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Abstract 21 

With the aim of extensively investigating the crustal structure beneath the western segment of 22 

the North Anatolian Fault Zone where it splays into northern and southern branches, a 23 
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temporary seismic network (Dense array for North Anatolia-DANA) consisting of 70 stations 24 

was deployed in early May 2012 and operated for 18 months in the Sakarya region during the 25 

FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well 26 

located earthquakes. The enhanced station coverage having a nominal station spacing of 7 27 

km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location 28 

uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe 29 

considerable seismic activity along both branches of the fault where the depth of the 30 

seismogenic zone was mostly confined to 15 km. Using our current earthquake catalogue we 31 

obtained a b-value of 1. We also mapped the b-value variation with depth and observed a 32 

gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with 33 

magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment 34 

Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. 35 

Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a 36 

compressional regime showing a primarily oblique-slip motion character. Stress tensor 37 

analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and 38 

the tensional axis is aligned in NNE-SSW direction. 39 

 40 

1. Introduction  41 

The North Anatolian Fault Zone (NAFZ) is a large-scale continental strike slip fault 42 

system extending from Karlıova Junction in the east towards the Aegean domain in the west 43 

cutting across the entire Northern Turkey (Figure 1a). This major plate boundary 44 

accommodates most of the westward movement of the Anatolian Block. Recent GPS 45 

measurements revealed a maximum slip rate of approximately 24±1 mm/yr for the NAFZ and 46 

a counterclockwise rotation of the Anatolian Block (Reilinger et al., 1997; 2000; McClusky et 47 

al., 2000). The NAFZ displays a more or less linear character along most of its 1500 km 48 
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length until it splays into two main strands east of the Almacık Mountains (Figure 1b). The 49 

northern strand dissects the Adapazari basin and traverses the Marmara Sea reaching the Gulf 50 

of Saros (Şengör, 2005). The southern strand mostly remains on land and is not as well 51 

developed considering the shallower depth of associated basins (Duman et al, 2005). It 52 

extends through Pamukova and Iznik Lake and enters the Sea of Marmara at the Gulf of 53 

Gemlik. Both the northern and southern strands bound two regions of uplift: the Almacık 54 

Mountains and the Armutlu Peninsula.  55 

The intense internal deformation has caused numerous destructive earthquakes along 56 

the NAFZ throughout the 20th century. The most recent İzmit (17 August 1999, Mw:7.4) and 57 

Düzce (12 November 1999, Mw:7.2) events are regarded as the western continuation of a 58 

major earthquake sequence which started with the 1939 Erzincan earthquake in eastern 59 

Turkey (Toksöz et al., 1979; Barka, 1996) rupturing a nearly 1000-km long segment of the 60 

NAFZ. The proximity and rapid succession of these major events strongly implies an 61 

interaction between sequence nucleation processes, yet the nature of this interaction is still 62 

widely debated. Historical seismicity indicates that the İzmit earthquake occurred in an area 63 

of Coulomb stress increase induced by major earthquakes and several authors have pointed 64 

out the static triggering role of the İzmit event on the Düzce Earthquake (Parsons et al., 2000; 65 

King et al., 2001; Utkucu et al., 2003). As shown in Figure 1b, the Izmit earthquake ruptured 66 

the northern branch of the NAFZ along four distinct structural segments, namely the Golcuk, 67 

Izmit-Sapanca, Sakarya and Karadere segments. Rupture lengths along each of these segment 68 

varied between 25 km and 36 km with observed dextral displacements of 1.5-5m (Barka et. al, 69 

2000). These segments are separated by right releasing stepovers wider than 1 km and/or gaps 70 

in the fault trace (Langridge et al., 2002; Lettis et al., 2000). Further to the east, the Düzce 71 

earthquake formed an east-west striking 40 km long rupture with an average lateral 72 

displacement of 3.5 m, also including 9 km of rupture overlap with the eastern termination of 73 
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the İzmit rupture (Akyüz et al., 2002; Hartleb et al., 2002; Duman et al., 2005). The Düzce 74 

rupture also consists of several segments separated by restraining stepovers. Both these 75 

earthquakes were recorded extremely well by seismology and satellite geodesy (INSAR and 76 

GPS), and the coseismic source models have been accurately determined (Wright et al., 2001; 77 

