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Abstract

Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs,
efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound
screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic
approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel
phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has
been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus
image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and
proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested
on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in
natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects.
This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during
screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays.
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Introduction

Drug discovery and development is a multi-billion dollar

industry in which the cost of failure for potential new drugs

increases with their progression towards the clinic [1]. In this

process, primary screening identifies potential lead compounds

from large libraries of chemical compounds, the majority of which

subsequent fail because of adverse effects – predominantly toxicity.

Whilst the costs of primary screening have reduced in the last two

decades as automation and high-throughput technologies advance,

toxicity testing is still an expensive process despite of the use of in

vitro cytotoxicity assays prior to in vivo testing [2]. Cytotoxicity is

not the only adverse effect that causes compound failure as poor

biopharmaceutical properties such as solubility and stability also

contribute [1], but cytotoxicity is more difficult to predict. If

identification of compounds with potentially adverse cellular

effects could be combined with lead identification in a single

assay this could reduce the subsequent drug failure rate and

possibly the cost of drug discovery [3]. With the development of

high-content, high-throughput imaging platforms with the ability

to measure a variety of complex phenotypes, such integration is

possible [4] and this technology has already been extended to

explore the identification of known hepatotoxic compounds with

the aim of improving in vitro identification of hepatoxins [3,5–7].

The multiplex nature of these assays means they are a secondary

line of investigation for potential lead compounds to eliminate

those that induce liver toxicity. However, constitutive components

of these assays may be useful for identifying compounds with sub-

lethal adverse cellular effects or cytotoxic tendencies during

primary screening fewer of these undesirable compounds are

taken forward, thus potentially reducing compound attrition and

the costs associated with this.

High-content/high-throughput imaging is based on the pheno-

typic assessment of a variety of biological activities. It requires

clearly defined outputs into which individual cells may be assigned.

However, the majority of published high-content screens use only

two/three of the four channels available on the majority of these

imaging platforms [4,8]. One of these is normally a nuclear stain

such as DAPI, Hoechst 33342 or DRAQ-5 that can be utilised to

examine cytotoxicity by measuring loss of cells [4,5]. Consequently

one or more imaging channels are available to assess the potential

of compounds to cause undesired side-effects on the target organ,

particularly sub-lethal toxicity, concurrently with lead compound

identification. Such assays may also be used in screens aiming to
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identify compounds from chemical libraries with the propensity to

cause toxicity.

Herein, we show the development of a novel image analysis

assay that identifies compounds with that have adverse cellular

effects, often in conjunction with cytotoxic tendencies, using a

high-content/high-throughput imaging approach. This technique

has primarily been developed to be used us as an adjunct to

targeted high-content, high-throughput primary screens to aid in

the reduction of compound attrition due to adverse effects that

become evident in subsequent testing.

Methods

Human U2OS osteosarcoma cells (ATTC, VA) were main-

tained in Dulbecco’s Modified Eagle’s Medium (DMEM; PAA

Laboratories GmbH, Pasching, Austria) supplemented with 10%

foetal bovine serum (FBS; PAA) and 100 U/mL penicillin-

streptomycin (PAA) at 37uC and 5% CO2. For screening, U2OS

cells were plated into assay plates (96 well Viewpoint plates, Perkin

Elmer, MA) at a density of 4000 cells/well in DMEM containing

10% FBS using an xrd-384 Fluid X dispenser fitted with an 8

nozzle resin dispensing cassette at 300 rpm (Fluid X Ltd, Nether

Alderley, UK). Plates were allowed to equilibrate at room

temperature in a hood for 1 hr then incubated for 24 hrs at

37uC and 5% CO2 before compound addition. Assays were

developed and validated using taxol (resuspended in DMSO to

10 mg/mL; SigmaAldrich, Poole, UK), doxorubicin hydrochlo-

ride (10 mg/mL in DMSO; SigmaAldrich) and nocodazole

(2 mg/mL in DMSO; SigmaAldrich) at a variety of concentra-

tions.

The Chemical Library
The screened library consisted of 329 skeletally-diverse com-

pounds not previously used in cell-based assays, arrayed as 40

compound sets in duplicate in 96 well plates at a concentration of

10 mM in DMSO. Many of the compounds were natural product-

like, and were based on highly diverse scaffolds reminiscent of

either polyketide or alkaloid natural products. The synthesis of

many of these compounds has been previously described [9–11],

including an approach to natural product-like molecules of

unprecedented scaffold diversity [11]. The library was diluted

1:100 with DMEM containing 10% FBS on the day of compound

addition and added to the plated U2OS cells at final concentration

of 20 mM and a final DMSO percentage of 0.2%. Library addition

was performed using a Bravo SRT liquid handling platform

(Agilent Technologies, Wokingham, UK). Plates were assayed 24

and 48 hrs after compound addition using immunofluorescent

staining and high-content imaging approaches as detailed below.

