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ABSTRACT

By considering the class of separable random processes, a

generalised Wiener-Hopf equation is derived for systems which

can be described by a model consisting of a linear system in
cascade with a static non—linear element, followed by another
linear system. This result, together with a similar relationship
for the secoqgﬁorder cross—correlation function, is used to
formulate an identification and structure testing algorithm

for this class of non-linear system. The results of a simulation

study are included to illustrate the validity of the algorithm.
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1, INTRODUCTION

Although various techniques have been developed for identifying
the terms in the Volterra series representation of non-linear
systems, the generality of this description tends to ignor the
structural features of the system under consideration, Ideally,
system identification should provide a knowledge of the structure
of the system as well ag parameter values associated with each
element, One way to try and achieve this goal is to work with
specific classes of non-linear systems, For example, a great deal
of attention has been directed towards bilinear systemsl’z, and
systems which can be described by linear dynamic subsystems in
cascade with static power non—linearities3’4’5’6’7. Thus by
investigating non-linear systems which are simple extensions of
the linear case, it may be possible to derive results which can be
generalised to more complicated non-linear systems.,

In the present study, previous results derived for the
Wiener8 and general model9 are extended and an identification
algorithm which inherently tests the structure of cascade connections
of linear dynamic and non-linear subsystems is developed when the
input belongs to the class of separable processes. The algorithm
Tepresents an extension of a result due to Nutta1110 who showed
that for a wide class of input signals the cross~correlation
function between the input and output of a single-valued non-
linearity is proportional to the autocorrelation function of the
input. This result known as the invariance property is reviewed
in the next section together with the definition and properties of
the separable class of random processes, Nuttall's results are

extended to include separability under linear transformation and
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the validity of the invariance property after a double non-linear
transformation is investigated.

Using these results the general model which consists of a
linear system in cascade with a no-memory non-linear element followed
by a second linear system is investigated, It is shown that, when
the input belongs to the class of separable processes, the input-
output cross—correlation function is directly proportional to a
second order integral involving only the impulse responses of the
linear elements and the autocorrelation function of the input
whatever the non-linear device. This result represents an
extension of the Wiener-Hopf equation to a non-linear system,

In a similar manner an expression relating the second order cross-
correlation function to a multiple integral involving the fourth
order moment of the input process and the product of the linear
subsystem impulse responses is derived.

When the system input has the properties of a white noise
process, these results can be simplified considerably, and an
identification algorithm which provides 'information regarding
the system structure is presented in Section 4. Simulated examples

are included to illustrate the validity of the algorithm.

2. SEPARABLE RANDOM PROCESSES

2,1 Definition of Separability

The separable class of random processes is defined in terms
v il

of a property of partially integrated second order statistics 0.
Let p(a,B;T) be the joint probability density function for the

two stationary random processes o(t) and B(t), and define
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g(B,1) = [ oap(e,B;1)da

—00
If the g-function separates as

g(B,1) = gl(B)gz(T) - B,T

(1)

(2)

then the process a(t) is separable with respect to the process R(t).

i . PO |
Notice that, contrary to Nuttall's original definition d
s 4 g

of

separability, equation (2) includes both the ac and de components

of the signal a(t). This definition simplifies the results of

Section 4,

Considering the cross—correlation function

¢ (1) = a(t)B(t+T)

op

ffaB p(a,B;T)dadp

I g(B,1).B.dB

(3

where all integrals will be from = to « unless stated otherwise,

If a(t) is separable with respect to B(t), equation (2) holds and

equation (3) reduces to

ba(D = 8,(0) Jg (B).Bd8

hence

¢GS(T)
fgl(B).BdB

I

gz(T)

q2(0)¢mB(T)

8, (0)

RO

where qz(O)

(4)

(5)

(6)




: Thus, if the g-function separates as in equation (2), the function
gz(T) must be a constant multiplied by ¢&B(T)'

It can readily be shown that

a(t) 8" (t+1) ffuBnp(a,B;T)dadB

£
]

bn¢mB(T)if'n L)

if the process a(t) is separable with respect to the process B(t),
where bn is a real number independent of t. Although equation (7)
is a sufficient and not a necessary condition for separability, it
is valuable as a test of separability when all the moments indicated
on the left hand side of equation (7) exist.