Burgmann et al., 2002).  78 

In the present study, we primarily focus on the western segment of the NAFZ (Figure 1a) 79 

benefiting from a dataset collected from a dense seismic array (consisting of 70 temporary 80 

broadband seismic stations and an additional 8 stations from the permanent network) 81 

encompassing both the northern and southern strands of the fault covering part of the rupture 82 

area of 1999 İzmit and Düzce earthquakes. This array was mainly designed to determine the 83 

fine scale structure of the crust in this area and to image the structure of the NAFZ in the 84 

lower crust. With the help of this new and extensive data set, our main objective is to provide 85 

new insights on the most recent micro-seismic activity and the relevant b-value. Furthermore, 86 

we used our focal mechanism solutions in order to put additional constrains on the current 87 

stress orientation in this region. 88 

 89 

2. Data and Methods 90 

Within the framework of the FaultLab project which is funded by National Environment 91 

Research Council (NERC-UK), the DANA array consisting of 70 broadband stations (54 92 

CMG6TD, 6 CMG3TD, 2 CMGESPD and 1 CMG40TD sensors provided by the SEIS-UK 93 

instrument pool) was deployed in the Sakarya-Adapazarı region and operated from early May 94 

2012 to late September 2013. In order to further improve the station coverage, DANA 95 

includes seven additional CMG6TD broadband sensors surrounding the array and installed by 96 

KOERI/department of Geophysics with support from Boğaziçi University Research Fund. 97 

Eight permanent stations of KOERI (CMG3TDs) were also included in our analysis. Data 98 
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were recorded at 50Hz sampling. The array was composed of six parallel lines forming a 2-D 99 

grid crossing both the northern and southern branches of NAFZ, supplemented by a further 7 100 

stations arranged in an arc on the east side (Figure 2a). The nominal station spacing of the 101 

stations was 7 km, which was achieved for majority of the stations.  102 

 103 

2.1. Micro-seismicity and b-value Analysis 104 

Local events were visually identified and extracted from the continuous data. Event 105 

locations were determined using HYPO71 (Lee and Lahr, 1972) implemented in ZSAC, an 106 

interactive software package developed at KOERI (Yılmazer, 2012). A well constrained 1D 107 

velocity model (modified from Karabulut et al., 2011) was used in the location algorithm 108 

which is shown in Table 1. The station configuration of this experiment with dense station 109 

spacing significantly enhanced the event detection capability and allowed us to locate a total 110 

of 2437 seismic events with a minimum local magnitude (ML) of 0.1 during the deployment 111 

of DANA network. ML magnitudes for epicentral distances less than 200 km were calculated 112 

using the formula from Baumbach et al., (2003).  113 

Due to the rapidly growing resource extraction industry, several active quarries and mining 114 

areas exist in the study area. In order to properly constrain the earthquake related seismicity, 115 

contaminations caused by any explosions and quarry blasts must be eliminated from the event 116 

catalogue. We performed a statistical time of day analysis by searching daytime events versus 117 

nighttime events and plotting them as a function of geographic location. Taking into account 118 

the origin times of the events presented by the histogram in Figure 3a, we selected the 119 

daytime interval between 08:00 and 16:00 separating the events into 8 hr day-night segments. 120 

The logarithmic ratio of daytime to nighttime events is defined by the Qm parameter (Wiemer 121 

and Baer, 2000; Kekovali et al., 2011). The region was divided into different overlapping 122 

square cells and we found that a cell size of 5 km x 5km contained sufficient number of 123 
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events to precisely identify the locations of quarry and mining areas. We limited our search to 124 

crustal events with depths less than 20 km and magnitudes smaller than 3.0. The result of our 125 

analysis shows that Qm values vary from -0.57 to 4.17 (Figure 3b). We determined the blast 126 

locations to have values of Qm ≥ 2.5. In order to test the accuracy of the analysis, we 127 

compared these locations with current satellite images. In general, a good correlation was 128 

observed suggesting that the daytime to nighttime ratio analysis can provide valuable 129 

information on the location of potential quarry and mining areas. This analysis eliminated 130 

mining related explosions from the catalog and we identified 1371 earthquakes (Figure 2a, 131 

list also given as supplementary material S1) following the discrimination process. The vast 132 

majority (~96%) of the earthquake depths are approximately confined to the upper 15 km of 133 

the crust as shown in the depth histogram given in Figure 2b. Moreover, a magnitude 134 

histogram in Figure 2c demonstrates the detection capability of DANA network. The majority 135 

of the horizontal and vertical location uncertainties were found to be less than 0.8 km and 0.9 136 

km, respectively. However, towards the edges of the array where the station coverage is less 137 

dense, we observed relatively higher uncertainties (Figure4a). The vast majority of the 138 

average RMS arrival-time misfits were calculated within the range of 0.05-0.4 seconds as 139 

indicated in Figure 4b. Figure 4c demonstrates the MLstandard deviations which do not 140 

exceed 0.1 within the DANA array; however, towards the edges (42 events from cluster C in 141 