Compound precipitation was visually assessed on addition and at

imaging.

Immunofluorescent Staining and Imaging
Immunofluorescent staining of assay plates was carried out as

follows. Media was discarded and cells rinsed in phosphate

buffered saline (PBS), before fixation in 4% paraformaldehyde

(SigmaAldrich) for 15 mins. Cells were permeabilized with 0.1%

Triton X-100 (VWR, Lutterworth, UK) in PBS for 5 mins, cells

were then rinsed in PBS and blocked in 1% milk (Marvel, Premier

Foods, St Albans, UK) for 5 mins before the addition of mouse

anti-Histone H3 (phospho S10, 1:4000; Abcam ab14955; Cam-

bridge, UK) diluted in 1% milk for 1 hr at room temperature.

Following PBS rinses, cells were incubated at room temperature

for an hour in the dark with 1% milk containing goat anti-mouse

AlexaFluor 568 (1:1000; Molecular Probes, Eugene, OR) 1 mg/

mL DAPI (Molecular Probes) and 500 nM TOTO-3 iodide

(Molecular Probes). Following a final set of PBS washes, plates

were scanned and images collected with an Operetta HTS

imaging system (PerkinElmer) at 206magnification with 12 fields

of view (5106675 mm)/well. Images were then analysed with

Columbus 2.2 (PerkinElmer).

Apoptosis and Necrosis Identification
U2OS cells were plated and compounds added as described

above, plates were then assayed 48 hrs after compound addition

using a FITC Annexin V Apoptosis detection kit (BD Biosciences,

Oxford, UK). Briefly cells were rinsed in PBS before the addition

of 40 ml 16 binding buffer containing 2 mg/mL Hoechst, 25 mg/

mL Annexin V and 2.5 mg/mL propidium iodide and incubated

in the dark for 15 mins. A further 160 ml 16 binding buffer was

then added and plates imaged immediately with the Operetta

HTS imaging system as described above.

Statistical Analysis
During assay development statistical analysis (Student T-tests,

Mann-Whitney U tests and Spermann Rank correlation) was

carried out using GraphPad Prism 6.00 software (GraphPad

Software, La Jolla, CA). Assay validation was assessed by Z9-factor

calculated as follows where s is the positive control and c the

negative controls:

Z0~1{
3 sszsc)ð

ms{mcjj

Z-scores were also calculated using the following formula:

Z~ Sampleð value{mcÞ=sc

with hits determined as an absolute Z-score of 2 or more, as this

correlates to a P value of 0.045, and thus statistical significance

[12,13]. False positives were defined as any DMSO-treated well in

which the absolute Z score was greater than 2 whilst false negatives

were taxol-treated wells which had an absolute Z score of less than

2 on three independent, randomly distributed test plates.

Results and Discussion

Assay Development
Phenotypic assessment of the adverse effects of compounds

requires endpoints which may arise from the disruption of a

variety of biological processes. For example, alterations to cell

number can arise from the induction of apoptosis, necrosis, failure

of cells to undergo mitosis, alterations to cell adhesion molecules or

activation of oncogenic processes and increased cell division.

