
This is a repository copy of Markerless attenuation correction for carotid MRI surface 
receiver coils in combined PET/MR imaging..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/86886/

Version: Accepted Version

Article:

Eldib, M, Bini, J, Robson, PM et al. (4 more authors) (2015) Markerless attenuation 
correction for carotid MRI surface receiver coils in combined PET/MR imaging. Physics in 
Medicine and Biology, 60 (12). 4705 - 4717. ISSN 0031-9155 

https://doi.org/10.1088/0031-9155/60/12/4705

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

 

Markless Attenuation Correction for Carotid MRI Surface Receiver Coils in 

Combined PET/MR Imaging  

Mootaz Eldib, M.Sc.
1,2

, Jason Bini, M.Sc.
1,2

, Philip M. Robson, Ph.D.
1,3

, Claudia 

Calcagno, M.D., Ph.D.
1,3

, David D. Faul, Ph.D
4
,  Charalampos Tsoumpas

1,5
, Zahi A. 

Fayad, Ph.D.
1,3,6 

 

1
Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount 

Sinai, New York, NY 

2
Department of Biomedical Engineering, The City College of New York, New York, NY 

3
Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 

4
Siemens Healthcare, Malvern, PA 

5
Division of Medical Physics, University of Leeds

  

6
Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and 

Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of 

Medicine at Mount Sinai, New York, NY 

: Division of Medical Physics, University of Leeds 

Corresponding Author: 

Zahi A. Fayad, PhD 

Director, Translational and Molecular Imaging Institute 

Icahn School of Medicine at Mount Sinai  

One Gustave L. Levy Place, P. O. Box 1234 

New York, NY 10029; USA 

E-mail: zahi.fayad@mssm.edu  



 

 

Abstract: 

Purpose: To evaluate the effect of attenuation of MR coils on quantitative carotid 

PET/MR exams. Additionally, to develop and evaluate automated attenuation correction 

method for flexible carotid MR coils was developed and evaluated.  

 

Methods: The attenuation of the carotid coil was measured by imaging a uniform water 

phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 

minutes with and without the coil. In the same session, an ultra-short echo time (UTE) 

image of the coil on top of the phantom was acquired. Using a combination of rigid and 

non-rigid registration, a CT-based attenuation map was registered to the UTE image of 

the coil for attenuation and scatter correction. After phantom validation, the effect of the 

carotid coil attenuation and the attenuation correction method were evaluated in five 

subjects.   

 

Results:  Phantom studies indicated that the overall loss of PET counts due to the coil 

was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%.  Our 

registration method to correct for attenuation from the coil decreased the global error and 

local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method 

accurately captured the location and shape of the coil with a maximum spatial error of 2.6 

mm.  Quantitative analysis in human studies correlated with the phantom findings, but 

was dependent on the size of the ROI used in the analysis. 

 

Conclusions: MR coils result in significant error in PET quantification and thus 

attenuation correction is needed. The proposed strategy provides an operator-free method 

for attenuation and scatter correction for a flexible MRI carotid surface coil for routine 

clinical use.  

 

Keywords: PET/MRI, Automatic Attenuation correction, Flexible MRI coils, Carotid 

Imaging 

  



 

 

Introduction: 

Attenuation of 511 keV photons is a physical effect that degrades the quantitative 

accuracy of positron emission tomography (PET) images. A new source of attenuation 

only relevant in PET/MR imaging is that of MR surface coils, such as cardiac or carotid 

surface coils, that are crucial for magnetic resonance (MR) acquisitions. The design of 

non-attenuating MR coils has proved difficult with even PET-optimized coils inducing 

significant quantitative errors in human studies (Paulus et al., 2012; Fürst et al., 2014). 

Therefore, attenuation correction for such coils, currently not included in the system 

standard reconstruction, is critical for accurate PET quantification. 

Successful attenuation correction for MR hardware and coils requires that an 

attenuation map containing the correct attenuation factors for the object is available. 

