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 Abstract 

The potential for using graphite particles as an internal lubricant during machining is 

considered. Graphite particles were found to form during graphitisation of experimental 

medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly 

influenced by the starting microstructure, whether ferrite-pearlite, bainite or martensite, 

as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite-

pearlite starting microstructure were, not unexpectedly, found to be located within 
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pearlite colonies, no doubt due to the presence of abundant cementite as a source of 

carbon. In consequence, the final distribution of graphite nodules in ferrite-pearlite 

microstructures was less uniform than for the bainite microstructure studied. In the case 

of martensite, this study found a predominance of nucleation at grain boundaries, again 

leading to less uniform graphite dispersions. 

 

Keywords: Free-machining steel; Graphitization; Ferrite/Pearlite; Bainite; Martensite. 

 



Highlights 

 The potential for using graphite particles as an internal lubricant during the 
machining of carbon steels is explored via the metallography of their formation 
during a high temperature anneal of an experimental steel composition. 

 The influence of the pre-anneal starting microstructure on the nucleation sites of 
the graphite particles is demonstrated. 

 The influence of the pre-anneal starting microstructure on the distribution of the 
graphite particles is also investigated. 

 These microstructural features are expected to be influential on whether graphite 
particles, rather than carbide particles, would improve machinability, thus 
allowing beneficial new free-cutting steel compositions to be developed without 
enhanced or special alloying additions such as Pb.  
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1. Introduction 

Steel is a high volume industrial material and in consequence, to enable rapid forming and 

also minimise costs, various steels have been developed which allow machining at higher 

cutting speeds [1,2]. Known as free-cutting or free-machining steels these steel grades 

generally contain enhanced or special alloying additions (e.g. Pb, S, P, Bi, Se, Te) which can 

make them difficult to process or re-cycle, and as more stringent health and safety legislation 

is introduced might eventually lead to their restriction or total prohibition from certain 

manufactured products [1-5]. Consequently, should more process- and user-friendly 

economic alternatives be discovered it is most likely that their adoption would quickly 

follow. One simple alternative, if a steel chemistry and process route compatible with high-

volume mass production can be devised, is to use carbon in its equilibrium form, graphite, as 

an internal lubricant [e.g. 5].  The present article reports upon part of a project to develop 

experimental machining steels designed to graphitise during a relatively short anneal [6-17]. 

Thus it has been demonstrated that the kinetics of graphitisation can be markedly accelerated 

by deliberately alloying medium-carbon steel with the graphitising elements Si and Al. The 

primary objective of this part of the study is to determine the effect of starting microstructure 

upon the nucleation sites and distribution of graphite particles in three starting 

microstructures; ferrite-pearlite, bainite and martensite. At present, there is no such data 

available comparing the effect of starting microstructure on the graphite nucleation sites and 

their distribution, which may influence machinability, in carbon steels. In consequence, a 

detailed microstructural characterisation study was carried out using light optical and electron 

microscopy techniques. Comparisons between the influence of the different starting 

microstructural conditions on graphite dispersion and hence machinability will be reported 

elsewhere. 

*Text Only in MS Word (Double-Spaced)
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 2. Material and Methods 

The experimental steel studied was a medium-carbon steel containing relatively high Si and 

Al  content and was prepared as a 60 kg heat at Tata Steel, Rotherham, UK. The analysis is 

given in Table 1.  

The ingots produced were hot-rolled to plate of 12 mm thickness. In order to perform the 

various heat-treatments for microstructural study, small specimens ~10 mm3 were cut using a 

Struers Discotom 2 cutter flooded with cooling fluid to prevent specimen heating. A heat-

resistant Oxy-Stop 2200 coating to assist with protection against mill-scale (iron oxide) 

formation was also used. 

Three typical starting microstructural conditions were considered: 

 Ferrite/pearlite (as-received hot-rolled and normalised condition). 

 Bainite (austenitised 1150 °C for 7 minutes and austempered at 400-420 °C 

for 60 minutes in a nitrate salt bath). 

 Martensite (austenitised 1150 °C for 7 minutes and water quenched). 

Samples for metallographic study were then annealed (tempered) at 680 ºC for increasing 

times (~20 minutes to ~720 minutes (12 hours)). 

For microscopic analysis by light and scanning electron microscopy specimens were prepared 

by standard metallographic procedures before etching in 2% Nital. The light optical 

microstructural study was carried out using an Olympus BX51 microscope and digital 

micrographs recorded with an AxioCam MRc 5 (Carl Zeiss) camera attached to the 

microscope. Specimens prepared for light optical microscopy were also used for secondary 

electron (SE) imaging and EDX (energy dispersive X-ray spectroscopy) on a LEO 1530 
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Gemini FEGSEM equipped with an energy dispersive X-ray spectrometer. SE imaging and 

EDX were carried out at 10 kV.  