Consider the special case when B(t) = a(t), and define
p(ul,az;r) to be the second order probability density function of
the stationary random process a(t). The process a(t) is defined

as separable if the g-function, equation (1) separates as
)

ga(ast) = gu,l(az)ga’z(T)V'T, Ct'z (8)
and analogous to equation (5)

8, 2(0)4,,(0
¢Ol.0£(0)

(1) = = qu,2(0)¢aa(T) (9)

gu,Z

From Wang and Uhlenbeckl1 the second order probability density
function when t = O can be written as
p(al,uz;O) = p(al)ﬁ(uz-ul)
and hence

ga(uz,o) = azp(az) = gu,l(az)gu,z(o) (10)

where p(az) is the first order probability density function. Equation

(10) yields




ga’l(az) = é;—hfay (11)

and from equation (8)

_ azp(a2)¢aa(r)
ga(uz,T) = ¢aa(0) (12)

Thus, if a process is separable the g~function must split up into
the product of the autocorrelation function and a simple first
order statistic involving only the first order probability density
function of the process.

Notice that when o(t) # B(t) we are unable to say anything
specific about the form of gl(B). Whereas the second order
probability density function of a process has in it a delta function
for zero time shift, no such relationship holds for the joint
probability density.

Fortunately the separable class of random processes is fairly
wide and includes the Gaussian process, sine-wave process, phase
or frequency ﬁodulated process, squared Gaussian process etc,

Although in general the sum of two separable processes is
non-separable, the product of two zero mean independent stationary
separable processes is always separable irrespective of the

; . ; 10
particular statistics involved .

2.2 Separability under Linear Transformation

Consider the situation when the signal B(t) is passed through
a linear filter, with an impulse response h(t), to produce the
new process n(t). We wish to prove that if a(t) is separable with

respect to B(t), then a(t) is also separable with respect to n(t).




If a(t) is separable with respect to n(t) then

1

gn(n,r) Jap(a,n;1)da (13)

gn,l(n)gn’z(r) (14)

g Define the correlation function

¢ (1)

on SSanp(a,n;T)doadn

L]

JIh(8)aBp(a,RsT=0)dadrde (15)

But from equations (1) and (2)

¢an(r) = ffh(e)gl(B)gz(T-B)dBde
= IBgl(B)g3(T)dB (16)
where gB(T) = fh(e)gz(r—e)de (17)
Using equation (14)
¢an(r) = fngn(n,T)dn
- gn,z(T) fngn’l(n)dn (18)

Comparison of equations (16) and (18) gives
8n’2(T) = EB(T) (19)

/n gn’l(n)dn = IBgl(B)dB (20)

where by considering equations (5) and (17)

BB(T) = (1) fh(8)¢aB(T—8)d6

- 1
Bn,2" 7 TRe () AR

. e
= Ingn l(n)dn Jh(®)a(t) g(t+T1=0)do




-  o(tn(t+n)
Ingn’l(n)dn

(21)

Thus if oa(t) is separable with respect to R(t) it is also separable

with respect to n(t).

2.3 The Invariance Property

Consider the system illustrated in FIC 1, where xl(t) is the
input to an all-pass network and xz(t) is the input to a non-linear
no-memory device with a transfer chracteristic F[-]

yz(t) = F{xz(t)} (22)

Define the input cross-correlation function as

¢ < (1) = Xl(t)xz(t+r) = ffxlxzp(xl,xz;r)dxl,dx

172

) (23)

where p(xl,xz;T) is the joint probability density function of the
inputs Xl(t) and xz(t). Similarly, for the output cross—correlation
function

F
) ()
Y199

Yl(t)yz(t+T) = xl(t)F{xz(t+T)}

]

ffxlF[xsz(xl,xz;T)dxldx (24)

P

where the superscript 'F' is used to indicate the dependence of
the correlation function on the particular device F that is used.
In general there is no relationship between ¢X e (1) and

172
¢F (1), however when x_(t) is separable with respect to x,(t)
yly2 il 2

gx(xz,T) = gx,l(xz)qx,2(0)¢xlx2(T) (25)

Hence, from equation (24) and the definition of the g-function




¢ (1)

y,%, fF[xzjgx(xz,r)dxz

Ay, 2(0) Vi, () IF[x,]e, | 0x))dx,

C

" (T) % F and 1 (26)

¢
F x1 2

where CF is a number depending on the non-linear device and the
input statistics. Thus regardless of the non-linear device used,
the input and output correlation functions are identical, except
for a scale factor, when the undistorted process is separable
with respect to the input to the non-linear element.