Furthermore, to apply such attenuation maps, the object has to be accurately localized in 

the field of view (FOV).  For rigid MR coils, including the head and neck coil or the 

spine coil, the position in the FOV is static allowing for the use of a static attenuation 

map to correct for their attenuation. Flexible surface coils, on the other hand, change their 

position and shape between imaging sessions and thus a fixed attenuation map is not a 

feasible solution.  

The use of MR imaging could be utilized to detect the position of flexible coils 

and other MR hardware in the FOV to allow for registration of a pre-computed 

attenuation map. Such localization could be achieved by either placing MR visible 

fiducial markers on the outer surface of the coil or by direct imaging of some of the 

components of the coil using specialized sequences, such as the ultra-short echo time 

sequence (UTE) (Paulus et al., 2012). Fully automatic algorithms have been proposed for 

attenuation correction using fiducial markers (Kartmann et al., 2013; Eldib et al., 2014), 

however, only manual approaches have been developed for the UTE, which makes the 

method currently impractical in clinical routine (Paulus et al., 2012; Kartmann et al., 

2013). The goal of this study is to develop an automated approach that utilizes UTE MRI 

to correct for the attenuation of flexible coils. 

The use of the UTE to localize coils in the FOV may be more desirable than 

fiducial markers based localization.  Fiducial markers based localization requires 

modifying the coil by adding additional markers, which will appear in some MR studies 



 

 

and might interfere with the clinical reading. Furthermore, these markers must always 

stay on the coil and if they are removed for any reason, a new attenuation map must be 

re-generated to establish spatial correspondence between the markers in the attenuation 

map and their physical position (Ferguson et al., 2014). Finally, fiducial markers based 

registration relies on the correspondence between a very small number of points placed 

outside of the coil and thus the resultant registration might not capture the actual 

deformation of the coil (Eldib et al., 2014).  

The sensitivity of UTE to measure signal from the structural components of the 

coils was previously investigated and it was shown that polyethylene-based and some 

polycarbonate-based materials exhibit a measurable signal (Horch et al., 2010; Marjanska 

et al., 2008; Springer et al., 2008). In this study we exploit the visibility in UTE MRI 

acquisitions of the materials used in a specialized neck coil for carotid imaging. 

In this study, the effect of attenuation of MR coils was evaluated for carotid 

PET/MR imaging both in phantoms and in human studies. Moreover, an automatic, 

attenuation correction method was developed to correct for the attenuation of a flexible 

carotid coil. The attenuation correction method uses the UTE MRI acquisition to localize 

the coil in the FOV. Then, using both rigid and non-rigid registration, a pre-computed 

attenuation map is registered to the UTE image of the coil. Phantom studies were 

conducted to show feasibility of the attenuation correction algorithm. Preliminary clinical 

evaluation of the technique was also tested in five subjects using a simultaneous PET/MR 

scanner. 

  



 

 

Materials and Methods: 

Carotid Coil:   

The Machnet carotid coil (Machnet BV, Roden, The Netherlands) is a two sided, 

4-channel phased array surface carotid coil. The effective length of the coil in the anterior 

posterior direction is 105 mm, and the width is 60 mm. This coil connects to the scanner 

via very flexible cables making the reproducible placement of the coil in the same 

position in the FOV difficult.   The coil is comprised of a rigid housing for the pre-

amplifier electronics, made of Polyoxymethylene; the semi-flexible receiver elements, 

which can bend around the patient's neck for improved MR imaging are housed in an 

ethylene propylene diene monomer rubber cushion. Figure 1 shows one side of the coil 

and the direction of the motion of the flexible part of the coil.  

 

 

Fig 1:  Images of the coil flat and bent. 

UTE Acquisition: 

Direct imaging of coil components used a 3D dual echo UTE sequence 

(TE1=0.07 ms, TE2=2.46 ms, TR = 11.94 ms, flip angle = 10
o
, FOV = 300 x 300 x 300 

mm
3
, 192 x 192 x 192 voxels, 1.56 x 1.56 x 1.56 mm

3
 isotropic resolution, acquisition 

time = 100 s) to localize the coil in the FOV. Figure 2 shows a typical first echo UTE 



 

 

image of the coil and its correspondence to the computed tomography  (CT) image of the 

coil in the top panel. Moreover, a sample first echo UTE image in vivo is shown in the 

bottom panel of Figure 2.   