Figure 2a) we calculated magnitude errors within the range of 0.3-0.4. Overall, azimuthal gap 142 

values vary between 21º and 220º. Based on the travel time plots for 31595 Pg and 18416 Sg 143 

phase readings given in Figure 5a, we calculated average seismic velocities of 5.95 km/sec 144 

and 3.46 km/sec for Pg and Sg phases, respectively. We also extracted a Vp/Vs ratio of 1.713 145 

from the Wadati diagram given in Figure 5b which is slightly lower than our starting value of 146 

1.74. 147 

 148 
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We also performed a b-value analysis, a significant parameter to characterize seismicity in 149 

a tectonically active region. Physically, the b-value describes the proportion of seismic energy 150 

released by small versus large earthquakes; for a greater b-value the number of large 151 

magnitude earthquakes is fewer relative to the number of small earthquakes. It can be 152 

extracted from the slope of cumulative earthquake occurrence vs magnitude curve (Figure 6). 153 

Moreover, the state of stress has a major effect in determining the character of the magnitude–154 

frequency distribution (Mori and Abercrombie, 1997; Toda et al., 1998). On average, b is 155 

close to unity for most seismically active regions (e.g. Froelich & Davis 1993) but can vary 156 

from 0.3-2.5 (El-Isa and Eaton, 2014). Low b-values are associated with major earthquakes 157 

(Öncel et al., 1996) and asperities subjected to high stress (Wiemer & Wyss 1997), whereas 158 

high values are related to decreased shear stress (Urbancic, 1992), extensional stress (Froelich 159 

and Davis, 1993), etc.  In the present study, b-values are calculated using a maximum 160 

likelihood approach adopted in the ZMAP code (Utsu, 1999; Wiemer and Katsumata, 1999). 161 

Using the 1371 earthquakes in our data set, we calculated a magnitude completeness (Mc) 162 

value of 0.7 and a b-value of 1.0 ± 0.03 (Figure 6b). Mc calculation is based on the maximum 163 

curvature method (Wiemer and Wyss, 2000). Both values are remarkably lower than the 164 

comparable values for the KOERI catalogue spanning the same area and the operation period 165 

of the DANA array (Mc: 1.7; b-value 1.32 ± 0.06, Figure 6a).  166 

 167 

2.2. Fault Plane Solutions and Stress Tensor Inversion 168 

We applied the P-wave first arrival method from Suetsuge (1998) to obtain the fault 169 

plane parameters for earthquakes with moment magnitude ML ≥ 1.8 (Table 2). Furthermore, 170 

we also used the Regional Moment Tensor (RMT) inversion method of Dreger (2002) to infer 171 

the source parameters of the earthquakes with magnitudes greater than 3.0. This method 172 

adopts a least squares approach and makes use of full wave-form modeling which can provide 173 
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reliable constraints on the source orientation using data from sparsely distributed broadband 174 

stations or even single broadband station (Dreger and Helmberger, 1993; Walter, 1993; 175 

Dreger and Woods, 2002). The earthquake fault plane parameters (strike, dip, and rake) and 176 

the seismic moment can be obtained directly from the moment tensor description. The 177 

preparation of data involved a quality check of the three component waveforms. Stations with 178 

recording gaps and signals with signal-to-noise ratio lower than 4.0 were eliminated. 179 

Synthetic seismograms were computed using a frequency wavenumber algorithm (Saika, 180 

1994). Green’s functions were computed using crustal structure from Karabulut et al, (2011). 181 

We obtained fault plane parameters of 41 earthquakes recorded within the operation period of 182 

the seismic network (Table 2). Solutions from both methods are in good agreement 183 

predominantly indicating right lateral strike-slip faulting along both branches of NAFZ with a 184 

few exceptions in the vicinity of Akyazı region where we observed normal faulting (Figure 185 

7). A comparison of both methods for the Serdivan mainshock is given as a supplementary 186 

material (S4). 187 

Fault plane solutions play a key role in determining the stress field orientation 188 

(Gephart and Forsyth, 1984; Michael, 1984; Gephart and Forsyth, 1990; Bohnhoff et al., 189 

2004). We applied a stress analysis method developed by Gephart and Forsyth (1984) which 190 

was implemented in a focal mechanism stress inversion code (FMSI; Gephart and Forsyth, 191 

