J. Astrophys. Astr. (2015) © Indian Academy of Sciences

A Fast MHD Code for Gravitationally Stratified Media
using Graphical Processing Units: SMAUG

M. K. Griffiths'3*, V. Fedun?>? & R. Erdélyi’

YCorporate Information and Computing Services, The University of Sheffield,

10-12 Brunswick Street, Sheffield S10 2FN, UK.

2Department of Automatic Control and Systems Engineering, The University of Sheffield,
Mappin Street, Sheffield SI1 3JD, UK.

3Solar Physics and Space Plasma Research Centre (SP?RC), School of Mathematics
and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, S7 3RH, UK.
*e-mail: m.griffiths @sheffield.ac.uk

Received 23 October 2014; accepted 22 December 2014

Abstract. Parallelization techniques have been exploited most success-
fully by the gaming/graphics industry with the adoption of graphical
processing units (GPUs), possessing hundreds of processor cores. The
opportunity has been recognized by the computational sciences and
engineering communities, who have recently harnessed successfully the
numerical performance of GPUs. For example, parallel magnetohydrody-
namic (MHD) algorithms are important for numerical modelling of highly
inhomogeneous solar, astrophysical and geophysical plasmas. Here, we
describe the implementation of SMAUG, the Sheffield Magnetohydrody-
namics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable
of modelling magnetized and gravitationally stratified plasma.

The objective of this paper is to present the numerical methods and
techniques used for porting the code to this novel and highly parallel com-
pute architecture. The methods employed are justified by the performance
benchmarks and validation results demonstrating that the code success-
fully simulates the physics for a range of test scenarios including a full
3D realistic model of wave propagation in the solar atmosphere.

Key words. Numerical simulations—magnetohydrodynamics—computer
unified device architecture—graphical processing units—NVIDIA—
Sheffield advanced code—the Sheffield magnetohydrodynamics algorithm
using GPUs—versatile advection code.

1. Introduction

The Sheffield Advanced Code (SAC) described by Shelyag et al. (2008) is based
on the Versatile Advection Code (VAC) (see Toth et al. 1998), a fully non-linear
magnetohydrodynamic (MHD) code. With the increasing need to model complicated
astrophysical processes with necessary resolution and higher magnetic Reynolds
numbers, there is an urgent requirement for considerably larger amounts of storage

M. K. Griffiths et al.

and CPU cycles. SAC was designed for simulations of linear and non-linear wave
propagation in gravitationally strong stratified magnetized plasmas (Fedun et al
2011a; Fedun et al. 2011b; Fedun et al. 2011c; Vigeesh et al. 2011; Scullion et al.
2011). Numerical modelling of waves in the complex and stratified solar atmosphere
is undertaken by many researchers studying 2D and 3D MHD problems (see for
example, Hasan er al. 2005; McLaughlin et al. 2009; Chmielewski et al. 2013;
Chmielewski et al. 2014; Selwa et al. 2007; Wang et al. 2013).

For many years, such levels of compute cycles would have been restricted to dedi-
cated supercomputing facilities. The advent of cluster computing led to the increased
availability of high levels of compute cycles, enabling researchers to investigate
more complex and challenging problems. The evolution of CPU design and systems
architectures continue unimpeded. Currently, there are at least two key related devel-
opments, computer processors with multiple cores and general purpose Graphical
Processing Units (GPUs).

For multimedia and gaming systems, it was found that a significant workload was
used in the rendering of imagery (Lindholm et al. 2008). Given this scenario, devel-
opers recognized the need for a massively parallel architecture, capable of computing
the pixel characteristics for high resolution display systems (Kirk & Hwu 2010). This
resulted in the emergence of graphics cards with powerful graphical processing units
for dedicated image rendering. These devices exploited multiple cores and massive
parallelism to rapidly render complex scenes. It was not long before computational
scientists exploited such architectures for their particular numerical problems. This
advancement resulted in the Compute Unified Device Architecture (CUDA) (Cook
2012; Kirk 2010; Farber 2011). CUDA enables direct exploitation of GPUs without
the need to use the high-level programming language required for image rendering
and shader development. CUDA provides a means of developing applications using
the C or Fortran programming languages and enables the realization of massively
data parallel routines able to exploit the GPUs. Each GPU has its own memory and
processing elements separate from the host computer.

A number of authors have reported success with the implementation of MHD
algorithms on GPUs (Schive et al. 2011; Kestener & Fromang 2012; Pang et al.
2010; Lin et al. 2011; Wong et al. 2011). Many of these approaches use structured
meshes, finite volume methods and TVD numerical schemes for solving the MHD
equations. Also, these approaches employ different techniques for computing fluxes
at cell boundaries, such methods are necessary for numerically stable shock captur-
ing solvers. These solvers are applied to different problem domains, two examples
are, studies of the solar wind or using general relativistic magnetohydrodynam-
ics for investigations of ultra compact systems such as neutron stars and accretion
disks around black holes (see Zink 2011; Wong et al. 2014a,b) reported speedups for
double precison computations ranging from 50 to 5, when comparing performance
against a single CPU core. Some of these algorithms have recently been extended
by allowing problems to be solved using multi-GPU systems to overcome the lim-
ited memory of single GPU systems. These techniques have employed upto 216
GPUs to compute problems with upto 1200° grid points, additionally, these papers
report results demonstrating the benefit of using GPU direct to provide more efficient
inter-GPU communication.