 

Fig 2: Top panel: a) first echo UTE image and b) the corresponding CT image of the 

carotid coil on a cylindrical water phantom showing the correspondence between the two 

images. Bottom panel: c) axial and d) Sagittal views of the first echo image in a human 

study showing the coil highlighted by the red arrows. 

PET/MR Imaging:   

All PET/MR studies were conducted on the Siemens Biograph mMR (Siemens 

Healthcare, Erlangen, Germany) (Delso et al., 2011). The spatial resolution of the 

scanner is 4.3 mm (FWHM) at 1 cm offset from the center of the FOV (Delso et al., 

2011). All PET reconstructions in this study were performed offline using dedicated 

reconstruction software provided by the manufacturer (e7-tools for Siemens Biograph 

mMR VB18P). PET emission data was corrected for dead time, attenuation, scatter, 

randoms and normalization. PET images were reconstructed using the ordinary Poisson 

ordered subsets expectation maximization algorithm using 3 iterations and 21 subsets. 



 

 

The resultant PET images had a matrix size of 344x344x127 with a resolution of 

2.09x2.09x2.03 mm
3
. Post-reconstruction smoothing was not applied to the PET images. 

CT Imaging and Attenuation Map Generation:   

CT-based attenuation maps were used for the coil and the phantom. CT scans 

were acquired on the Biograph mCT (Siemens Healthcare, Knoxville, TN, USA) using 

peak tube voltage of 140 kVp. Images were reconstructed on a 512x512x315 with voxels 

of 1.52x1.52x1.00 mm
3
. The CT images were smoothed using a 2 mm Gaussian 

smoothing filter before applying a bilinear transformation to transform Hounsfield units 

to attenuation coefficients at 511 keV (Carney et al., 2006). The attenuation maps were 

re-sampled to match the PET image dimensions. Finally, the maps were clipped at 0.02 

cm
-1

 and 0.12 cm
-1

, as previously described (Eldib et al., 2014; Aklan et al., 2013). This 

clipping is useful to mitigate overestimation of the attenuation coefficients at 511keV that 

originate from metal artifacts in the CT images. 

Registration Procedure: 

 The attenuation correction procedure is summarized in Figure 3.  Firstly, because 

the coil was only visible in the first echo UTE image, the second echo image was used to 

remove the subject and the MR markers so that they do not interfere with the registration. 

This was done automatically by thresholding the 2
nd

 echo image at background level and 

morphologically closing the resultant image to generate a binary mask that was then 

filtered from the 1
st
 echo image.  The coil image was then divided into two sides in the 

axial direction at the center of mass of the image (in the X direction) for subsequent 

registration of each side of the coil separately. The registration procedure was initialized 

by a 3-dimensional (3D) normalized mutual information maximization rigid registration 

of the attenuation map to the UTE image of the coil over six degrees of freedom (3 

translation and 3 rotation). Then, the diffeomorphic demons algorithm as implemented in 

the National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) 

was used to warp the attenuation map non-rigidly (Vercauteren et al., 2009).  The 

demons algorithm is a popular iterative deformable image registration algorithm that 

estimates the deformation between images caused by edge based forces (Thirion, 1998). 

The demons algorithm requires regularization and in its simplest form, Gaussian 



 

 

smoothing of the transformation field is used.  The use of diffeomorphic regularization, 

however, has been shown to produce non-folding transformation fields, which are 

physically unlikely to occur (Vercauteren et al., 2009). More importantly, diffeomorphic 

regularization preserves the topology of objects in images, which is important for our 

current registration problem. The rigid and non-rigid registration steps were then repeated 

for the other side of the coil. To estimate the values of the attenuation map at the 

registered position, 3
rd

 order b-spline interpolation was used. After registration, the 

resultant left and right attenuation maps of the coil were combined into a single coil 

attenuation map for use in system standard PET reconstruction to correct for attenuation 

and scatter due to the coil.  