1990). Generally speaking, stress is defined by three principal axes (ơ1, ơ2, ơ3) using a tensor 192 

description. The tectonic regime is directly related to the dip angles between these axes and 193 

the horizontal plane. The stress amplitude ratio (R) defined by the equation  R=( ơ2- ơ1)/( ơ3- 194 

ơ1), is used to assess the dominant stress state and explain the overall relation between the 195 

principal axes. More detailed explanations on R are given by Bellier and Zoback (1995).  The 196 

method is based on the relation between the ơ1, ơ2, ơ3 components and the pressure (P)  197 

tension (T) axes in accordance with the Anderson faulting theory (McKenzie 1970). FMSI 198 
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calculates the parameters ơ1, ơ2, ơ3 and R for each event in the cluster assuming that spatial 199 

and temporal variations do not occur in the stationary stress field and slip occurs in the 200 

direction of the maximum resolved shear stress on the fault plane.  In order to accurately 201 

constrain the stress field, we compiled the fault plane parameters obtained from the DANA 202 

network and various other studies (Öcal, 1960; Canıtez and Uçer, 1967; Nowroozi, 1972; 203 

Canıtez and Büyükaşıkoğlu, 1983; Taymaz et al., 1991; Örgülü, 2001; Kalafat, 2009).  204 

Figure 8A illustrates the stress tensor inversion results from the focal mechanism solutions 205 

of the 1999 İzmit earthquake and its aftershocks from previous studies (references in Table 2). 206 

As seen in Figure 8A, the inversions calculated the best fitting stress tensor with azimuth and 207 

plunge values of ơ1=(110, 0), ơ2=(201,58), ơ3=(20, 32), and stress amplitude ratio R=0.35 208 

indicating a transtensional regime similar to the regime found by Kiratzi (2002) and Pınar et 209 

al., (2010). Inversions from the focal mechanisms obtained in this study resulted in a stress 210 

tensor with azimuth and plunge values of ơ1=(103, 27), ơ2=(256,61), ơ3=(7, 11), and stress 211 

amplitude ratio R=0.45 as given in Figure 8B. The measure of the reliability of the solution is 212 

the average misfit rotation angle calculated as 6.0o. This value reflects how well the individual 213 

focal mechanisms fit the corresponding stress tensor. The greater the misfit angle, the less 214 

spatially homogeneous is the stress field (Pinar et al., 2010; Hardebeck and Hauksson, 2001).  215 

 216 

3. Discussion and Conclusions 217 

The installation of a dense array across the NAFZ significantly enhanced the event 218 

detection capability enabling us to accurately locate 1371earthquakes (Figure 2a) within the 219 

18 months recording period which is a strong evidence of high seismic activity. 220 

Contaminations in the cataloque caused by blasts and mining activities were eliminated after 221 

careful inspection. The seismogenic zone in the region surrounding the NAFZ is 222 
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approximately confined to the upper 15 km of the crust. During this seismic experiment we 223 

recorded a moderate size earthquake (ML :4.1) close to the town of Serdivan on 7 July 2012 224 

(Figure 2a). We recorded 29 aftershocks within the following two-month period with 225 

magnitudes varying from 0.4 to 2.2 (provided as supplementary material S2 and S3). The 226 

aftershock distribution and focal mechanism solutions suggest that this activity might indicate 227 

an unmapped continuation of a NE-SW oriented secondary fault located to the north of the 228 

İzmit-Sapanca segment of NAFZ (Figures 2, 6). Based on our observations, a foreshock 229 

activity has started nearly a month before the Serdivan mainshock, including a magnitude 2.3 230 

earthquake which occured approximately seven minutes prior to this earthquake (Provided as 231 

supplementary material S3).  232 

The recorded seismicity pattern displays several distinctive features. Although the 233 

northern branch of NAFZ produces higher seismicity, we also located a considerable number 234 

of earthquakes along the southern branch, namely the Geyve Fault. In addition to the 235 

concentration of seismic activity along the north and south strands of the NAF, much 236 

seismicity is located further north and south of the major fault strands. We observe a strong, 237 

diffuse cluster of seismicity south of the Geyve fault (marked by a red ellipse B in Figure 2). 238 

The occurrence of a nearby moderate size earthquake following the DANA array pull-out 239 

(22.10.2014, ML:4.5, black star in Figure 2a is a further indication of the continuous seismic 240 

activity there. Further to the south of the Geyve fault, we observed a relatively diffuse cluster 241 

close to city of Bilecik (marked by a red ellipse C in Figure 2a) indicating fault zone related 242 

deformation away from the main fault. Two earthquake clusters were also mapped north of 243 