3. Results and Discussion 

3.1 Light Optical Microscopy 

3.1.1 Ferrite-Pearlite Starting Microstructure 

Micrographs of un-etched and etched microstructures showing the sequence of graphitisation 

from the ferrite-pearlite starting microstructure of the experimental steel are presented in Fig. 

1. The typical ferrite-pearlite starting microstructure before annealing can be seen in Fig. 

1(a). The coarse and irregular morphology of the individual particles or nodules formed is 

distinctive of graphite, as observed by separate studies of this experimental steel composition 

(6-17), as well as being suggestive of early nucleation at inclusion particles in the steel. 

The sequence of micrographs in Fig. 1 also shows evidence for spheroidisation of lamellar 

pearlitic cementite within the pearlite regions and its eventual dissolution, and the formation 

of an equiaxed ferrite matrix from the original starting microstructure. After 8 hours this 

process appears to be complete with little carbide observable by light optical microscopy and 

only coarse graphite particles inhabiting an equiaxed ferrite matrix.  

A graphite particle embedded in a pearlite colony, as shown in Fig. 1(b), is typical and 

indicates these as favoured nucleation sites, given the proximity to the cementite as the 

source of carbon, and also the lamellae boundaries as diffusion pathways.  However, also 

evident from closer inspection is that many of the coarse graphite nodules in the ferrite-

pearlite microstructure contain particles near their centre, as can be seen, for example, in 

Figs. 1(b), (f) and (g)). It is known that graphite can nucleate on particles, often nitrides or 

oxides [18-20]. These are often the first nucleation sites to operate, and lead to a coarse 

dispersion of more irregular graphite nodules. If other sites, such as individual tempering and 
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coarsening carbide particles, as suggested and investigated by He et al. [6-16], are not 

activated this will be the final form of dispersion, which appears to be the case in the ferrite-

pearlite starting microstructure. However, it is then interesting to speculate as to why, if the 

nucleation is promoted by such nucleating particles, so many of the nodules grow in 

association with the pearlite regions. This may be because a majority of nucleating particles 

exist in these regions, or that there is competition for carbon in the early stages of nucleation 

and growth, with the nodules located in pearlite regions dominating because of the 

dissolution of the high volume fraction of cementite as the principle source of carbon.  

The micrographs in Fig. 1 also contain clear evidence for association of the graphite particles 

with ferrite grain boundaries, and so it is likely that these influence strongly the nodule 

growth and largely contribute to the irregular morphology during the later stages of growth. 

3.1.2 Bainite Starting Microstructure 

The bainite microstructure developed at 400 ºC in the experimental steel is shown in Fig. 2(a) 

and a magnified image of the cluster of ferrite plates from the outlined region reproduced in 

Fig. 2(b). The roughly parallel packets of ferrite plates, visible in Fig. 2(b), are also referred 

to as sheaves and have a length ~10 µm. These feathery ferrite crystals revealed in Fig. 2 

were identified as upper-bainite microstructure according to previous metallographic studies 

as, for example, reviewed recently by Furuhara [21], and Caballero for steels with enhanced 

Si concentrations [22]. From detailed observations by high-resolution electron microscopy 

made by  He et al. [6-16] it is assumed that tempering bainitic carbides, which would be 

coarsening rapidly during the graphitising anneal, can act as the nuclei for graphite particles, 

thus leading to the apparently more refined graphite dispersion obtained as compared with the 

ferrite-pearlite starting microstructure.  Etched microstructures, developed after 30 minutes 

and 4 hours of graphitising anneal from the bainite starting microstructure, are presented in 

Figs. 2(c) and (d), respectively.  
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These reveal a similar graphite size and distribution suggestive that little further 

graphitisation occurs after the shorter anneal. The graphite particles are more regular in 

morphology and the dispersion is more refined and relatively uniform as compared with that 

generated from the ferrite-pearlite starting microstructure. The relatively rapid grain growth 

of an equiaxed ferrite matrix from the initial bainite can also be noted. 

3.1.3 Martensite Starting Microstructure 

Fig. 3(a) shows lath martensite developed after water quenching the experimental steel from 

1150 ºC and a magnified image from the region outlined is reproduced in Fig. 3(b). This form 

of martensite is consistent with a report by Maki [23] that this lath martensite morphology, 

rather than a thin plate one, is only produced at high austenitising temperatures. The 

martensite laths are indicated by arrowheads in Fig. 3(b), and as far as can be determined at 

the resolution of the light optical microscope, appear to have widths ~0.5 µm, also consistent 

with detailed metallography by Maki [23]. The etched microstructures developed after 30 

minutes and 1 hour of graphitising anneal are shown in Figs. 3(c) and (d), respectively. It 

appears very clear from this set of micrographs that the graphite particles were not uniformly 

distributed in the ferrite matrix but positioned at present or previous positions of grain 

boundaries. It is expected that this striking observation of grain boundary precipitation of 

graphite in the martensite starting microstructure would have an influence on grain size by 

pinning ferrite grain boundaries during growth. Certainly this distribution of graphite is very 

different to that in the most comparable alternative starting microstructure of bainite. 