This behaviour of the correlation functions is known as the
invariance propertylo. Note that we include as a special case
xl(t) = xz(t), when the invariance property relates the input—output

cross—correlation function to the input autocorrelation function

¢FXy(T) - CFXqJXX(T)-V- F and T 27

provided the input process x(t) is separable, Since xl(t) = xz(t) = x(t),

CF can be readily evaluated from equation (26)

1
CF =W I% Fl:x]p(x)dx (28)

X XX

2.4 Double Non-linear Transformations

Nuttall10 investigated the problem of inserting a non-linear
device in the top lead of FIG 1, but found that the invariance
property held under very restrictive conditions. For the purpose
of the present study, it is sufficient to investigate the situation.
when the top lead contains a squaring device, as illustrated in

FIG 2,




Applying the results of Section 2.1, and setting a(t) =y (t) =

1
xlz(t), B(t) = xz(t) in equation (1), the process xlz(t) is defined

as separable with respect to the process xz(t) if
g.(x,,T) = /x 2 p(x. ,x, 371)dx (29)
d 72? 1 127 1

can be expressed as

gd(xz,T) = gd,l(xz)gd,z(T) (30)

In general, equation (30) will not hold. However, when xl(t) = xz(t)
is a Gaussian process equation (30) can be shown to be valid, and
this case will be studied in detail in section 4.

Define the correlation functions

_ 2 .
¢y1y2<T) = ffxl F{xz}p(xl,xz,'r)dxldx2 (31)

(32)

N 2 2 .
¢X 2X Z(T) = ffxl %, p(xl,xz,'r)dxldx2

179 A

If xlz(t)_is separable with respect to XZ(t)’ equation (32) can be

expressed as

2
) 9 2('[') E fx2 gd(Xz,T)dXZ

Xl X:2
2
= 8d’2(T) I x, gd,l(xz)dx2 (33)
and hence
84,2(0 =44 ,(0¢ , (D (34)
X X
1 72
g4 2(O)
where qd’Z(O) = W (35)
1 %y




e Jif

From equation (31)

b (1)

v.3, JF[x,] 84(x,,1) dx, (36)

¢ 9 2(Day (0 g, (x)F[x Jdx,
Xl xz 1 ’

= CFF¢ 9 2(1)*% F and T (37)
X%,
which represents the invariance property when the upper network
contains a squaring device. CFF is a constant depending on the
non-linear device and input statistics only,

For the special case xl(t) = xz(t) = x(t)

) 2 (1) = CFF ® 9 2(T)ﬁf F and T (38)
159 X X x

: 2 : : :
provided x (t) is separable with respect to x(t) where

-———l—fay f x2 F[x] p(x)dx (39)

C =
e ¥a 3
X X

3 ANALYSTS OF THE GENERAL MODEL

The class of non-linear systems considered in the present
analysis consists of a linear system with impulse response hl(t)
in cascade with a non-linear zero—mémory element and a lineaf
system with impulse response hz(t), as illustrated in FIG 3.

It is assumed that the non-linear element can be represented by

a transfer characteristic of the form

Y(E) = yyx(0) 4y, % (8 v vy, ¥(E) (40)
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3.1 First-Order Cross-Correlation Function

In order that we may develop an identification and structure
testing algorithm for systems which can be represented by the
general model a relationship between the correlation functions
¢ (o) and ¢ (o) must be established. This can be achieved

uz u;u, )
by applying the results derived in previous sections to the system

illustrated in FIG 3.

From the Convolution theorem

z2(t) = fhz(a)y(t—e)de (41)