Sakarya, in good agreement with the most recent active fault map published by Emre et al., 244 

(2013) from General Directorate of Mineral Research and Exploration (MTA). We located 245 

another cluster in the vicinity of Akyazı  at the junction of the Dokurcun fault, İzmit-Sakarya 246 

and Duzce-Karadere fault segments (ellipse A in Figure 2a) forming a structural discontinuity 247 



11 

 

that contains several small scale faults, for which a higher rate of seismicity is expected. This 248 

cluster occurs in a region of Coulomb stress increase, as reported by Utkucu et al., 2003. 249 

The active fault map by MTA (Emre et al., 2013) indicates many relatively small scale 250 

normal faults at the east of the Akyazı junction between the 1967 Mudurnu Valley and 1999 251 

İzmit earthquake ruptures and the right stepping fault segments (Figure 1b, and Figure 7). 252 

Barka et al., (2002) also measured a ~5m surface displacement following the 1999 İzmit 253 

earthquake. Therefore relatively high b-values for the stepover area east of the junction should 254 

be expected due to structural heterogeneity (King 1986; Wiemer and Katsumata, 1999; Liu et 255 

al., 2003). The aftershock studies (Aktar, 2004; Özalaybey, 2002; Karabulut et al., 2002) 256 

indicate a cluster of earthquakes in the fault junction, emphasizing a stress accumulation 257 

following the İzmit earthquake. Calculation of the Coulomb stress change after the 1999 258 

Düzce earthquake using all the large earthquakes also requires an increase in stresses for the 259 

Akyazı junction. Interestingly, field studies indicated an about 10 km-long surface rupture gap 260 

along the 1999 İzmit earthquake surface rupture in this region (Barka et al., 2002).. There had 261 

been virtually no seismicity at the junction area before the 1999 İzmit earthquake (Gülen et 262 

al,. 2002), switching to a high aftershock activity (Özalaybey et al., 2002., Pınar et al., 2010) 263 

following the earthquake. Our seismicity observations revealed that relatively high seismicity 264 

rates persist at the junction and may still be associated with aftershock activity of the 1999 265 

Izmit rupture. Long lasting aftershock activity is not unusual and is supported by global 266 

observations (Stein and Liu, 2009; Parsons, 2009). It seems that both the redistribution of 267 

stresses following the mainshock and the static stresses imparted by the large earthquake 268 

rupture along the fault segments results in stress enhancement at the junction and the 269 

generation of long-lasting seismic activity. 270 

As shown in Figure 6, we calculated a b-value of 1 for the DANA array. This result is in 271 

good agreement with the values revealed in a national report by Earthquake Engineering 272 
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Department of KOERI (Erdik et al., 2006). Figure 9 demonstrates the depth variation of the b-273 

value extracted from our final earthquake catalogue (excluding the events with magnitude 274 

errors higher than 0.2). Figure 9 also shows a gradual decrease in b-values with depth 275 

beneath the fault. Similar observations have also been reported for the San Andreas Fault in 276 

California (Mori and Abercrombie 1997; Wiemer and Wyss, 1997). The b-values tend to rise 277 

in the shallow crust possibly due to presence of weak sedimentary layers and lower confining 278 

pressure. 279 

  We determined the fault plane solutions of 41 earthquakes recorded within the array 280 

using RMT and P-wave first motion polarity methods (Table 2).  Solutions reveal right lateral 281 

strike-slip faulting along both branches of NAFZ (Figure 7) with a few exceptions in the 282 

vicinity of Akyazı region where we observed normal faulting possibly due to the existence of 283 

stepovers (Figure 1b). RMT solutions for the 1999 Izmit and Düzce mainshocks show strike-284 

slip faulting and NE-SW extension that is well correlated with the tectonic regime and the 285 

orientation of NAFZ (Table 2).  Moreover, fault plane solutions of the ML:4.1 Serdivan 286 

mainshock, its aftershocks and foreshocks demonstrate two distinct fault planes. The first one 287 

is NE-SW oriented dextral strike slip fault and the second one is NW-SE oriented sinistral 288 

strike slip fault. The active fault map of MTA (Emre et al., 2013) shows a NE-SW striking 289 

secondary fault in the vicinity of Serdivan seismic activity. Based on our findings, we 290 

therefore suggest that the main fault plane is aligned in NE-SW direction with dextral strike 291 

slip motion and the aftershock distribution marks the continuation of this fault. 292 