The work reported here has enabled the Sheffield advanced code to run on mas-
sively parallel compute architectures such as general purpose graphical processing

MHD Code for Gravitationally Stratified Media using GPUs

units and multi-core processing systems. SMAUG (Sheffield Magnetohydrodynam-
ics Algorithm Using GPUs) is a derivative of the code which was developed to run on
CUDA-enabled GPUs. After a brief description of CUDA, we will describe the basic
architecture of the SMAUG code and illustrate the performance benefits of running
SAC on multi-core systems. Specifically, we show results for the NVIDIA C1060
(Tesla), M2070 (Fermi) and K20 (Kepler) GPU. We demonstrate that SMAUG is
sufficiently verified and that it successfully validates the physics for a range of 1-3D
test scenarios, including a full 3D model of wave propagation in the magnetized and
stratified solar atmosphere. The novelty of SMAUG compared to many GPU enabled
MHD codes is its implementation of the hyperdiffusion technique for controlling
numerical diffusion arising in highly shocked systems.

2. GPU programming using CUDA

Recognizing the take up of graphical processing units for numerical computation,
NVIDIA introduced the Tesla GPU architecture and the compute unified device
architecture for general purpose parallel computing. CUDA-enabled graphics pro-
cessors operate as co-processors within the host computer. In the CUDA-based
programming model an application consists of sections of code known as kernels.
These kernels may be executed in parallel as a large number of threads on a GPU.
To achieve optimal levels of performance, it is understood that GPU application
developers must make use of platform specific languages, for example, CUDA.
There have now arisen further options for developing applications which are able
to exploit GPUs. These include the Fortran implementation of CUDA developed
by the Portland Group, directive or accelerator-based programming or Fortran to
CUDA code generators. Examples of directive or accelerator-based programming
include OpenMP-style pragma-based programming, e.g., developed by PGI, HMPP,
hiCUDA or the OpenAcc standard (for details of these methods see, Wolfe 2008;
Han & Abdelrahman 2011; Wienke ef al. 2012).

An additional development was OpenCL, a framework enabling developers to
write applications which run across heterogeneous platforms consisting of CPUs,
GPUs and other processors. One possibility is the use of the application known as
SWAN (Harvey & De Fabritiis 2011), which may convert a CUDA code to OpenCL.
It is envisaged that applications developed using OpenCL and CUDA will be able to
efficiently exploit the hybrid environment comprising multiple GPUs and multi-core
CPUs.

Options such as the PGI, HMPP and OpenAcc accelerator libraries are welcome
because of the ease of developing the code. Wienke er al. (2012), provide an informa-
tive account of programming using the OpenAcc standard. When development of the
SMAUG commenced, tests indicated that significant effort was required to imple-
ment and test the accelerator-based code. It was found that the CUDA code generator
(Govett 2009) was not suitable for our purposes. Although it is highly automated,
this approach would still require a large amount of hand-coding, due to the number
of parallelisable sections of code. Based on this experience, it was decided that the
option chosen for developing the GPU implementation of SAC, known as SMAUG,
was to use the CUDA toolkit. The compute unified device architecture introduced
by NVIDIA is not just a hardware platform but also includes software to support the

M. K. Griffiths et al.

development of parallel applications running on NVIDIA GPUs. The software tools
include compilers, profilers and numerical libraries. Our main motivation for adopt-
ing CUDA is due to the open source approach and the availability of support for
CUDA programming. Although we are using a high level language, it is still possible
to achieve maximum performance. There is also greater scope for code optimization.

The new code described in this paper was tested on available NVIDIA C1060
(Tesla), M2070 (Fermi) and K20 (Kepler) architectures. Characteristics for these
GPUs are summarized in Table 1. Unlike CPUs, GPUs have a parallel throughput
architecture enabling the execution of many concurrent threads, rather than execut-
ing a single thread very quickly. These threads execute on many processing cores
which comprise the GPU. The CUDA programming model facilitates multi-threaded
programming by introducing the concept of a kernel which runs as an individual
thread. The kernels are sections of programming instructions which will be executed
by every thread. The developer of a CUDA-based GPU application must, therefore,
correctly identify those parts of an application which are potentially multi-threaded.
Additionally, the developer must also ensure the application correctly allocates GPU
memory and transfers data between the host and GPU memory. For the SMAUG
application, we attempted to minimize the number of transfers between host and
GPU memory by performing the entire computation within the GPU. Achieving a
high level of double precision performance is important for many numerical appli-
cations, computational magnetohydrodynamics is certainly no exception. NVIDIA
cards with at least compute capability version 1.3 are able to support double preci-
sion. To use double precision performance in computations, the NVIDIA compiler
must be called with the flag ‘-arch=sm_13" (see Whitehead & Fit-florea 2011).