Phantom Evaluation of the Coil Attenuation:   

To study attenuation of the carotid coil, a uniform water phantom (diameter = 12 

cm) was injected with 37 MBq of 18F-FDG and scanned on the PET/MR for 24 minutes 

(3 times longer than the standard patient scan time).  Eight minutes after the completion 

of the first PET acquisition, the same phantom was scanned for the same duration with 

the coil present. Decay correction was applied to account for the 18F-FDG decay 

between acquisitions. A CT-based attenuation map of the phantom was used in all 

reconstructions to ensure that any measured differences in the reconstructed PET images 

are solely due to the coil attenuation and not errors in the phantom attenuation map. The 

attenuation map was registered to the non-attenuation corrected PET emission image 

using rigid normalized mutual information registration.  

The PET emission data collected without the coil (i.e. ground truth) was 

reconstructed using a phantom only attenuation map to serve as ground truth. 

Subsequently, the acquisition done with the coil present was reconstructed without 

accounting for attenuation from the coil (i.e. using only a registered phantom attenuation 

map) in the overall attenuation map. When the resultant image is compared to the ground 

truth, the effect of the coil on quantification can be investigated.   Finally, the same data 

set was reconstructed with a coil attenuation map registered to UTE image to test the 

feasibility of the proposed attenuation correction approach. 



 

 

 

Fig 3: Flow chart for the registration algorithm. After the UTE acquisition, the coil was segmented by using a mask generated by 

thresholding and morphological closing of the 1
st
 echo UTE image. The resultant image was then split at the center of mass for 

subsequent rigid and non-rigid registration of the attenuation map of each side of coil separately. The registration procedure was 

repeated for the other side of coil and then added to the system generated attenuation map to reconstruct the final fully corrected 
PET image. 

 



 

 

 

Human Studies:   

This study was approved by the local Institutional Review Board and all subjects 

provided informed consent. Five human subjects (4 females and 1 male) with risk factors 

for cardiovascular disease were injected with 18F-FDG. The mean injected dose was 392 

±129 MBq. The duration between 18F-FDG injection and scan time (circulation time) 

was 96.6 ± 2.1 minutes.  PET data was acquired in a single bed position centered on the 

carotid bifurcation for 8 minutes, with the carotid MRI surface coil, followed by another 

acquisition of a single bed position for 8 minutes, without the coil. The scans were 

performed in this order to minimize motion between scans during the removal of the coil 

from the subject. Attenuation correction for the patient was performed by segmentation 

of 3D Dixon-VIBE (volume-interpolated breath-hold examination) MR images into a 4-

segment attenuation map (soft tissue = 0.1000 cm
-1

, fat = 0.0854 cm
-1

, lung 0.0224 cm
-1

, 

and air 0.0000 cm
-1

), as is standard on the scanner (Martinez-Moller et al., 2009). UTE 

images were collected immediately after the PET acquisition, while time of flight MR 

angiography sequences (TE = 3.69 ms, TR = 23 ms, 256x256x256 voxels with sizes of 

0.7x0.7x1 mm, acquisition time 13:29 min) were collected simultaneously with the PET 

scan for anatomical reference for the carotids.  

Evaluation of the Registration Method:   

To investigate accuracy of the coil registration, the method that was previously 

presented by Kartmann et al was used in this study (Kartmann et al., 2013). Four markers 

(MR SPOTS MRI Skin Marker, ref. no. 185; Beekley Medical, Bristol, CT, USA) visible 

in both MR and CT, with diameter of 8 mm were placed on the outer surface of the coil.  

Following the registration procedure, the markers were localized in both the UTE image 

and the registered attenuation map to measure the mean squared distance between the 

markers as a metric for registration accuracy over all subjects.  

Additionally, to evaluate if the registration procedure preserves the shape and the 

attenuation coefficients of the CT map, the percent difference was computed between the 

attenuation map before and after registration. Moreover, visual inspection of the 

attenuation maps was performed to evaluate the shape of the deformed attenuation map.  



 

 

Clinical Evaluation of the Attenuation Correction Method: 

PET acquisitions of patients were reconstructed with the same parameters as the 

phantom scan. Data collected without the coil was considered ground truth. PET emission 

data collected with the coil present was either reconstructed with or without the coil 

attenuation map included in the overall attenuation map to investigate the effect of the 

coil and the feasibility of our approach for attenuation correction in patient studies.  