Subsequently we sought to develop a novel image analysis

algorithm to assess three phenotypic endpoints – cell number,

the percentage of cells with morphological abnormalities and the

percentage of cells in mitosis. As we aim to identify compounds

with adverse cellular effects at an early stage of drug discovery we

have chosen not to use cells from organs commonly affected by

toxicity as these are not robustly used in high content/high

throughput primary screens. Instead U2OS cells have been chosen

for this initial study as they form well-spaced monolayers with a

good nuclear to cytoplasmic ratio that are ideally suited to high-

content, high-throughput imaging applications and are commonly

used for primary screens [14–17]. However, the approach detailed

High-Content Identification of Cytotoxic Compounds

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88338



below has the potential to be applied to a wide variety of cell types,

including primary cells, as Lin et al [18] have shown only around

5% of toxic compounds demonstrate tissue specific cytotoxicity in

in vitro assays. Thus the cell type would be selected based on the

target molecule/phenotype for the compound set being tested. For

example, for a compound set targeting a specific kinase, the assay

would permit a comparison to be made between multiple cell lines,

whose dependency on that kinase is known, thus enabling off-

target cytotoxic effects to be assessed and the best lead compounds

to be selected from the set. The first component of the algorithm

was designed to assess alterations in cell number and morphology,

for which it was necessary to define the normal cell morphology of

U2OS cells. To induce morphological abnormalities and a

reduction in cell number, cells were treated with taxol (2 and

0.1 mM) [19], doxorubicin (5 ng/mL) [20] or 0.2% DMSO

(as a negative/vehicle control) for 48 hours. In agreement

with Eom et al. [20], low dose doxorubicin increased cell size

(Figure 1 A–B), whilst both high and low dose taxol treatment

induced cell condensation and reduced cell number to differing

degrees [19]. Taxol and doxorubicin were selected as potential

positive controls, as whilst not being true cytotoxicants, they are

well-documented as having multiple cellular effects including

inhibition of cell cycle, induction of apoptosis and stabilisation of

microtubules, as well as being natural products derivatives [19–

22]. Indeed taxol (paclitaxel) was detected as having adverse effects

in the majority parameters assessed in the studies of both O’Brien

and Persson, including affecting mitochondria membrane poten-

tial [5,7]. Thus by not using pure cytotoxicants we may enhance

the algorithm’s potential to detect subtle and pre-lethal changes in

cell morphology. Using these alterations an image analysis

algorithm was created using pre-designed building blocks within

the Columbus software. Cell recognition was based on identifica-

tion of nuclei as stained with DAPI, and cytosolic extent was based

on TOTO-3 iodide staining, which was used at a sufficient

concentration to permit staining of both DNA and RNA [23] and

provided accurate identification of cell edge and discrimination

between adjacent cells in fixed cells where permeabilization has

compromised membrane integrity [24], and border objects were

excluded. This nuclear identification was used as a measure of cell

number, before extension of the algorithm to distinguish between

doxorubicin treated cells and those treated with DMSO based on

either increased cytosolic or nuclear area as determined by the

staining extent of TOTO-3-iodide and DAPI respectively (Mann

Whitney U test p,0.0001 for both cytosolic and nuclear area;

Figure 1 A–B). Cytosolic and nuclear areas correlated (Spearman

correlation p = 0.0035; Figure 1 C), meaning only one parameter

needed to be used to identify enlarged cells. Cells with a nuclear

area of less than 150 mm2 were also deemed to be abnormal. The

identification of cytotoxic compounds based on cell morphology

has been previously explored as a combined alterative to the

classical battery of in vitro cytotoxicity tests [5,7]. In these studies a

strong marker for cytotoxicity was altered nuclear morphology, in

particular nuclear size, which is in agreement with our findings

[5,7]. Both of these studies used combinatorial analysis of a variety

of endpoints to identify known hepatotoxins, such an approach is

not compatible with our aim of creating an adjunct assay to aid in

data triage and hit selection. However further analysis parameters

were required as taxol treated cells with altered morphology could

not be easily distinguished from DMSO treated cells with a size

cut-off alone and so it was necessary to add an additional

parameter. As the nuclear area (and concurrently cytosolic area) of

DMSO treated cells was similar to that of taxol treated cells

(Figure 1 A), cells with a nuclear area of between 200 and 350 mm2

were then examined to see if differences in other nuclear

morphology measures could be identified. No significant differ-

ences were identifiable (data not shown). However, even at the

lower dose of taxol significant cell death occurred (Figure 1 D) (cell

numbers were 54.6%62.4 of DMSO; Student T-test p,0.0001).

Visual examination of the images revealed that the abnormal cells

that were not being picked up were those with an increased DAPI

staining intensity. An intensity cut-off was therefore introduced at

1500 units to detect the small percentage of taxol treated cells with

abnormal morphology not picked up previously (Figure 1). These

parameters were then combined in a single image algorithm that

identifies both alterations in cell number and the percentage of

cells with abnormal morphology. Thus morphologically abnormal

cells were defined as those cells with a cytoplasmic area of greater

than 1350 mm2, a reduced nuclear area of less than 150 mm2 or

with a mean DAPI intensity of greater than 1500 units. The

reliability of these definitions was confirmed by visual inspection.

A second algorithm component was added to identify mitotic

cells, defined as those cells with a maximum nuclear phosphohis-

tone H3 intensity of greater than 1200 units (the maximum

nuclear intensity for negative control cells was 22561.8 units).