Our stress tensor inversion results imply that maximum principal stress axes (ơ1) are 293 

roughly WNW-ESE oriented and the horizontal minimum compressive stress axis (ơ3) is 294 

NNE-SSW oriented (Figure 8B). The R-value calculated from the aftershock study of the 295 

1999 İzmit earthquake (references in Table 2) varies within the 0-0.5 range and peaks at about 296 

0.3 (Figure 8A). On the other hand, the R-value for the DANA survey peaks at a value closer 297 
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to 0.5, emphasizing that strike-slip is the dominant type of faulting.  These results indicate 298 

that the western part of the NAFZ is predominantly influenced by WNW compression and 299 

NNE extension of similar magnitudes. 300 

The deployment of a dense array in the area of a complicated continental strike-slip fault 301 

allowed extremely low detection thresholds for micro-seismicity in the vicinity of recent 302 

major earthquakes. The detected seismicity allows further insight into the deformation of the 303 

Sakarya region and has highlighted several areas of previously unmapped active deformation. 304 
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 580 

Figure Captions  581 

Figure 1: a) Topographic map of the North Anatolian Fault Zone (NAFZ) region. Study area 582 

is marked by a red square. Abbreviations; AP: Armutlu Peninsula, GB: Gemlik Bay, KJ: 583 

Karlıova Junction, SB:Saros Bay b) Locations of fault ruptures associated with major 584 

earthquakes in the western segment of NAFZ (modified from Lettis et al., 2002). 585 

 586 

Figure 2: a) Local seismicity from May 2012 to September 2013. Most recent fault 587 

information is taken from Emre et al., 2013. Abbreviations; ÇMF: Çilimli Fault, DB: Düzce 588 

Basin, DKF:Dokurcun Fault, DZF:Düzce Fault, GYF:Geyve Fault, KDF: Karadere Fault. 589 

Black star denotes one moderate size earthquake (ML: 4.5) recorded following the removal of 590 

the DANA array. Bottom and right inserts show projections of earthquake depths onto North-591 
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South and East-West profiles, respectively. Dashed red ellipses labelled A, B, C enclose 592 

regions of concentrated seismicity described further in the text. b) Earthquake depth 593 

histogram c) Earthquake magnitude histogram. We were able to precisely locate earthquakes 594 

with ML magnitudes of 0.1.  595 

 596 

Figure 3: a) Event-time histogram. b) Map showing the Qm values for the study area. Darker 597 

green and blue colors (Qm > 2.5) indicate the presence of possible blast locations. 598 

 599 

 Figure 4: a) Histogram of horizontal and vertical location uncertainties. b) Histogram of 600 

RMS arrival- time misfits. c) Histogram of ML standard deviation.  601 

 602 

Figure 5: a) Travel times for Pg and Sg Phases. The best linear fit to the travel time   data are 603 

shown by the red lines. b) Wadati diagram obtained using higher quality picks. Red line 604 

indicates the best linear fit corresponding to a Vp/Vs value of 1.713. 605 

 606 

Figure 6: Comparison of cumulative number of earthquakes, Mc and the b-value found a) 607 

using the KOERI cataloque and b) using the DANA dataset. The Serdivan mainshock 608 

(ML:4.1) is indicated by the yellow star. The existence of such a dense seismic network 609 

significantly decreased the Mc threshold and has permitted to a more accurate determination 610 

of the b-value.  611 

 612 

Figure 7: Focal mechanism solutions. Red beachballs show the 41 solutions from the current 613 

study and black beachballs indicate the solutions from various earlier studies listed in Table 2. 614 

Number 34 indicates the ML: 4.1 Serdivan mainshock. 615 

 616 
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Figure 8: Stress tensor analysis from the P and T axes of the focal mechanisms. A) Analysis 617 

result for the 1999 İzmit Earthquake and its aftershocks, B) Analysis result for the M  ≥ 1.8 618 

earthquakes occurring within the operation period of  DANA. Both panels show (a) the 619 

histogram of the R-value, (b) the distribution of the estimated principal stress axes and (c) the 620 

distribution of the observed P and T axes. In (b), red solid dots show the azimuth and plunge 621 

of the maximum compression axis ơ1, blue circles denote the minimum stress axis ơ3 and 622 

green triangles indicate the intermediate stress axis ơ2. In (c), red solid dots and blue circles 623 

show the P-axes and the T-axes, respectively. Black symbols denote the axes for the best 624 

fitting stress model.  625 

 626 

Figure 9: a) b-value variation with depth. Horizontal bars reflect the uncertainty in b- value 627 

estimations while vertical bars indicate the depth range sampled for the assigned window of 628 