Nonetheless, comparison of Figs. 2 and 3 does not give the impression of a refined ferrite 

microstructure from martensite as compared with bainite, although these micrographs have 

been selected to present different features. But this mode of graphite precipitation is a new 

observation because such distinctive formation along grain boundaries has not been reported 

previously. In consequence, this distribution and its effect upon ferrite grain size during the 

graphitization anneal is clearly a subject for more detailed research. 

 

The size range of the graphite particles, however, is more similar to that also developing from 

the bainite, and it also appears that little further graphitisation occurs after the shorter 
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annealing times. It is possible that some coalescence of graphite is beginning to occur by 

coarsening along the boundaries, although it was not possible to confirm this due to limited 

resolution of the light optical microscope. However, it should be mentioned that this strong 

association of graphite nucleation confined mainly to the grain boundary regions of the 

martensite starting microstructure was not apparent during previous investigations of this 

experimental steel [6-16] and so it is likely that a more uniform dispersion of graphite 

particles, more similar to that of the bainite starting microstructure, should also be possible. 

The microstructural sequence observed above relates most directly to the later stage of 

martensite tempering at elevated temperature (in this specific case 680 ºC) as recently 

described, for example, by Krauss [24] and also by Maki [23]. However, it is assumed that all 

of the previous well-known stages of tempering also described would have occurred rapidly 

during the heating cycle or earlier than the first observation of the appearance of graphite. 

Thus it is expected that the graphite forms within a fully-tempered near-equiaxed matrix of 

ferrite. However, the experimental steel has been designed to contain relatively high 

concentrations of Si and Al which favour graphitisation rather than stabilisation of carbides. 

In consequence, recent studies [e.g. 16] discovered, using principally TEM/EELS techniques, 

that the coarse particles formed in martensite in this composition of steel by tempering at 

high temperatures are not fully crystalline cementite but can contain a more amorphous 

structure, rich in carbon. Thus it is thought that these tempering particles can act as a 

transitional phase which forms the initial nuclei for graphite, and moreover, are more 

numerous than the larger nitride or oxide particles which can also operate, as seen above, in 

the case of ferrite-pearlite structure. Consequently, these particles lead to a finer dispersion of 

smaller graphite particles. He et al. [e.g. 16]  have also produced fairly persuasive 

metallographic evidence that the small spherical graphite nodules ≤5 ȝm diameter which are 

produced do not enclose a separate foreign nucleating particle within them, but instead, have 
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a more amorphous core, more representative of the transitional partly-amorphous particles 

mentioned above. 

3.1.4 Shape, Size and Distribution of Graphite Particles 

The significant differences in graphite particle shape, size and distribution between the three 

starting microstructures are readily apparent from the micrographs. This is confirmed by the 

majority of maximum graphite particle diameters achieved in the fully graphitised state, 

measured approximately, as ferrite/pearlite ~10-20 µm; bainite ~5 µm; martensite ~1-2 µm.   

3.2 Scanning Electron Microscopy 

Scanning electron micrographs and accompanying qualitative EDX analysis of suspected 

graphite particles formed after 30 minutes of graphitising anneal from starting 

microstructures of ferrite-pearlite, bainite and martensite, are presented in Figs. 4(a), (b) and 

(c), respectively.   

The EDX spectra provide additional experimental evidence that the particles or nodules 

examined in detail by light optical microscopy, as reported above, during the characterisation 

of microstructural evolution of the experimental steel during annealing the three different 

starting microstructures at 680 ºC, are graphite phase, and not carbide. This is consistent with 

previous studies of this experimental steel composition [6-17].  

4. Conclusions 

Light optical and electron microscopic study revealed that the graphite dispersions and final 

ferrite matrix resulting from a graphitising anneal of the experimental steel at 680 ºC were 

strongly influenced by the starting microstructures viz., ferrite-pearlite, bainite or martensite. 

Most noteworthy are: 
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 Graphite dispersion was identified in all three starting microstructures of the 

experimental steel by light optical microscopy of un-etched surfaces, by EDX analysis 

in SEM after only 30 minutes of annealing.  

 The micrograph sequences strongly indicated that the favoured location for 

graphite particle nucleation in ferrite-pearlite starting microstructure was the pearlite 

regions and in the martensite starting microstructure was associated with the grain 

boundaries. In the bainite starting microstructure precipitation of larger graphite 

particles (~5 µm) were evident at the bainitic ferrite plate boundaries. 

 For the experimental steel in the conditions examined, a more uniform 

distribution of the graphite particles resulted from the bainite starting microstructure, 

whilst the graphite nucleation behaviour revealed for the ferrite-pearlite and 

martensite starting microstructures resulted in non-uniform dispersions. 
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Table 1 Chemical composition (wt. %) of the experimental steel studied.  

Wt. % Element 

C Si Mn P S Cr Mo Ni Al B N 

0.39 1.86 0.110 0.010 0.0019 0.005 0.015 0.005 1.38 0.0005 0.0022 

 

Table 1
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