]

y(t) F{fhl(Tl)uz(t-Tl)dTl}

fQ(t,Tl)Uz(t'Tl)dTl (42)

where Q(t,Tl) is a function of t and 7 only, An expression for

1
Q(t,rl) can be obtained by expanding equation (42) in a Volterra

series assuming that the non-linear %lement can be represented

by a finite polynomial of the form of equation (40). Thus
y(t) = fwl(Tl)uz(t-Tl)d11+ffm2(T1,T2)u2(t—Tl)

uz(t_Tz) dTlde e

ees T f I mn(TI,TzooiTn)uz(t_Tl)..-uz(t-fn)dle--dTn

n
- integrals (43)

where the function mn(Tl,Tzo..Tn) is termed the Volterra kernal of
order n, For the simple non-linear system relating u2(t) and

y(t) in FIG 3, the m'th order Volterra kernal is given by8




m
mm(rl,Tz...TnP =y I hl(Tp) (44)

and the Volterra expansion of equation (43) can be expressed as

y(t) = Y1 fhl(Tl)uz(t-Tl)dTl

+Y2ffh1(Tl)hl(T2)u2(t—Tl)u2(t—T2)dTldT2+"'

e e e +ka---fh1(T1)---hl(Tk)u(t_Tl) oo e
000 u(t—'Tk) dTl- ® -di (45)
Subtracting equation (45) from equation (42)

f{Q(tl'rl)-Ylhl('rl)—Yzhl('rl)fhl('rz)uz(tﬂ'rz)dr2

(1, )u

4 eue +Ykh1(rl)f...fh1(12)...hl 2L

(t-Tz) s wid

—_— uz(t—fk)de...drk}uz(t-rl)drl = 0 (46)
Since equation (46) must exist for arbitrary inputs uz(t), the
function Q(t,rl) is given by

Q(t,"fl) = ylhl('rl) +72h1('t1)fh1(rz)lfz(t-12) d'r2

+ ...Ykhl(rl)f...fhl(Tz)...hl(Tk)uz(t—Tz)
— uz(t-rk)de Q0 di (47)

Combining- equations (41) and (42), the output of the general

model Zz(t) can be expressed as

zz(t) = ffhz(e)Q(t—e,T)uz(t—e—'rl)dedr (48)

1

and the output correlation function can be defined as




st I o

S
—~

m
~

]

212, ul(t—e)zz(t)

ffhz(e)Q(t-ﬁ,Tl)uz(t—e—Tl)ul(t-E)dTldG (49)

The validity of the invariance property for the non~linear
element in FIG 3 can be established using the results derived in
section 2.2, Thus providing ul(t) is separable with respect to
uz(t), then ul(t) is separable with respect to x(t) and from
equation (26)

¢, y(o) = Cpaty x(O)Y F and o (50)

1 1
where CFG is a constant depending on the non-linear device and
the input statistics only. An expression for ¢Z Y(c) can be

1
obtained from equation (42) as

u_ (t-0)y(t)

zly I

=

~
Q

~
[}

IQ(t,Tl)uz(t—Tl)ul(t—o)dTl (51)

and similarly

¢u X(O)

u. (t—o) x(t)
1 1

fhl(fl)uz(t-Tl)ul(t—U)dTl . (52)

Combining equations (50), (51) and (52)

IQ(t,Tl)uz(t—Tl)ul(t—c)drl

= Coe J’hl('rl)uz(t-'rl)ul(t-cr)d'r1 (53)

and hence from equation (49)




w TE =

¢ (e) = ¢y 5 (e) = CFfohz(e)hl(Tl)¢u u (e—e—Tl)dBd11

185 1% 12
(53)

For the special case when ul(t) = uz(t) = u(t), equation (53) relates
the input-output cross-correlation function to an integral involving

the autocorrelation function of the input

(54)

¢u22(5) - CFfohz(e)hl(Tl)¢Uu(s—e—rl)dBdTl

where CFG is a constant. Equation (54) , which will be referred
to as the generalised Wiener-Hopf equation, holds for any non-
linear device F[-], providing the input process u(t) is separable,
This result, which represents an extension of the Wiener-Hopf
equation to systems which can be described by a general model,

forms the basis of the identification algorithm described in section 4.

3.2 Second-Order Cross-Correlation Function

Following the analysis of the Previous section an expression

for the second order correlation function ¢ 9 (e) is derived.

u, z
By definition R

¢ 2 (e) = ¢u
L%

u

. 122(s,e) = ul(t—s)ul(t—a)zz(t) (55)

and from equation (48)

(56)

: 2
¢u 22 (e) = ffhz(B)Q(t—B,Tl)uz(t—G-Tl)ul (t—e)dedrl

L2
Provided ulz(t) is separable with respect to u2(t) is is also
separable with respect to x(t) and from the invariance property

for double non-linear transformations, equation (38)

¢ 5 (o) = CFFG¢ 9 z(o)ﬁf F and o (57)
Uy u; X ‘




_15.-.