300 earthquakes. b) The selected area including the corresponding earthquakes. The colors 629 

indicate different depth (z) ranges. 630 

 631 

Table Captions 632 

Table 1: 1-D velocity model modified from Karabulut et al., (2011). 633 

 634 

Table 2: The locations and source parameters of earthquakes (M≥1.8) in Sakarya region and 635 

surroundings compiled from our work and the previous studies.  ( 1-McKenzie (1972), 2-636 

Canıtez and Büyükaşıkoğlu (1984), 3-Canıtez and Uçer (1967), 4-Öcal (1960), 5- Nowroozi 637 

(1972), 6- Taymaz et al (1991), 7- Örgülü (2001), 8- Kalafat et  al (2009), HRV- Harvard 638 

Centroid-Moment Tensor Project. 639 



Depth (km) Vp (km/s) 

0 3.27 

2 5.75 

4 5.85 

6 5.90 

8 5.91 

12 6.15 

16 6.50 

20 6.84 

24 6.84 

28 6.84 

30 6.84 

32 7.34 

36 7.89 

40 7.89 
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no Date (d.m.y) 
Time-GMT 

(h.m.s) 

Latitute 

(N) 

Longitute 

(E) 
ML Mw 

h(km) 

 

Plane 1 Reference 

Strike Dip Rake  

1 20.06.1943 15:32:54 40.85 30.51 6.2 6.4 10 176 76 2 1,2 
2 20.02.1956 20:31:43 39.89 30.49 6.0 6.2 40 264 50 -133 1,3 
3 26.05.1957 06:33:35 40.67 31.00 6.6 6.7 10 87 78 176 1,2,3,4 
4 22.07.1967 16:56:58 40.67 30.69 6.3 6.2 33 93 90 176 1,5,6 
5 22.07.1967 17:48:06 40.66 30.62 4.9 5.2 26 110 72 -17 8 
6 17.08.1999 03:14:01 40.60 30.63 5.5 5.3 8 192 34 -82 7 
7 17.08.1999 05:10:08 40.72 30.01 4.6 4.7 6 29 80 -173 7 
8 17.08.1999 05:45:23 40.74 30.01 4.7 4.3 11 243 45 -163 7 
9 17.08.1999 06:01:32 40.75 29.99 4.0 4.1 4 263 69 147 7 