Image Analysis:   

Phantom Data 

Global quantitative analysis for the phantom data was done by investigating the 

average activity in a large ROI that enclosed the entire phantom. Furthermore, ROI 

analysis was also conducted to quantify local errors from attenuation of the coil using a 2 

cm ROI placed 2 cm and 5 cm away from the coil to investigate the attenuation effects of 

the coils at a depth range similar to the position of carotid arteries in humans.  The size of 

the ROI was chosen so that it represents the size of the carotid artery lumen and the 

vessel wall that might contain plaques (El Aidi et al., 2009).  

Human Data 

Quantitative comparisons in the human studies were carried out both globally and 

locally. Global analysis was done using a large ROI around the neck of the patient.   

Additionally, 2 cm circular ROIs centered on both carotids was used for local analysis. 

Data are presented as mean over all subjects ± standard deviation. Statistical analyses to 

identify the significance of the attenuation of the coil as well as our attenuation correction 

method in human studies were performed using paired t-tests between data reconstructed 

with and without the coil in the overall attenuation map and compared to the ground truth 

(no coil scan). Statistical significance was considered for p<0.01. 

  



 

 

Results: 

Coil attenuation map:  

Figure 4 shows a sample coronal slice of the CT-based attenuation map before 

clipping of the attenuation coefficients and the corresponding image. The plastic housing 

in the coil has the highest attenuation, while the foam part of the coil has the lowest. The 

plastic housing around the electronics has attenuation coefficients between 0.10 cm
-1 

and 

0.18 cm
-1

.  The outer foam shell of the coil has attenuation coefficient of about 0.02 cm
-1 

while the foam and polyester foam has negligible attenuation.  

 

Fig 4: A) Sample plane across the attenuation map of the carotid coil. The plastic 

housing around the coil is the most attenuating part of the coil followed by the metallic 

components and the foam. B) Corresponding image of the coil. Scale bar is 1 cm. 

Quantification of the coil attenuation:   

The experimental setup of the phantom with the coils placed around it as placed in 

the scanner is shown in Figure 5A. Phantom studies indicated that the overall loss of 

PET counts (i.e. net true events) due to the carotid coil was 6.3%. This global loss of 

counts, however, was not uniform in all areas with the error reaching up to 11.9% in 

some axial planes. Furthermore, local quantitative differences in the 2 cm ROI reached an 

underestimation of 18.8% and 13.4% in the ROI placed 2 cm and 5 cm away from the 

surface of the coil as shown in Figure 5B.  Attenuation correction for the coil was 

necessary given the high error that was produced due to the presence of the coil in the 

PET FOV.  



 

 

Attenuation correction for the carotid coil using our proposed method:  

Having established that the attenuation correction was required for the carotid 

coil, attenuation correction was performed using the proposed registration method. The 

overall computation time for the coil isolation and image registration procedure for both 

sides of the coil was 242 seconds. Following attenuation correction for the coil, the global 

difference in quantification was 0.8%. The largest error that measured in the ROIs placed 

2 cm and 5 cm away from the coil was 3.8% and 3.7% respectively following attenuation 

correction.  

Evaluation of the Registration Method:   

The coil was visible in the UTE images of all patients that were scanned with the 

coil in the FOV. Figure 5C shows the organization of the markers on the outer surface of 

the coil. A summary of the results of registration accuracy is shown in Table 1. The 

average error for marker 1 and 2 (which quantify the error in the rigid transformation) 

was 1.9 mm. For markers 3 and 4, which quantify the error in the non-rigid part of the 

algorithm, the error was 2.5 mm. 

Marker 
Error 

Rigid transformation 

Error 

Non‐rigid transformation 

1  1.8±0.3  1.8±0.4 

2  2.1±0.4  2.2±0.7 

3  4.5±1.6  2.6±1.1 

4  4.3±2.3  2.4±0.9 

 

Table 1:  Summary of the mean squared error between the UTE and the resultant 

attenuation map registered by rigid and non-rigid registration.  