An expression for ¢ 9 (0) can be obtained from equation (42) as

u'y
2
¢ 5 (o) = uy (t=0)y(t)
uy
' fQ(t,Tl)uz(t—Tl)ulz(t-U)dTl (58)
and similarly
2
b 5 5@ = v (tmo)x’(t)
u, x
1
2
= ffhl(Tl)hl(Tz)uz(t—Tl)uz(twtz)ul (t-o)drlde
(59)
Combining equations (57), (58) and (59)
fact,t du, (-1, )u. % (t=0) dr
e i) 1" 1 L
= CFFfohl(Tl)hl(Tz)uz(t Tl)uz(t Tz)u1 (t O)dTlde
(60)
and hence from equation (56)
) 9 (e) = CFFfofhz(B)hl(Tl)hl(Tz)uz(t-S—Tl)
u.“z :
1 2
uz(t-S-Tz)ulz(tua)dfldrzde _ (61)

For the special case when ul(t) = u2(t) = u(t), equation (61)

relates the second-order cross-correlation function to an integral

involving the fourth order moment of the input process.
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4 STRUCTURE TESTING FOR NON-LINEAR SYSTEM IDENTIFICATION

The results derived for the general model can now be formulated
into an identification and structure testing algorithm, For the
class of non-linear systems considered, notably cascade connections
of linear dynamic and static non-linear systems, system structure
refers to the position of the non-linear device in relation to the

linear subsystems, Because the 1inear13, HammersteinM’15

and
Wiener8 models are all subclasses of the general model, an algorithm
that can determine which if any of these models coincides with the

structure of the plant, and provides an estimate of each component

subsystem, is highly desirable.

4.1 The General Model

Consider the system illustrated in FIG 3 when the input to the
general model comprises the practical realization of a Gaussian
white process u(t) and a non-zero mean level b, It can readily
be shown that the Gaussian process is separable and hence all the
results derived in previous sections are applicable,

Define
z"(t) = zz(t) - zz(t)

where zz(t) is the system response to an input u(t)+b, and the
superscript ' will be used throughout to indicate that a signal
has zero mean. The first order cross-correlation function is

defined as

¢uz'(0) =z"'"(t)u(t-og) = zz(t)u(t~c)

Thus, referring to FIG 3, and setting
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ul(t) = u(t)

I

uz(t) u(t)+b

where u(t) is a zero mean white Gaussian process, we may write

from equation (53)

¢uz,(o) = CFfohz(e)hl(Tl)u(t—G){U(t“e“Tl)+b}dT1d9

]

CFfohz(e)hl(Tl)¢uu(0-8-rl)drld8 (62)

Provided the signal u(t) has the properties of a white Gaussian
processl6, then ¢uu(c~e—11) approximates to a delta function at

6 = 0=y and equation (62) reduces to
¢uz.(0) = CFthl(Tl)hz(o—Tl)drl (63)

where CFG is a constant. If the output zz(t) is corrupted by a
noise process n(t), this will not affect the estimate of equation
(63) , provided the input signal and noise are statistically
independent (i.e. sz:ET?KET-= 0.

The constant CFG can be evaluated by considering equation (50)

¢ y(o) = C

0, FG¢u X(c)*f F and o (64)

1

and defining

1]

x(t) fhl(e)u(t—e)de+bfhl(e)de

]

X'(t)+ux (65)

The left hand side of equation (64) can now be evaluated by
considering the polynomial representation of the non-linear element,

equation (40)
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¢ (o) = u(t-o)y(t)

= u(em0) Ly G (£ )y, e (B) ) e,

R A OERLS

3 Y1¢ux'(g)+zy2ux¢ux'(0)

2 2
+3y3¢ux,(d)fh1 (6)d8+3uxy3¢ux,(a)+... (66)

assuming that f¢uu(t)dt = 1.

However,

b (o) = U(t-c){x'(t)+ux} = Gyt (0 (67)

and hence by comparison of equations (64), (66) and (67)
i 2
CFG E yl+2y2bfh1(9)de+3y3fh1 (9)ds
2
+3y3b ffhl(rl)hl(rz)drldrz+... ‘(68)

Providing the linear subsystem hl(t) is stable, bounded inputs
bounded outputs, CFG is a finite constant and equation (63) is
valid,

Thus, by applying a white Gaussian process with mean level
b to the system illustrated in FIG 3 and computing the first order
cross—correlation function ¢uz,ﬁj), an estimate of the convolution
of the linear subsystem impulse responses is obtained. A Gaussian
signal with a mean level b is used to ensure that all terms in

equation (68) contribute to CFG' If the input had zero mean, all
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the even terms in equation (68) would be zero because of the
symmetry of the Gaussian density function.