A graphics card supporting CUDA consists of an array of streaming multi-
processors, each of these supports a group of streaming processors. Threads are
grouped into batches of 32, which are called warps. The threads execute indepen-
dently. GPUs feature four types of memory: global memory, register memory, shared
memory and texture memory. To perform useful computations, data must be trans-
ferred between the memory space of the host computer and CUDA device(s). For this
reason, when assessing the performance of a GPU code, it is important to account
for the time taken for the transfer of data between host memory and GPU memory.
Data from the host CPU is transferred using a PCI-e bus with access to the GPU
global memory. This transfer rate is at around 8 GB/s, this is significantly lower than
the bandwidth for data transfer between the GPU memory and its streaming proces-
sors. The GPU global memory can be accessed by all of the streaming processors.
The shared memory is faster, but is limited to 16 kB on each block. Shared memory
is accessible by the streaming processors in a multi-processor. The register mem-
ory consists of 16384 32-bit registers on each block. The differences between the

Table 1. Characteristics for NVIDIA GPU’s.

Tesla C1060 Fermi M2070 Kepler K20

Number of cores 240 448 2688
Single precision peak performance (GFlops) 933 1030 4710
Double precision peak performance (GFlops) 78 515 1218
GPU memory (GB) 4 6 5

GPU bandwidth (GB/s) 102 144 208

MHD Code for Gravitationally Stratified Media using GPUs

C1060 (Tesla) and M2070 (Fermi) GPUs are quite striking (see Table 1), there is an
increased number of cores and improved memory bandwidth within the GPU. One of
the most interesting changes relates to the performance. There is a small increase in
the single precision performance and an order of magnitude improvement in the dou-
ble precision performance. This can be attributed to the memory bandwidth for data
transfer between the global GPU memory and block memory. It should be under-
stood that, rather than use the single instruction multiple data (SIMD) approach,
CUDA employs a single instruction multiple thread approach (SIMT). This implies
that the number of threads for computation is not fixed, and can influence the number
of registers available per thread.

One of the main differences between the Kepler and Fermi architecture is that the
Kepler streaming multiprocessor features 4 warp schedulers which can support upto
2048 threads. Kepler was designed to deliver more computational performance per
unit of power, this has been achieved by reducing the clock frequency. The challenge
for the programmer is to implement a code which can provide more parallelism with
a sufficiently large number of instructions. A number of improvements enhance the
ability of Kepler to schedule threads. Using the technology known as Hyper-Q, mul-
tiple CPU cores can utilize a Kepler GPU, the new grid management unit enables
better prioritization of grid execution. Dynamic parallelism on the Kepler GPUs
enables kernels to execute child kernels; this is in contrast to the Fermi architecture
for which only the CPU can execute a kernel. The updated inter-GPU communica-
tion using GPUDirect has an RDMA feature which allows devices such as network
interface cards to directly access GPU memory. This significantly reduces the latency
of MPI messaging to and from GPU memory.

Before considering the implementation of the SMAUG application, we now recall
the numerical solution method employed for the SAC code.

3. Equations and numerical methods

The Sheffield advanced code (Shelyag et al. 2008) is a numerical MHD solver that
allows the simulation of the various physical processes in magnetized plasmas. The
general system of MHD equations are

0
8—f+v-(vp>=o, (1)
d(pv
01V (v BB + V= g, @)
de
E+V.(Ve—BB-V+th)+th=pg-v, 3)
oB

In these equations, p is the mass density, v is the velocity, B is the magnetic field,
e is the energy density, p is the total pressure, and g is the gravitational acceleration
vector.
The total pressure p; is written as
B2
Dt = Dk + 5 (5

M. K. Griffiths et al.

where py is the kinetic pressure given by

pv2 B’
pk=—-Dle———-—=5]. (6)

In the SAC, the variables p, e and B are expressed in terms of perturbed and
background quantities as

o =P+ pb, (7
e=c¢e+ep, (8)
B =B+ By,)

where /5 is the perturbed density, é is the perturbed energy, and B is the perturbed
magnetic field. The background quantities with a subscript ‘b’ do not change in time,
as we assume a magneto-hydrostatic equilibrium of the background plasma, which
may have a gravitational field present, denoted by g. Hyperdiffusion and hyperresis-
tivity are used to achieve numerical stability of the computed solution of the MHD
equations (for implementation details, see Caunt & Korpi 2001; Stein & Nordlund
1998). The full set of MHD equations, including the hyper-diffusion source terms
are shown in Appendix A.

4. Implementation of Sheffield advanced code on GPUs

Earlier, it was noted that the decision to use the CUDA programming language for the
development of SMAUG was made in order to enhance portability. In this section,
we focus on the implementation of the SMAUG. Our approach to designing SMAUG
has been to use the original SAC code as the basis. Such an approach has aided the
process of code testing and verification. This is because we were able to carry out
close comparisons between the codes at each stage of development.

SMAUG has been written entirely using the C programming language and CUDA.
The first task was to identify the structures within SAC, which would benefit from
a GPU implementation and should be written as a kernel running on the GPU. An
important realization was that the hyper-diffusion algorithm requires the storage of a
number of intermediate datasets and the required kernels should be designed in such
a way that we avoid the need to move large quantities of data between the GPU and
CPU. It was, therefore, decided to store the entire problem and the temporary data
on the GPU. The single GPU tests presented here are applied to numerical domains
of sizes up to 128 x 128 x 128 grid points.