 

The percent differences for the CT map before and after registration was 

computed to investigate if the registration procedure affected the overall attenuation 

coefficients for the CT map. We found that the difference was about 2.0% for the left side 

and 1.9% for the right side suggesting that the difference is negligible. Moreover, visual 

inspection did not reveal unphysical deformations following the registration process.  



 

 

 

Fig 5: A) Image of the phantom acquisition setup on the scanner. B) A close-up image to 

show the placement of the markers used in the evaluation of the registration accuracy. C) 

Plot of the mean activity within a ROI over all axial planes that contained the phantom in 

the PET image. 

 

Clinical Evaluation of the Attenuation Correction Method: 

Figure 6A shows a line profile across the neck of the patient that plots the activity 

distribution along the line shown in the figure insert. ROI around the neck of the subject, 

which was the active area of the coil, was used for a global analysis. In the neck region, 

the coil resulted in significant attenuation of 9.1%±1.7% (p<0.01). Following attenuation 

correction for the coil, the measured difference from the reconstructed images was 

1.6%±2.7% (p=0.13) in all five subjects (Figure 6B).  

In the 2 cm ROIs around the left and right carotids the measured reduction of 

quantification was 9.6%±3.5% (p<0.01) and 8.2%±0.5%!(p<0.01). Following attenuation 

correction the measured activity was underestimated by 0.3!!2.3% (p=0.40) for the left 

carotid and overestimated by 2.1%±3.7% (p=0.14) for the right carotid (Figure 6C). 



 

 

 

Fig 6: Sample line profile across the neck of the patient showing the effect of attenuation 

(with coil- no AC) as well as after attenuation correction with the proposed method (with 

coil- CT AC) compared to the no coil scan, which serves as ground truth. The insert 

shows the location of the line profile (A). Bar plot showing measured error for the large 

ROI around the neck (B) and the 2 cm ROI around the left and right carotid (C). 

Discussion: 

In this study, the effect of a carotid coil was evaluated both in phantom studies as 

well as in vivo. It was found that the presence of the coil resulted in significant 

attenuation and thus attenuation correction was needed to achieve accurate quantification. 

To this end, an automatic algorithm was proposed for attenuation correction for flexible 

coils in combined PET/MR that utilized UTE MRI. Previous studies utilized UTE MRI 

for attenuation correction with only manual and rigid registration (Paulus et al., 2012). In 

this study a fully automatic and non-rigid registration was used, making the proposed 

method feasible for routine clinical use. The proposed attenuation correction strategy 

presented in this study for the carotid coil could be expanded to other flexible coils, 

provided they are made from UTE visible materials, because such coils deform in a 

similar fashion where rigid registration would capture the bulk motion while non-rigid 

registration better describes the flexure motion of such coils.  



 

 

This study showed that neglecting the attenuation of flexible coils, in this case a 

dedicated carotid surface coil, which are needed for high resolution MR imaging, had a 

significant adverse effect on PET quantification.  With results from this study and 

previous coil attenuation studies, it is evident that hardware attenuation correction is 

required for combined PET/MR to reach its potential as an accurate quantitative 

diagnostic tool (Kartmann et al., 2013; Delso et al., 2010; Eldib et al., 2014; MacDonald 

et al., 2011; Paulus et al., 2012; Dregely et al., 2014).  

The utility of UTE MRI for the purpose of attenuation correction for MRI 

hardware has been of recent interest, however, clinically feasible algorithms that do not 

require user intervention have not yet been developed. Previously a manual, rigid 

algorithm was used for the body matrix coil (Paulus et al., 2012).  Most recently, UTE 

based localization was tested also to localize the headphones used in head PET/MR 

scans, however, a sufficient signal was not emitted from the headphones and thus an 

algorithm was not developed (Ferguson et al., 2014).  

The diffeomorphic demons algorithm used in our study has been used previously 

in the registration of images of different contrast in several previous studies (Archip et 

al., 2007; Janssens et al., 2011). Similar to our findings in Table 1, the misregistration 

error reported in the study by Archip et al. was 3.04 mm. 

There are several advantages and disadvantages to both MRI based localization 

methods. Fiducial markers may interfere with some MR images that are generated with 

the coil present and the physician must be aware of their presence before reading the data. 