The second order cross—correlation function [} 5 '(U) can be
evaluated in a similar manner. The invariance przpeity of
equation (57) can be expressed as

¢u 2 '(G) = CF§G¢ 2 '(U)ﬂf F and o (69)

1Y Uy
where w'(t) = (xz(t))'; and the superscipt is used to indicate a

Zero mean process, Combining equations (61) and (69)

¢uzz'(o) = C%Ffoth(e)hl(Tl)hl(T2>u(t-e-Tl)

2
u(t—e—rz)u (t—o)drldtzde

—CEFchuu(O) Jh, (6) Dy (0)ds (70)

e : y 16
Utilizing the properties of a zero mean Gaussian process |,

equation (70) can be written as
¢ ) '(0) = C%Fcfffhz(e)hl(Tl)hl(TQ){¢uu(T1~T2)¢uu(o)
u 'z
+¢uu(0~e_T2)¢uu(U—e_Tl)

+¢uu(c—8~rl)¢uu(o—8—T2)}drldrzde

-CP',FGq:uu(o)fhz(e)¢X.K,<0)de (71)

Since the input u(t) represents the realization of a white Gaussian
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signal, the autocorrelation function ¢uu(-) approximates to a delta

function and equation (71) reduces to

= 2o
¢u2z'(c) = 2CF%GI hz(@)hl (o-8)de (72)

where CF%G is a constant.

CF%G can be evaluated by expanding equation (69). From

equations (40) and (65)

yrle) = 5(e)-y(r)
= ¥ (D4, LG (D) =0, (0)}
+2Y2UXX'(t)+Y3(X'(t))3+3UXY3
H(x" () 20, (O3+3x" (E)p_ By o+ (73)
X'X' = 19 F—
L]
and hence
0 5 (0) = {y,#3u vyt HG () =g, ()} v’ (t-0)  (74)
uy'

Consideration of equation (65) shows that

w'(t)uz(t-c)

(" ()= s 1 (0))u” (t=0)

=4, © (75)
]
uw
and equation (74) can be written in the form
¢ 5 (0 = {y,#3y,b/h (1 ))dr +.0 3¢ '(c) (76)
u'y u W

Inspection of equations (69) and (76) gives the final result

' )
CFFG Y2+3Y2bfh1(T)dT+... 7
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Providing the linear subsystem hl(t) is stable, bounded inputs
bounded outputs, CF%G is a finite constant and equation (72) is
valid. If the output zz(t) in FIG 3 is corrupted by a noise signal
n(t) , provided this is independent of the input u(t) then
n(t)uz(t—c) = Ofo, and hence the estimate of equation (72) is
unaffected by this noise.

The results for the general model when the input consists of
a Gaussian white process with a mean level can be summarised as

1ST ORDER CCF:

¢z (o) = CFthl(Tl)hz(G-Tl) dr, (78)
_ 7 2
where CFG = yl+272bfh1(e)d8+3y3fhl (6)de
2
+3Y3b ffhl(Tl)hl(TZ)dTldT2+... (79)

]
2ND ORDER CCF:

b ' ~ :
¢u22'(0) = ZCFFGIhz(Tl)h1 (o Tl)drl (80)

v =
where CFFG 72+3y3bfh1(rl)dTl+... (81)

Inspection of equations (78) and (80) shows that correlation
analysis effectively decouples the identification problem into two
distinct steps, identification of the linear subsystems and
characterization of the non-linear element. A least squares
algorithm which provides unbiased estimates of the individual
linear subsystem impulse responses ulhl(t) and p, h_(t) and hence

22

the associated pulse transfer functions, where p. and p. are

2

: . . . v 9
constants, has been derived in a previous publication’, Once the

1
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linear systems have been identified estimates of the coefficients
in the polynomial representation of the non-linearity can be

readily computed.