This approach has been used previously to identify and

character ize inhibi tors of the Aurora kinases [25] . I t

gives information on compounds with sub-lethal effects including

cytostatic effects, as compounds that induce alterations in cellular

metabolism often induce changes to the number of cells

undergoing mitosis and are likely to be detected in addition to

those having a direct influence on mitosis [26]. Such compounds

are commonly rejected during in vitro cytotoxicity tests, which

assess ATP production and metabolic status amongst other

endpoints, so their identification and removal at an earlier stage

is beneficial in efficacy and financial terms [2].

Assay Validation
The three endpoints in the image algorithm presented here can

be split into individual algorithms based on the three channels

used and added to a targeted primary screen as required,

dependent on the number of free imaging channels. Z’ factors

were therefore individually calculated for the 3 phenotypic

endpoints after both 24 and 48 hour exposures (Table 1) and

were within acceptable ranges for cell number and percentage of

morphologically abnormal cells [13], especially as moderate Z’

factors can yield good quality data in a high-content setting [12].

However, whilst within range for the Z’ factors were, in cases,

lower than the ideal 0.5 cut-off especially for cell number at the 24

exposure. Low Z’ factors arise from two main sources large

variability within the dataset or a small separation window

between the positive and negative controls. In the case of cell

numbers after 24 hour treatment there is contribution from both

sources as the coefficient of variance of the taxol treated wells is

21%, this is similar to that at 48 hours however at the latter

timepoint the signal window is approximately 2.5 times larger

giving the improved Z’ factor. As low Z’ factors influence our

proposed hit detection method we calculated the Z scores for all

the 2 mM taxol treated wells after 24 hours and all wells had a

score of 26.5 or less indicating that the assay had good sensitivity

as the variability was in the positive controls rather than the

negative ones used in the Z score calculation. The Z’ factor values

for assessment of phosphohistone H3 levels were deemed to be

sub-optimal for screening, as they were below 0 indicating signal

overlap, [12,13] this parameter was not evaluated as part of the

test screen, but images from hit compounds were examined for

increased numbers of mitotic cells. These data indicated that the

two concentrations of taxol (0.1 and 2 mM) and 0.2% DMSO

would be appropriate positive and negative controls respectively

High-Content Identification of Cytotoxic Compounds
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(Figure 2 A–C). The full algorithm was then further validated on

cells treated with a variety of concentrations of nocodazole to

confirm the algorithm could detect changes induced by com-

pounds other than doxorubicin and taxol, and demonstrated dose-

dependent responses at both 24 and 48 hour exposures for all

three compounds (Figure 2 D–L). False positives and false

negatives rates were calculated based on test plates dosed with

0.2% DMSO and taxol (0.1 and 2 mM) in an arbitrary layout

(Table 1). The rate of false positive and false negatives predicted by

analysis of the test plates is less than 5% for both cell number and

the percentage of morphologically abnormal cells, indeed no false

negatives were detected giving confidence that hits are unlikely to

be missed.

To further ascertain if the changes seen in both cell number and

morphology just represented cell death we assessed the percentage

of cells in early apoptosis and the percentage of late stage

apoptotic/dead necrotic cells using annexin V and propidium

iodide staining in cells treated for 48 hours with 2 mM taxol or

DMSO. The percentage of late stage/dead cells (2.9061.04%) or

early apoptotic cells (1.9160.53%) in DMSO treated wells were

Figure 1. Development of image analysis protocols. Alterations in nuclear area A) and cytosolic area B) in cells treated with 5 ng/mL
doxorubicin or 2 mM taxol compared with control (0.2% DMSO) were determined after 48 hours exposure. Dotted lines indicate the cut-offs used in
the image analysis algorithm. C) Correlation between nuclear and cytosolic areas. A–C) Squares represent doxorubicin treated cells, circles 0.2%
DMSO and triangles taxol treated cells, shading indicates the regions in which cells are deemed morphologically abnormal. D) Example images of the
positive and negative controls showing the cells identified as morphologically abnormal or in mitosis. (Scale bars are 50 mm).
doi:10.1371/journal.pone.0088338.g001
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low as anticipated. In contrast the percentage of late stage/dead