Investigating SMAUG using the CUDA profiler indicated that one of the most
computationally intensive parts of the calculation are the hyper-diffusion source
terms (A9)—(A16) in Appendix A. One of the reasons for this is the necessity to
compute global maxima for the hyper-viscosity coefficients (A19) and wave speeds
involved. When it is necessary to save a particular configuration, data is copied to
and from the GPU host memory. When writing the SMAUG code any kernels which
become large were split into smaller units. Kernels using branching logic and with
loops resulting in a large number of threads were avoided. We also ensured that any
conditional jumps branched equally for all threads, this was a concern for kernels
used for the computation of boundary conditions.

MHD Code for Gravitationally Stratified Media using GPUs

Although SAC and SMAUG are interoperable, they are both independent applica-
tions, the source code in SAC has not been re-used in SMAUG. Implementation of
the CUDA kernels started with kernels used for initialization, and then proceeded on
to the development of kernels for the computation of the flux terms which are used
to update the perturbed fields. Before implementing the hyper-diffusion terms, the
code was tested with background fields set to zero and without the hyper-diffusion
terms. SMAUG comprises a collection of kernel routines which may be divided into
the following groups:

initialization;

computation of flux terms;

computation of derived quantities (pressures, wave speeds, etc.);
computation of the hyper-viscosity coefficients;

computation of the hyper-diffusion source terms;

boundary update kernels;

field update routines (used to combine contributions for Runge—Kutta steps);
finalisation routines (used to free memory on the GPU).

The flow diagram for SMAUG, illustrating the main system elements, is shown in
Figure 1. Figure 2 shows the routines computing the flux updates and hyperviscosity.
Kernels running on the GPU are shown in red, routines running on the CPU are
shown in green. The blue blocks show units with code which run on both the CPU
and GPU.

Since the SMAUG frequently refers to a large number of multi-dimensional
arrays in one, two or three dimensions, all data is kept in a single 1-dimensional
array. We employed an encode routine which converts a 3-dimensional index to a
1-dimensional index. The encode formula is,

i =iy +iny +izniny + fninans, (10)

where n1, n, and n3 denote the size of the computation mesh in the x, y and z
directions, respectively. The indices of the mesh point in the x, y and z directions
are i1, i and i3, respectively. The index for a particular field component is denoted
by f. Thus, the formula (10) returns the one-dimensional index for a field point. A
reason for using this data representation is to reduce the number of variables and
to reduce the coding required to allow SMAUG to switch between 1D, 2D and 3D
geometries. With data correctly organised, all of the threads within a warp are able
to access data within aligned blocks of memory. This behaviour is called memory
coalescing (Farber 2011). Memory alignment issues have a significant impact on the
utilisation of memory bandwidth and ultimately on performance. For example, the
optimal global memory bandwidth is achieved when the threads in a half warp (16
threads) load data from the same memory segment in a single transaction, otherwise,
performance is degraded as a result of serial accesses to memory. One method of
coalescing memory is to allow consecutive threads to access consecutive memory
locations. The approach would stagger the updates for each of the field points. It
should be noted that, although the M2070 (Fermi) GPU hardware is significantly
improved, the issue of coalescing is still a concern. One guideline for ensuring good
peformance is to use models whose size scales as 2".

The computation of the hyper-viscosity coefficients (A19) requires the calculation
of the maximum wave speed in the computational domain. An interleaved addressing

8 M. K. Griffiths et al.

Data read, | |
numerical
grid |
initialisation |

Save
Configuration

=] o

Free host memory

Terminator /

Figure 1. Flow diagram for SMAUG, illustrating the main system elements. The kernels
running on the GPU are shown in red, and routines running on the CPU are shown in green.
The blue blocks show units with code which run on both the CPU and GPU.

MHD Code for Gravitationally Stratified Media using GPUs 9

o
Ye
Yes
N\ No
No

Figure 2. Flow diagram for SMAUG, illustrating the main system elements. The kernels run-
ning on the GPU are shown in red, and routines running on the CPU are shown in green. The
blue blocks show units with code which run on both the CPU and GPU.

M. K. Griffiths et al.

method was used for the computation of the maximum value of a vector of double
precision values of the maximum wave speed. Figure 3 illustrates the interleaved
addressing method for parallel reduction. The example illustrated here is a global
summation. The sum of data items accessed by adjacent threads is evaluated. At the
first step, every other thread is used to compute part of the reduction, as further steps
are taken, the stride is doubled. This algorithm results in a significant enhancement
in the performance. As discussed earlier, shared memory is much faster than global
memory, so the parallel reduction algorithm benefits greatly.

Figures 4 and 5 show code segments from the reduction algorithm used to
compute the wave speed maximum. Figure 4 illustrates how the interleave method
is applied to each of the thread blocks. It is necessary to call the available number
of threads per block to determine the size of the GPU shared memory required to
store and compare the wave speeds for this computation. By accessing shared mem-
ory, we take advantage of the greater GPU data bandwidths. After the execution of
all of the thread blocks, a single loop is used to obtain the required maximum value.
Figure 3 shows the kernel for the reduction routine; the first part allocates the shared
memory and transfers data from the GPU global memory. The interleave method is
implemented by the section of enclosed comments, indicating the start and end of
the repeating code block. The final line of the segment writes the partial value for
the first thread, and stores the maximum values for each of the thread blocks.