4.2 The Wiener Model

The Wiener model consists of a linear system followed by a
continuous non-linear element. The model is a much simplified
version of Wiener's original non-linear system characterization17
and belongs to the class of models studied by Cameron and Martinls,
and Boselg. Thus by setting hZ(t) = §(t) in equations (78) to

(81), comparable results for the Wiener model can be summarised as

1ST ORDER CCF:

¢uzv(0) = Cthl(U) (82)
where CFW = CFG = Y1+2Y2bfhl(e)d9
1
2 2
+3y3fhl (6)d8+3y3b ffhl(Tl)hl(Tz)dTldT2+... (83)
2ND ORDER CCF:
(o) = 2C h2() (84)
¢ 9 (o) =20 b "(o
u z
=4 ' —_—
where CFFW CFFG Y2+373bfh1(rl)dfl+... (85)

The first order correlation function is therefore directly
: y . 8
proportional to the linear system impulse response and the second

order correlation function is proportional to the square of hl(c).
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4.3 The Hammerstein Model

The Hammerstein model consists of a Zzero-memory non-linear
element followed by linear dynamics. The model represents a
realization of the Hammerstein operator, and was originally proposed
by Narendra and Gallman14. Setting hl(t) = 8(t) in equations (78)
to (81), the results for the Hammerstein model can be summarised as

1ST ORDER CCF:

Puzt (@) = Cprh, (0) (86)
2
where CFH = y1+2b72+3v3{¢uu(0)+b | £ SR (87)

Although, theoretically ¢uu(0) would be infinite, in practice u(t)
can only approximate to a white noise process and ¢uu(0) = p2, the

variance of u(t), which is finite, Equation (87) can therefore

be written as
Cp ™ o ¥2by, +3y. (52457 + (88)
R f1 0T gl e

2ND ORDER CCF:

¢ 2 '(G) ) ZCF:EHAhZ(O') ®
u 'z
where CFFH = Y2+3by3 ¥ s (90)
d A = fo2 (B)at
- ¢uu

The first and second order correlation functions are therefore

directly proportional to the impulse response of the linear element,

4.4 The Linear Model

If the system were linear, then from FIGC 3 M = 0, m = 2,3...k

in the polynomial representation of the non-linear element equation
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(40) , and the system weighting function would consist of the

convolution of the impulse responses hl(t) and h2(t). From

equations (78) and (81), the results for the linear model can
be summarised as

1ST ORDER CCF:

¢uz.(0) = CFGIhl(rl)hz(o—Tl)dT1 (91)

where CFG = YI (92)

2ND ORDER CCF:

¢, (o) = 0¥ ¢ (93)

u z

Thus, the first order correlation function provides an estimate
"
of the system weighting function hl(t)ie h2(t), and the second

order correlation function provides a convenient test for linearity,

4.5 A Structure Testing Algorithm

The results derived in sections (4.1) to (4.4) can be used
directly to identify the component linear and non-linear subsystems
in all the models considered, However, the relationship between
the first order and second order cross-correlation functions provides
‘valuable information regarding the system structure,

Thus, if the second order correlation function is zero for
all time shifts then the system must be linear, and once a pulse
transfer function model is fitted to the first order correlation
function the identification is complete, If the first order and
second order correlation functions are equal, except for a constant

of proportionality, then the system must have the structure of a
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Hammerstein model. However, if the second order correlation
function is the square of the first order correlation function,
except for a constant of proportionality then the system must have
the structure of a Wiener model, Finally, if none of the above
conditions hold then the system may have the structure of the
general model, However, this is a necessary but not a sufficient
condition which must be confirmed by parameterising the linear
systems9 hl(t)’ h2(t) and the non-linear element and examining
the residuals,

Identification of cascade connections of linear dynamic and
static non-linear systems using correlation analysis thus inherently

provides information regarding the structure of these systems,

5. SIMULATION RESULTS

The identification procedure outlined above was used to test
the structure of both linear and non~linear models, All the
models were simulated on an ICL 1906S digital computer, and in
each case 10,000 data points were generated by recording the

response to a Gaussian white input sequence N{0.7,1.,2 I.