cells (10.5862.14%) or early apoptotic cells (13.261.77%) in taxol

treated wells were significantly increased (P,0.001 and P,0.01

respectively). These data show that 20–30% of the cells detected as

being morphologically abnormal are actually undergoing apopto-

sis or necrosis, suggesting that other cellular changes which are

induced by compound treatment contribute to this phenotype, it

also suggests that the reduction in cell numbers seen with taxol

treatment are not solely the result of cytotoxicity which is reflected

in the Z’ factors being lower than could be anticipated with pure

cytotoxicants. This correlates with the known mechanism of action

of taxol as both an inducer of cell death as well as an inhibitor of

cell proliferation [22], potentially enhancing the value of taxol as a

positive control compared to pure cytotoxics. Thus this screening

approach based alterations to both nuclear and cytosolic

morphology appears to have the ability to detect adverse cellular

changes that may not be reflected by gross cell death. Further

studies are needed to determine which cell injury mechanisms, for

example ATP depletion, mitochondria damage or generation of

reactive oxygen species, are being reflected in the morphological

changes seen.

Figure 2. Validation of image analysis protocols. Clear delineation between positive (taxol and doxorubicin) and negative (0.2% DMSO)
controls for the three endpoints assessed, cell number A), percentage morphologically abnormal cells B) and the percentage mitotic cells C) were
observed after 24 or 48 hours exposure. Dose-response curves for doxorubicin (D–F), nocodazole (G–I) and taxol (J–L) for the three phenotypic
endpoints assessed in this study. (Open squares are 24 hours after drug addition; closed triangles represent analysis 48 hours after drug addition).
doi:10.1371/journal.pone.0088338.g002
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Test Screen
The staining and image analysis protocols developed here were

then applied to a library of 329 compounds, rich in natural

product-like molecules, which have not been previously assayed.

These compounds screened in quadruplicate at a final concentra-

tion of 20 mM with both 24 and 48 hour exposures. This is one

fifth the concentration of previous studies [5,7] as higher

concentrations could not be used as U2OS cells were sensitive to

DMSO at concentrations above the 0.2% used in these

experiments. Eight positive and eight negative controls were used

per screening plate. The main positive controls used were 100 nM

and 2 mM taxol, with additional controls of 5 ng/mL doxorubicin

and 100 nM nocodazole were also included. Z-scores were

calculated for each of the two main phenotypic endpoints based

on the negative controls (0.2% DMSO) for the screening batch (9

plates, 72 negative controls/batch and 18 of each positive control/

batch (72 positive controls overall/batch)). As our screening

concentrations were lower than previous studies and subtle effects

more likely compounds were defined as hits if their absolute Z-

score was greater than 2, a less stringent cut-off than the usual 3

[27] whilst retaining statistical significance (a Z score of 2

correlates to a p value of 0.045). By visual examination a single

compound precipitated out and was subsequently excluded from

further analysis. Thirty-four compounds which reduced cell

number after 48 hours exposure (Table S1), but only one

compound, number 137, that induced cell loss at both exposure

times (Figure 3A–B). Compound 137 also increased the percentage

of morphologically abnormal cells at both exposure times

(Figure 3C). A correlation between altered cell number and

morphological abnormality was also seen with compounds 151

and 160 after 48 hours exposure. Additionally five compounds,

(42,110,141,168, and 301) increased the percentage of morpho-

logically abnormal cells after 48 hours, but did not alter cell

number (Figure 3C). Visual examination of images showed that

compounds 110 and 168 showed multiple instances of two cells

with small nuclei in close proximity, suggesting there may be

alterations to daughter cells moving apart after cytokinesis or

inhibited cell growth after cytokinesis (Figure 3D), such a

phenotype would not be detected in cytotoxic assays and may

have undesired side-effects if the compound was taken forward.

The most active hit, compound 137, was then tested for dose-

dependent responses which were evident at the top doses of 10 and

20 mM respectively (Figure 3 E–F). Thus, the algorithm created

here has the capacity to detect compounds with adverse cellular

effects as both outright cell loss or as a sub-lethal alteration to cell

morphology/cell proliferation from a novel and structurally

diverse chemical library with a hit rate of 10% and 3.6%

respectively. This is the first report we are aware of that uses non-

liver derived cell line to examine cytotoxicity by high content

imaging in conjunction with a novel unenriched chemical library.

So whilst the hit rates are lower than those reported by O’Brien

and Persson [5,7], the studies are not directly comparable as our

library predominantly consists of compounds with natural

product-like backbones and is not enriched for cytotoxicity

compounds. In addition the maximal concentration and exposure

time used in our study were also lower than the previous studies.