For the computation of the fluxes and hyper-diffusion terms, we expect the
performance to scale as N2, this is due to the fact that we can map each thread to
an element of the computational mesh. In the case of the reduction operation, the
performance for techniques such as the interleave method scales as N In N. This
provides a limit for the speed-up which may be achieved by SMAUG.

N
w
»
(9}
(<)}
~N

1 thread 0 1

Stridel values 11 2

w
(%,]
1
N
(<)}
1
(-}
(6}

2 thread O 2 4 6
Stride2 values 13 2 8 5 4 6 -4 5
3 thread 0 / 4/
Stride4 values 21 2 13 5 0 6 1 5
4 thread 0 /

values 21 2 18 5 -4 6 6 5

Figure 3. Illustration of the interleaved addressing method used for parallel reduction.

MHD Code for Gravitationally Stratified Media using GPUs

//Number threads per block

int NTPB=tnumThreadsPerBlock:

//Num blocks is determined by size of zeropadded 2°n size array
int numBlocks = (ndimp+NIPB-1) / NIPB;

//Shared memory
int smemSize = NIPB * sizeof (double):;

//Array to store maximum values for reduction in host memory
double *h_cmax = (double*)malloc (numBlocks*sizeof (double)):

cudaMalloc((void**)&d_cmax, numBlocks*sizeof (double));
//Array to store maximum values for reduction in GPU global memory
cudaMalloc ((void**)&d_bmax, numBlocks*sizeof (double)):;

//set maximum value to zero and update values in GPU memory

(*p) ->cmax=0.0;

cudaMemcpy (*d_p, *p, sizeof(struct params), cudaMemcpyHostToDevice):

cudaMemcpy (*wd, *d_wd, NDERV*dimp*sizeof (real), cudaMemcpyDeviceToHost):

cudaMemcpy (*d_wtemp, ((*wd)+(cfast*dimp)), dimp*sizeof (real),cudaMemcpyHostToDevice):;
int i=0;

//find the maximum in each block
for (i=0;i<numBlocks;i++)

h_cmax([i]=0;
cudaMemcpy (d_bmax, h_cmax, numBlocks*sizeof (double), cudaMemcpyHostToDevice):
reductionmax_ parallel<<<numBlocks,NIPB, smemSize>>>(d_bmax, *d_wtemp,ndimp) ;
cudaThreadSynchronize():
cudaMemcpy (n_cmax, d_bmax, numBlocks*sizeof (double), cudaMemcpyDeviceToHost):

//compare the maxima for all of the blocks and determine maximum value
for(i=0;i<numBlocks;i++)
if (h_cmax[i]>((*p)->cmax)) ((*p)->cmax)=h_cmax([i]:

//determine maximum value of sound speed
cudaMemcpy (*d_wtemp, ((*wd)+(soundspeed*dimp)), dimp*sizeof(real), cudaMemcpyHostToDevice):

Figure 4. Host code used to call reduction routine CUDA kernel. The start of the section
shows the initialization of the shared memory size and the number of threads per block. The
middle section shows the allocation of CUDA device memory used to store the maximum
values for each thread block. The final section calls the CUDA kernel, determines the maximum
value for the thread blocks, and writes the global maxima (for all thread blocks); this resulting
value is finally copied to the device memory.

SMAUG consists of a collection of 3 source files for code that runs on the host sys-
tem and 23 kernel source files for code that executes on the GPU. Using conditional
compilation through the compiler preprocessor, the code has a degree of flexibil-
ity and provides a number of defined preprocessor variables which may be altered
within an input file used by the make routine. The optional preprocessor variables
enable switching between 1D, 2D or 3D geometries, running across multiple GPUs,
user-provided source terms or switching between double and single precision.

SMAUG was developed using a Waterfall software engineering methodology
(Pressman 1997). SMAUG is licensed under the GNU General Public License (GPL
v3.0). The decision to make SMAUG freely available should ensure that the soft-
ware will always be available and should encourage the user community to extend
and to accelerate new scientific and algorithmic developments. SMAUG is available
at https://code.google.com/p/smaug/.

An important consideration for SMAUG is its inter-operability with the exist-
ing SAC code. For this reason, SMAUG has been deliberately designed to read and
write configuration files generated by the SAC initialisation routines. The distribu-
tion routines are used to scatter and gather configuration files for use in MPI enabled

https://code.google.com/p/smaug/

M. K. Griffiths et al.

extern _ shared double partialResult[]:

int i;
partialResult[tid]=0.
if (iindex<ndimp)

partialResult([tid]=temp[iindex]:
__syncthreads();

| .
’

/*Start of reduction loop*/
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if ((tid $ (2%s)) == 0) {
if (partialResult([tid+s]>partialResult([tid])
partialResult([tid]=partialResult[tid + s8]’
}
__syncthreads():
}
/*End of reduction loop*/

__syncthreads():

if (tid==0)

{
cmax [blockIdx.x]=partialResult[0];
temp [blockIdx.x]=partialResult([0];

__syncthreads():

Figure 5. CUDA kernel implementation of the interleave method for the reduction
algorithm. The first part of the kernel initializes the shared memory for each thread block. The
array of shared memory values is set with the wave speed values stored in the GPU memory.
The interleave operation can only perform after synchronization of the threads for each block.
The repeating segment of code which follows is the interleave operation; each even numbered
thread compares a pair of values in the shared memory. The reduction occurs as the repetition
strides over each set of neighbouring values. Before each stride can commence, it is necessary
for all the threads in the block to be synchronized. The nature of this reduction operation is
such that the required value is stored in the first memory location in the array, this result in
shared memory is transferred to the array of results for each of the thread blocks.

problems. IDL and Matlab visualization routines already used with SAC and VAC
may be re-used. The source distribution provides a number of sample problems,
which are configured using the make routine. Verification tests have been performed
to verify the results generated by SMAUG and to assess the performance. Results
are discussed in the following two sections.