Experimental and theoretical values of the first order

correlation function of a linear model with pulse transfer functions

Hz(z'-l) = ]_ and

-1
I A 0.2162 94

1 1-1.5792 140,672 2

is illustrated in FIG 4. As expected, the second order correlation
function was identically zero for all time, indicating that the

system was linear.
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A comparison of the estimated and theroetical values of the
first order correlation function for a Wiener model is illustrated
in FIG 5(a). The Wiener model consisted of the pulse transfer
function of equation (94) in cascade with a non-linear element of

the form

y(t) = 5.0x(t)+20.0x>(t) +50.0%(t) (95)

Inspection of FIG 5(b), showing the second order correlation function

and the square of the first order correlation function indicates
that the system has the structure of a Wiener model,
The first and second order correlation functions for a

Hammerstein model, consisting of a non-linear element
2 3
y(t) = x(t)+0.5x (t)+0.8x (t) (96)

in cascade with the linear system of equation (94), are illustrateé
in FIG 6. The similarity of the correlation functions clearly
indicates that the system has the structure of a Hammerstein model.

Finally, a general model consisting of a linear system with
pulse transfer function of equation (94) in cascade with the non—
linear device equation (95) and a linear system with a pulse

transfer function

-
H (2 by e deBe (97)

10,875z
‘was simulated. A comparison of the estimated impulse responses
and the theoretical weighting sequences of the linear subsystems
are illustrated in FIG 7(a) and 7(b).
Inspection of the estimated system parametersg, summarised in
Table 1(a), (b) and (c) for all the models, clearly demonstrates

the effectiveness of the algorithm.
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6. CONCLUSIONS

By considering the separable class of processes it has been
shown that the Wiener-Hopf equation can be generalised to systems
which can be described by a cascade correction of a linear dynamic,
static non-linear and a linear system. A similar result involving
the fourth order moment of the input process can be derived for
the second order cross-correlation function. Both these result%
which are invariant of the non-linear device except for a constant
scale factor, form the basis for an identification algorithm which,
when the input is white Gaussian, effectively decouples the
identification procedure for this class of non-linear systems
into two distinct steps; identification of the linear subsystems
and characterisation of the non-linear element. The relationship
between the first and second order correlation functions also
provides information regarding the system structure, notably the
position of the non-linear element with respect to the linear
subsystems. This simplifies considerably the identification of
this class of non-linear systems.

A least squares algorithm which provides unbiased estimates
of the parameters associated with the pulse transfer functions of
the linear systems and the polynomial representation of the non-
linear device has been developed previouslyg. All the results
can be applied, with only slight modification, even if the input
is non—whiteg, providing it is separable and has a non-zero mean.

The results have been extended to include feedback systems
and other common system structures, and it is hoped that these will
be published at a later date together with an analysis of the

variance of the estimates.
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Fl IR 25,1 | Y2 | el Y Ty Y3
Theoretical Values 0.216 [-1.579 | 0.67 5:0 20.0 50.0
Parameter estimates
from ¢uz,(T) for 0.220 (-1.577 | 0.665| - = -
the linear model
Parameter estimates
from ¢uz,(r) for 0.221 |-1,575| 0.66 4,7 20,86 50.24
the Wiener model

(a) The Linear and Wiener Models
PARAME
TER "1 | Y,2 | Y0 M Yy Y3
Theoretical Values 0.216 (=1.579| 0.67 1.0 0.5 0.8
Parameter estimates ‘ :
from ¢, (1) 0,222 |-1.58 0.669| 0,95 0.47 0.827
uz
Torayeter SaLTNANER! o vor {wi.dp 0.68 | 0.99 | 0.507 | 0.800
from ¢2 (1) j [
]
u z

(b) The

Hammerstein Model
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FIG 1

FIG 2

FIG 3

FIG 4

FIG 5

FIG 6

FIG 7

FIGURE CAPTIONS

Non-linear no-memory system

Double non-linear transformation

The General Model

* % % Theoretical response hl(k)

- = — Experimental values ¢u Z,(T)

A comparison of impulse responses for the linear model

o
o

E hl(k)

-l ¢UZ'(T)
000 14 (0}
N
e —_q) 2 (T)

u z

A comparison of impulse responses for the Wiener model
% %k % '(T)
z

(1)

%
¢

2 1
u z

A comparison of impulse responses for the Hammerstein

mode 1

- = = Theoretical response hl(k)
0 0 o Estimated wvalues hl(k)
— — —Theoretical response hz(k)

% % % FEstimated values hz(k)

A comparison of impulse responses for the general model,
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FIG 1 Non-linear no-memory system
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FIG 2 Double non-linear transformation
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