Conclusion
In this study we sought to generate a novel high-content image

analysis algorithm for use in primary screening assays to identify

compounds with adverse cellular effects, by detecting abnormal-

ities in cell morphology and mitotic delay/arrest which are

indicators of likely cytotoxicity. The assay was initially optimised

using agents known to have adverse cellular effects including

cytotoxicity, showing a low false negative rate, and then tested

using a previously untested chemical library rich in natural

product-like molecules to validate the approach. Our study

suggests that using alterations to cell morphology, particularly

nuclear morphology, to identify adverse cellular effects during

primary screening will be a valid approach to the triage of

compounds to identify those likely to fail at later stages in the drug

discovery pipeline. This is in concordance with the studies of

O’Brien and Persson [5,7] using known hepatotoxicants and

HepG2 cells showing that nuclei morphology, specifically nuclear

area, was a sensitive endpoint. However, additional testing of this

endpoint with a wider selection of compounds for which the

mechanism of action has been identified is required to further

strengthen the validation of this assay. This would in conjunction

with assessments of ATP status and mitochondrial damage help to

determine which mechanisms of cellular injury this endpoint can

detect. The algorithm components described here does not seek to

provide detailed mechanistic data, or identify lead compounds

(unless cytotoxicity is the desired endpoint), but they do have the

power to provide valuable data on compound induced adverse

effects as adjuncts in primary screens. This algorithm is designed

for screens where adverse cellular effects are not the primary

output as a number of high-content, high-throughput screens

looking at detecting known hepatotoxins have already been

published [3,5,7]. These studies utilise high content imaging to

its full capacity showing the power of this technology for detecting

Table 1. Z’ factors and false positive and negative rates for the three phenotypic endpoints.

% morphologically abnormal cells Number of cells % phosphohistone H3 positive cells

24 hour exposure

Z’ Factor 0.55 0.32 20.21

False positive 0% 3.1% 0%

False negative 0% 0% 0%

48 hour exposure

Z’ Factor 0.40 0.57 20.77

False positive 3.3% 1.6% 0%

False negative 0% 0% 13%

Z’ factors, false positive and negative rates were calculated from test plates of U2OS cells treated with taxol (0.1 and 2 mM, n = 20 for each) or 0.2% (n = 62) DMSO in a
random distribution.
doi:10.1371/journal.pone.0088338.t001

High-Content Identification of Cytotoxic Compounds
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Figure 3. Screening a novel chemical library. A) Alterations in cell number A) after 24 (open squares) or 48 hours exposure (closed triangles)
exposure to 329 diverse compounds, based on Z-scores calculated from negative controls, compounds above and below the cut-offs of +2 or 22
(dotted lines) are considered hits. B) Chemical structures of compounds 137,110 and 147 which were hit compounds in the three different endpoints
assessed. C) Alterations in the percentage of morphologically abnormal cells after 24 (open squares) or 48 hours exposure (closed triangles) dotted
lines as for A). D) Representative images from negative control (0.2% DMSO) and hit compounds in the three different endpoints assessed; compound
137 altered cell number and compound 110 increased the percentage of morphologically abnormal cells. (DMSO, compounds 137 and 110 after
48 hours exposure) (Scale bars are 50 mm). The most active compound, 137, showed dose-responses for both cell loss E) and increased the
percentage of morphologically abnormal cells F).
doi:10.1371/journal.pone.0088338.g003

High-Content Identification of Cytotoxic Compounds
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adverse cellular effects. However, these approaches will not

currently replace in vitro toxicity testing in toto as they have not

yet been validated in cell types other than liver with compounds

displaying toxicity that is not solely hepatotoxicity, admittedly the

most difficult type of compound-induced toxicity to predict [28],

and therefore a need for traditional toxicity testing still exists. It

may only be a matter of time before such assays are routinely used

for in vitro toxicity testing as considerable overlap occurs between

the toxicity of hepatotoxic, nephrotoxic and cardiotoxic com-

pounds in the cell lines commonly used to assess such adverse

effects [18]. We feel that the current study further supports the use

of a high-content approach to identifying cytotoxic compounds by

use of a non-traditional cell-line in toxicity testing and a novel

compound library. As the algorithms generated in this study are

not as multiplexed as previous work [5,7] they may be included in

the design of primary screening assays to incorporate some degree

of testing for adverse effects to potentially limit the number of

compounds taken forwards from a primary screen that subse-

quently display adverse cellular effects, thereby minimising lead

compound failure and reducing the costs associated with this. The

assay presented here is an important step towards this aim,

however, further work is now required to assess the performance of

the assay in detecting adverse effects in a wider variety of cell lines

treated with compounds with a greater range of toxic mechanisms,

and in combination with targeted primary screens.
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