5. Verification tests

A challenge for solving hyperbolic differential equations such as the MHD equations
(A1)—(AB) arises when solutions are sought for systems exhibiting discontinuities in

MHD Code for Gravitationally Stratified Media using GPUs

their solution. A number of tests have been performed in 1D, 2D and 3D geometries.
Such tests are crucial for ensuring the robustness of the solver. We verified that
SMAUG reproduces the same results as SAC for the Brio-Wu, Orszag-Tang, a 3D
blast-wave problem, and a 3D model of wave propagation in a gravitationally
stratified solar atmosphere. Details of the first three standard tests are given in
Appendix B. One of the objectives of the tests is to ensure the correct implemen-
tation of the hyper-diffusion algorithm for stabilizing the solutions from numerical
instabilities.

To isolate algorithmic differences, we ran both codes with the hyper-diffusion
switched off. As the agreement between SAC and SMAUG was progressively
improved, each of the hyper-diffusion contributions was tested in turn. For example,
testing would be undertaken with just the hyper-diffusion contribution for the density
enabled. Finally, all of the hyper-diffusion source terms were included. The percent-
age difference between SAC and SMAUG for the total density and total energy for
the Orszag-Tang test is shown in Figure 6. To understand the differences observed in
Figure 6, we performed a number of experiments using the Orszag-Tang test. As well
as comparing results generated using SAC and SMAUG we compared the difference
between results for SAC and SMAUG, when a small error in the density was intro-
duced at the centre of the numerical grid. The magnitude of the introduced difference
was at the level of the round-off error. These experiments resulted in deviations in
the total energy and momentum, which were of the same order of magnitude as those
presented in Figure 6. It is well understood that NVIDIA GPUs are fully compliant

0.12

=—rho
0.08

——energy

0.06
0.04 a
0.02

00 3000 000 5000 000 7000

Percentage
=~
—~
N

-0.02
-0.04 /
-0.06

-0.08

-0.1

Iteration

Figure 6. Percentage difference between SAC and SMAUG calculation of total energy and
total density at each iteration for the Orszag-Tang vortex problem computed on a 256 x 256
grid.

M. K. Griffiths et al.

with the IEEE-754 standard for floating point operations (Whitehead & Fit-florea
2011). Differing computer processor architectures can lead to numerical differences
when performing a computation with a large number of operations, which may have
large differences in magnitude.

5.1 MHD wave propagation in magnetized and gravitationally stratified
3D solar atmosphere

In this section, we provide the numerical results of modelling of MHD wave prop-
agation in an open magnetic flux tube embedded in the solar atmosphere. The
background model and initial setup of the problem are similar to that used previously
(Fedun 2009; Fedun et al. 2011a, b, ¢). This simulation examines SMAUG’s capa-
bility for modelling the physical processes in the magnetized and stratified media,
expanding from the photosphere through chromosphere, transition region and into
the solar corona.

It is planned to use SMAUG for modelling the physical processes of the magne-
tically coupled solar interior and atmosphere. Work is also in progress to study
the propagation of energy into the solar atmosphere by using a vibrating mem-
brane to drive the lower boundary of the simulation box. Such studies provide
insight into the coupling of the solar global eigenmodes, with motions in the solar
atmosphere.

Here, we present initial results for modelling of MHD waves in a chromospheric
magnetic flux tube. The problem tests SMAUG’s capability for modelling a grav-
itationally strongly stratified 3D solar atmosphere. Vortex motion at the foot point
of the magnetic flux tube is excited by the a time-dependent torsional driver (Fedun
etal 2011a, b, ¢), we used a velocity amplitude of 20 m/s with no time-dependence
for the driver. An additional model was repeated with the velocity amplitude set to
200 m/s, and the period of the driver set to 120 s. In Figure 7 we have shown a
2D vertical cross-cut through the 3D numerical domain for the V) velocity com-
ponent. Mumford et al. (2014) are using SMAUG in a study of the effect of
photospheric motions on the generation of MHD waves in low solar atmospheric flux
tubes.

6. Performance measurements

The performance of SAC and SMAUG was assessed by running the Orszag-Tang
problem for varying problem sizes on Intel Xeon (X5650 CPU (6 cores, 2.67 GHz
clock frequency), E5 2670 CPU (8 cores, 2.6 GHz)) and GPU NVIDIA (C1060
(Tesla), M2070 (Fermi), K20 (Kepler)) computer architectures.