Furthermore, the markers must always remain on the coil and if they are detached then a 

new attenuation map must be re-generated making it inconvenient for routine use 

(Ferguson et al., 2014). Fiducial markers based registration utilizes a very limited number 

of scattered corresponding points between the MR image and the attenuation map placed 

mostly on the outer surface of the coil and thus interpolation between those points must 

be used to estimate the position of the coil in the FOV in between those markers.  It was 

shown recently that significant mis-registration could occur depending on the type of 

interpolation used, which could lead to erroneous attenuation correction and quantitative 

errors in the reconstructed PET image (Eldib et al., 2014).  Direct imaging of the coil, 

such as the one used in this study, where large sections of the coil itself are imaged could 



 

 

reduce the need for such sparse interpolation. A current limitation for the UTE approach 

on the PET/MR scanner used in this study is that it is restricted to a small FOV, but could 

be modified to include a wider FOV at the expense of increased scan time (Togao et al., 

2010) . The duration of the UTE sequence used in this study is only 100 seconds and it is 

included in the clinical protocols for PET/MR imaging of the carotids, thus separate UTE 

imaging of the coil would not be necessary (Delso et al., 2011).  

The use of CT-based attenuation maps, which has been the clinical standard for 

attenuation correction in PET/CT scanners, was extended to attenuation correction for 

MR coils (Townsend, 2008; Carney et al., 2006).  Findings in this study suggest that CT-

based attenuation maps that were generated from CT images using the conventional 

bilinear transformation (Carney et al., 2006) may be sufficient for hardware attenuation 

correction of small coils such as the one used in this study. Our findings are consistent 

with recent reports that used the same transformation to successfully correct for the 

attenuation of MR coils (Tellmann et al., 2011; Paulus et al., 2012; Kartmann et al., 

2013; Aklan et al., 2013; Eldib et al., 2014; Dregely et al., 2014).  

The spatial accuracy of the registration algorithm was investigated in this study in 

five human studies using a method previously proposed by Kartmann et al (Kartmann et 

al., 2013). An advantage of this approach is that it allows for the investigation of the 

spatial accuracy at various realistic and clinically applicable positions of the coil at 

relevant noise levels. A small error was found following non-rigid registration (max of 

2.6 mm), which is below the spatial resolution of the scanner indicating that the accuracy 

is sufficient for attenuation correction. Several studies have evaluated the effect of mis-

registration of the attenuation maps to their actual position for several rigid and flexible 

coils and it was concluded that positional error on the scale of 3 mm or 4 mm depending 

on the size of the coil do not introduce significant changes in quantification (Delso et al., 

2010; Paulus et al., 2013; Eldib et al., 2014). 

Clinical evaluation of hardware attenuation correction is a challenging task. In 

clinical studies, unlike phantom scans, the tracer is re-distributed between neighboring 

tissues during and in between acquisitions, making it difficult to assume that any 

measured quantitative difference is solely due to the attenuation of the coil. It was 

recently shown however that the standard uptake value does not change significantly over 



 

 

the short duration used in this study (Bucerius et al., 2014). Furthermore, motion between 

scans, partial volume effects, as well as noise could have a large contribution to the 

measured quantitative differences.  

Conclusion: 

In this study, the effect of attenuation of flexible coils was investigated for carotid 

PET/MR imaging. It was found that such coils resulted in a significant reduction in 

quantification and thus attenuation correction was required.  To this end, a fully 

automatic algorithm was developed for attenuation correction for the carotid coils by 

registering a pre-computed CT-based attenuation map to the UTE MR image of the coil. 

Firstly, we showed that ignoring the attenuation of the coil led to large quantitative errors.   

In addition, we demonstrated quantitatively in phantoms that the attenuation of the coil 

could be corrected using the proposed method with high accuracy. Finally, preliminary 

evaluation of the technique was demonstrated in five human PET/MR studies, showing 

reduction in the difference between activity quantification with the MR coil and without 

when our correction method was used. Taken together, this method could be translated to 

routine clinical PET/MR exams of the neck.  
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