10 17.08.1999 00:01:37 40.75 29.86 -- 7.6 17 91 87 164 HRV,USGS 
11 18.08.1999 01:04:25 40.66 30.77 4.0 4.0 6 182 39 -77 7 
12 19.08.1999 13:04:13 40.64 30.58 4.0 4.5 9 195 53 -83 7 
13 20.08.1999 15:59:02 40.78 30.93 4.1 4.1 10 246 57 150 7 
14 22.08.1999 14:31:00 40.67 30.77 4.4 4.1 9 276 72 -165 7 
15 31.08.1999 18:10:51 40.75 29.97 4.6 5.0 11 82 71 -133 7 
16 31.08.1999 08:33:25 40.74 29.97 4.2 4.4 11 68 70 -142 7 
17 04.09.1999 10:30:53 40.73 30.02 4.0 4.0 13 224 43 153 7 
18 13.09.1999 11:55:28 40.31 30.29 -- 5.8 15 176 86 -31 HRV 
19 17.09.1999 19:50:07 40.75 30.08 4.5 4.4 18 170 82 -21 7 
20 07.11.1999 16:54:42 40.57 31.36 -- 5.0 15 269 71 106 HRV 
21 11.11.1999 14:41:25 40.95 30.10 -- 5.7 15 208 86 -41 HRV 
22 12.11.1999 16:57:20 40.76 31.16 -- 7.2 10 170 80 -36 HRV,USGS 
23 23.08.2000 13:41:27 40.68 30.72 -- 5.3 15 152 74 -34 HRV 
24 17.09.2002 12:05:00 40.81 30.58 -- 3.7 6 237 59 -95 8 
25 01.04.2003 07:51:00 40.73 30.68 -- 3.9 8 21 78 -19 8 
26 22.06.2011 14:00:52 40.5623 31.1257 3.0  5.0 325 87 -72 FaultLab 
27 11.07.2011 16:09:11 40.1562 29.9545 4.6  6.0 105 77 -66 FaultLab 
28 24.02.2012 06:56:05 40.6382 30.5040 2.8  1.8 259 76 -168 FaultLab 
29 11.06.2012 15:00:05 40.8982 30.4223 1.9  4.6 17 81 -178 FaultLab 
30 12.06.2012 12:22:50 40.7682 30.4058 2.2  5.0 215 69 -175 FaultLab 
31 22.06.2012 01:57:55 39.8902 30.6258 2.7  5.0 47 45 -43 FaultLab 
32 28.06.2012 17:46:07 40.4862 30.1423 2.1  6.8 77 88 163 FaultLab 
33 01.07.2012 06:06:30 40.7750 30.8367 2.2  7.5 56 58 158 FaultLab 
34 07.07.2012 07:07:45 40.7643 30.3798 4.1 4.1 6.0 218 74 -178 FaultLab 
35 07.07.2012 06:56:02 40.7632 30.3962 2.0  11.6 16 89 164 FaultLab 
36 07.07.2012 07:14:25 40.7642 30.3925 2.2  11.6 203 86 172 FaultLab 
37 07.07.2012 07:24:34 40.7635 30.3978 1.9  10.8 223 72 175 FaultLab 
38 07.07.2012 09:20:12 40.7632 30.3918 1.9  9.8 208 83 -176 FaultLab 
39 10.07.2012 09:13:42 40.4580 30.0448 2.6  9.4 236 83 -175 FaultLab 
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 40 16.07.2012 07:41:59 40.7465 30.7723 2.2  9.0 59 89 158 FaultLab 
41 17.08.2012 08:03:23 40.7623 30.3988 1.9  8.8 66 82 134 FaultLab 
42 14.10.2012 08:36:39 40.7048 30.3037 2.6  11.6 143 54 154 FaultLab 
43 24.10.2012 01:03:59 40.7027 30.6742 2.1  8.1 22 56 -162 FaultLab 
44 02.11.2012 13:19:09 40.7672 30.3870 2.2  9.2 47 83 -163 FaultLab 
45 09.11.2012 20:03:53 40.6978 30.6255 2.1  11.9 338 79 -69 FaultLab 
46 13.11.2012 18:17:30 40.7173 30.1558 2.1  4.9 3 49 -8 FaultLab 
47 16.11.2012 01:54:57 39.8087 30.5162 3.5  5.0 125 68 -66 FaultLab 
48 09.12.2012 04:45:36 40.6930 30.6233 3.5 3.5 5.0 335 73 -64 FaultLab 
49 09.12.2012 13:58:37 40.7105 30.6667 2.0  10.8 72 68 -143 FaultLab 
50 18.01.2013 03:04:20 40.6977 30.6270 2.0  10.3 359 67 -5 FaultLab 
51 23.01.2013 12:44:48 40.3977 30.1605 2.6  1.8 53 89 -172 FaultLab 
52 14.02.2013 17:54:37 40.8797 30.6942 2.7  12 82 79 -147 FaultLab 
53 24.02.2013 05:09:06 40.7563 30.2688 2.5  11.4 257 88 -174 FaultLab 
54 26.02.2013 04:04:54 40.7533 30.2730 2.0  11.3 259 86 -172 FaultLab 
55 07.03.2013 09:22:15 40.5693 30.5390 2.5  5.2 11 68 -151 FaultLab 
56 13.04.2013 07:33:48 40.5198 30.4830 1.9  6.9 354 79 11 FaultLab 
57 23.04.2013 15:19:56 40.7597 30.3650 3.2 3.1 2.0 41 74 -150 FaultLab 
58 09.05.2013 03:52:56 40.5760 30.5427 2.3  3.1 30 84 -131 FaultLab 
59 22.05.2013 22:38:47 40.6917 30.6463 2.0  9.8 105 53 -120 FaultLab 
60 27.05.2013 06:38:30 40.6862 30.4180 1.9  6.9 341 59 -144 FaultLab 
61 02.06.2013 22:58:03 40.7137 30.1447 2.0  5.0 11 72 -33 FaultLab 
62 08.06.2013 12:08:55 40.6862 30.5387 2.3  11.9 36 71 -133 FaultLab 
63 30.06.2013 02:53:56 40.6850 30.6542 1.8  14.6 254 88 133 FaultLab 
64 30.06.2013 03:22:06 40.6882 30.6097 3.2  3.5 9 77 -59 FaultLab 
65 02.07.2013 01:45:09 40.7897 30.7195 2.1  8.0 19 65 13 FaultLab 
66 10.11.2013 02:09:24 40.7417 30.2575 3.5 3.4 9.6 265 87 -49 FaultLab 
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