The NVIDIA GPU device architecture and programming methodology was
described in section 2. For all of the CPU tests, SAC was compiled using the Port-
land Fortran90 compiler version 10.2 with full optimization. For the CPU runs, the
problems were initially run using a single processor core. Figures 8 and 9 show com-
parisons of the computational time taken to perform 100 iterations with a varying
grid size for each of the processors. Figures 8 and 9 compare the timings for the Intel
X5650 and Intel E5-2670 CPU, respectively. The result clearly indicates that as the
grid size increases, both the C1060 and M2070 GPUs offer significant improvement

MHD Code for Gravitationally Stratified Media using GPUs

My

120

100

80

40

20

120 120

100 100
80 80
60 60
40 40

20 20

0
0 20 40 60 8C 100 120 0 20 40 60 80 100 120
X X

Figure 7. The vertical cross-cut through the 3D numerical domain. Snapshots of the V),
component of the velocity response showing the temporal evolution of the initial perturbation
generated by 120 s period torsional driver at + = 32, 64, 96 and 128 s in the open magnetic
flux tube, respectively. The color scale shows the V), perturbations in km/s. For more details of
mathematical set-up of this physical problem, see Fedun et al. (2011a, b, ¢).

in the time taken to complete an iteration. This is the initial evidence that the GPU
performance scales well with grid size.

To obtain a better understanding of the performance benefits of running the prob-
lem on a GPU, we compare the speed-up factor for the C1060, M2070 and K20
GPUs for each of the tested CPUs. Defining . as the time to complete 100 iterations
on the CPU and 7, as the time to complete 100 iterations on the GPU, the speed-
up factor is defined as #./fy. Figures 10 and 11 show the speed-up factor versus the
model numerical size, comparing C1060, M2070 and K20 against the Intel Xeon

M. K. Griffiths et al.

/ —e—NVIDIA C1060
200
/ —=-NVIDIA M2070
150 —4—NVIDIA K20
/ —e-Intel-X5650
00
// ———Intel X5650 6¢
" /

-100 100 300 500 700 900 1100
Simulation Box length

Time for 100 Iterations (seconds)

Figure 8. Comparison of the run times for 100 iterations of the Orszag-Tang problem. The
run times obtained with the Intel X5650 processor and different NVIDIA GPUs and with
varying problem sizes are shown.

X5650 CPU and Intel Xeon E5-2670 CPU, respectively. The C1060 offers a speed-
up of 4 over the Intel Xeon X5650 CPU, in contrast to the M2070 GPU, we observe
that this benefit does not improve with increasing the problem size. This may be
understood in terms of the enhanced double precision performance for the M2070

50
/ ~4—NVIDIA C1060
200
/ ~E-NVIDIA M2070
150 ~#—NVIDIA K20
150
/ —e—Intel E5 2670
00

100
// ——lIntel E5 2670 8¢
50 /
M
[T T T |
-100 100 300 500 700 900 1100
Simulation Box length

Time for 100 Iterations (seconds)

Figure 9. Comparison of the run times for 100 iterations of the Orszag-Tang problem. The
run times obtained with the Intel E5-2670 processor and different NVIDIA GPUs and with
varying problem sizes are shown.

MHD Code for Gravitationally Stratified Media using GPUs

20

18

1 /
14 /_/
o

—

-
~

—e—NVIDIA C1060
~#-NVIDIA M2070
—&—NVIDIA K20

Speed up factor
=
o

0 200 400 600 800 1000 1200

Simulation Box Length

Figure 10. Measured speed-up factors for the Orszag-Tang test problem performed on
different numerical grids, comparing NVIDIA GPUs against the Intel X5650 CPU.

GPU. This is a result of the higher memory bandwidth achieved for double precision
values. One of the reasons for the enhanced performance with increased problem
size is due to the number of threads assigned to the cores. Increasing the occupancy
in this way hides some of the effects of memory latency in transferring data from
the GPU global memory to the block memory. The results demonstrate that for the

20

18

16

14

12

_A

P
-

o

Speed up factor

e

—&—NVIDIA C1060
~—NVIDIA M2070
—&—NVIDIA K20

1000 1200

Simulation Box Length

Figure 11. Measured speed-up factors for the Orszag-Tang test problem performed on
different numerical grids, comparing NVIDIA GPUs against the Intel E5-2670 CPU.

M. K. Griffiths et al.

16

14

A

10 1 \
8 —e—NVIDIA C1060
\\ —#—NVIDIA M2070
6 —th— \‘ —&—NVIDIA K20
2
5} 200 400 600 800 1000 1200

Simulation Box Length

Speed up factor

e ————
v &

Figure 12. Measured speed-up factors for the Orszag-Tang test problems of different numer-
ical grid size and comparing NVIDIA GPUs against the fully occupied Intel X5650 CPU.

NVIDIA K20, the SMAUG achieves a speed-up of up to 18 times when compared to
a single Intel Xeon X5650 processor core, such a speed-up is achieved for problem
sizes which fully occupy the GPU.

