .636 E-2.| .305

2.0 145 E-3 2.08 .538 E-3 .637 E-1 | -..468 E-3 | .755 E-2 | .362

2}2 164 E-3 1.99 .539 E-3 .388 E-1 | - .498 E-3 | .845 E-2 | .406

2.4 .173 E=3 1.89 .529 E-3 .180 B-1 | - .513 E-3 | .904 E~2 | .435

2.6 .173 E-3 1.81 515 B-3 |  .284 E=2 | ~ .515 E-3 | .935 B-2 | .450

2.8 168 E-3 | - 1.75 499 E~3 | - 628 E-2 | - .500 E-3 | .943 E-2 | .454

3.0 .161 E-3 1.71 .486 E-3 | ~ ,10% E-1 | - .499 E~3 | .936 E-2 | .450
Table 1

for all t, this suggests that a 6th

order mddel will be suitable if derived from the first three loops

(gl(s), gz(s), g3(s) or equivalently gi(s), gz(s), hz(s)).

The 6th order

model él(s) obtained by taking the steady-state approximation to ha(s) is

given by

"By ie) =

(s =1.15)(s + 25.3)

(s+ 508+1.817) (s+.508-1. 813)(s+6 16) (s+14.7) (s+21. 3) (s+30)
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The step response for this model is shown in Fig. 5, and is seen to be
highly oscillatory. These osciilations can be damped by making a better
match of the steady-state behaviour of g(s) i.e. by matching further
moments of g(s) about s = o, A 6th order can again be formed by retaining
only gl(s) and gz(s) » and taking a first-order Chen approximation

to h2(s), giving

5 (s) = (s= .959) (s + 24.4)
8218 = (3+.B9+1:61]) (s+ .89-1.613) (5% 5.18) (5+16) (s710.6) (s729.9)

The step-response for this model is shown in Fig. 5, and is seen to be more
accurate than that of gl(s). As the response of g(s) is dominated by the

pair of complex poles at s = ~1 #* 2j, it is suggested that an improved ﬁth
ordep model will be obtained by retention of these poles i.e. by factoring
them out of the transfer function g(s), and reducing the resultant Sth

order system, g(s). The model, §3(s), obtained by retaining the two complex-

poles and using a Ath order steady-state corrected model of g(s) is given by

\

(s~1. 12)(s+18 4)
(s+1+2]) (s+1~ 2] ) (s+3.61) (s+15.6+5. 323 ) (S+l5 6-5. 323) (s+22.6)

B4(s) =

Again, better step- response matchlng can be achleved by match1ng further
moments about s = o of g(s). Using a 4t order model of E(s) formed by
retaining the first two loops of its feedback decomposition and taking a
e order Chen approximation of the remaining system gives the 6th order

model of g(s),

> (s = (s+8.94) (s~ .978)
£ W (s+142]) (s+1=27 ) (5+2.38) (s+11.8+6.25]) (s+11.6-6.253) (5729)

.Step responses for §3(s), %A(s) are shown in Fig. 6.

The second example presented_above illustrates how the techniques’
sﬁégestéd in this paper céﬁ‘p;ovi&e a systematic approach to model reduc-
tion, in particular facilitating trade off between high and low frequency

behaviour matching.‘ Although only step-response matching was examined,
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similar analyses could be used to match responses to other kinds of
input (impulses, etc.) and different model reduction criteria could be
used to approximate the dynamics of the lower loops.
5: Conclusions
The paper has given consideration to the problem of the reduction of
order of a single-input-single-output system S(A,B,C) described by a
scalar transfer function g(s). On the assumption that the reduced order
model is to be used for feedback control systems design and that the
reduction procedure should use a canonical form for S(A,B,C) reflecting
the structure of the asymptotes, intercepts and finite zeros of the system
root-locus, the following results have been obtained:
a) A simple canonical form for g(s) has been derived in the
form of a sequential feedback decomﬁosition of the system (see Fié. 2)
The-important features of the decomposition are best seen in its
simplest form (Fig. 1) where the system is structured into a forward
path element, gl(s?, describing the asymptotes and intercept of the
system root-locus and a feedback elenent, hl(s), characterizing thsz
finite zeros of thg system. The reduction of the system g(s) for the
purposes of feedback controller design can hence be regarded as the
approximatibn of the zero structure of g(s) by deriving a reduced
model of hl(s).
| b) The algebraic canonical form for g(s)'has an immediate inter-
pretation as a canonical form for the matrix triple (A,B,C). The
canonical form, in its simplext form; is directly related to recent

a7n

results on the decomposition of the system state space as the

direct sum of the maximal A,B invariant subspace in the kernel of

C(characterising the system zeros) and a subspace of the form . |

k. =1
B&® AB® ... @ A » B (characterising the asymptotes of the system

17

root locus). Previous interpretations of such decompositions in
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terms of inherent state feedback within the system structure provide

a physical justification for the use of the proposed canonical form.

c) A simple model reduction procedure based on neglecting feedback

_elements gi(s), i > j, is shown to be capable of producing a reduced

order model approximating to the dominant pole-zero structure of g(s).

d) A more general approach based on the approximation of some hj(s)

(Fig. 2) also enables the matching of high and low frequency moments

of the system.

e) The procedure has the advantage of providing an estimate of a

suitable reduced model order by simulation of the open-loop step

responses of the system in canonical form.

Overall the procedutre is highly flexible, making possible the refention
of dominant root—locus behaviour, the retention of dominant poles exactly
(by factoring them out of g(s)); the retention of dominant zeros (by fac-
toring them out of hl(s)) and the matching of high and low frequency
behaviour. In this sense the procedures can be regarded as a general frame-
work for reduction for closed and épen-loop purposes, where any known reduc-—
tion technique can be applied to a subsystem, hj(s), say. The examples
discussed illustrate this point.

Finally, it is noted that the division algorithm (equation (7)) can,

in principle, be directly applied to a system described by an mxm transfer

function matrix G(s), yielding a similar syétem decomposition (Fig. 2).
The procedure described in this paper could then be extended to the reduc-
tion of multi-input-multi-output systems with essentially the same results,
It is possible, hbwever, that the algoritﬁm of equation (7) could break
down if hj_l(s) is non-zero but identically singular. It seems therefore
that the generalization of the technique to be multi-input-multi-output
case will be best approached using geometric methods analogous to those

mentioned in (b) above. Work is in progress on this problem.
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