In Figures 12 and 13 we present the performance for the GPUs against fully occu-
pied Intel CPUs. Figure 12 compares the speed-up achieved using a fully occupied
6 core Intel Xeon X5650 CPU and Figure 13 compares the speed-up achieved com-
pared to the 8 core Intel Xeon E5-2670. The results shown in Figures 12 and 13
display a characteristic dip for moderate levels of the problem size. This dip results
from the performance for the CPU, at this domain size, the multicore CPU bene-
fits from optimal utilization of CPU cache memory. The performance comparison
with multi-core CPUs is dependent on the decomposition of the problem across the
multicore processor; we will return to this issue when SMAUG is distributed across
multiple GPUs. We note, however, that the C1060 GPU is still able to offer signifi-
cant performance enhancement compared to the Intel Xeon X5650 CPU. Using the
Kepler K20, we have acheived a speed-up factor of 3, compared to a fully occupied
Intel Xeon E5-2670 CPU.

It was pointed out that the performance of the algorithm scaled as N In (N)
arises from the reduction operation used by the computation of the maximum wave
speed. Application profiling indicates that the computation of the boundary condi-
tions does not provide a significant contribution to the acceleration of the algorithm.
This is due to the limited quantity of data used in the update process. As indicated in
the results, it was observed that the GPU performance improved as the problem size
was increased. A further issue with the computation of the boundary terms is due to
the non-coalescent memory access.

MHD Code for Gravitationally Stratified Media using GPUs

1
iR
i\

—&—NVIDIA C1060
~#—NVIDIA M2070

Speed up factor

—&—NVIDIA K20

|
—

1 —— —

— 2 4

0 200 400 600 800 1000 1200

Simulation Box Length

Figure 13. Measured speed-up factors for the Orszag-Tang test problems of different sizes
of the numerical grid comparing with NVIDIA GPUs against the fully occupied Intel Xeon
E5-2670 CPU.

7. Conclusions

We have presented a description of a GPU implementation of a non-linear MHD
solver employing artificial numerical diffusion to control numerical instabilities. The
code is developed on the basis of the well-known VAC (Toth et al. 1998) and SAC
(Shelyag et al. 2008) platforms. Both of these applications have been tested exten-
sively and provide good agreement with the standard 1-3D HD and MHD tests. The
design of the SMAUG implementation has followed that of VAC and SAC very
closely.

The main achievement of SMAUG is the performance benefit which we have
demonstrated. This has resulted in a significant cost saving for hardware. To sum-
marise, running the 1024 x 1024 grid Orszag-Tang problem on a single M2070
GPU is 18 times faster than the same problem running on a single core of an Intel
Xeon X5650 CPU. Running the same problem over all 6 cores of the Intel Xeon
X5650 reduced the speed-up achieved by the M2070 to a factor of 4. Our results
demonstrate that the performance benefits of using a GPU improved as the problem
size was increased.

One of the limitations of the current code is related to the problem size. With the
6 GB of GPU RAM, the problem size is limited to a model of 128 x 128 x 128 grid
points. This will be improved in two ways. Firstly, by making use of MPI to distribute
the numerical grid over many GPUs; and, secondly, optimizing the usage of tem-
porary data storage employed by SMAUG. Although we have already successfully
scaled the solution to many GPUs, one of the main improvements will be to employ

M. K. Griffiths et al.

the so-called GPU direct software to enable direct peer-to-peer communications
between GPU host memory.

Further motivations for using GPUs are due to good characteristics of compute
performance per unit of power and compute performance per unit of costs. The
development roadmap presented by NVIDIA indicates that the Kepler GPU card will
aim for 5 double precision gigaflops per watt and the Maxwell GPU will achieve
around 15 gigaflops per watt. This represents a 3-fold and 10-fold improvement when
compared to the current Fermi GPUs. Future work will consider the scaling of the
performance, as SMAUG is used to distribute a problem across multiple GPUs and
multiple CPU cores. For this performance assessment, it is necessary to evaluate the
dependency of the scaling on the different ways of distributing a domain across the
processing elements (the GPUs or CPU cores). It is also important to understand how
MHD algorithms may best exploit future multi-core processor architectures such as
the Intel many integrated core (MIC) architecture or the NVIDIA Maxwell GPU,
expected in 2015.

The GPU-based algorithm described here, will be used to provide a platform for
the simulation of wave propagation in the strongly stratified and magnetised solar
interior and atmosphere. Initial testing has demonstrated that the code is more than
able to handle such problems with an excellent agreement compared with the original
SAC code of Shelyag et al. (2008). For the various complex test cases which have
been considered, the results show that the SMAUG successfully reproduces physical
processes. Consequently, we are led to the conclusion that the code can be used
as a reliable tool for modelling the physics and, perhaps, even more importantly,
predicting new features of astrophysical plasmas.

Acknowledgements

MKG acknowledges support from the White Rose Grid e-Science Centre and fund-
ing from the EPSRC contract EP/F057644/1. MKG acknowledges the support of
NVIDIA for allowing testing of the K20 GPU through its early access program and
for the donation of a K20 GPU. RE acknowledges M. Kéray for patient encourage-
ment and is also grateful to NSF, Hungary (OTKA, Ref. No. K83133). The authors
thank the Science and Technology Facilities Council (STFC), UK, for the support
they received. They also acknowledge Anthony Brookfield and Corporate Informa-
tion and Computing Services at The University of Sheffield, for the provision of the
High Performance Computing Service.

Appendices

Appendix A. The full MHD equations
The full MHD equations, including the hyper-diffusion source terms, read as

ad
SV (Von +) = 0+ Dy (h). (AD
W + V- (v(5 + pp)v — BB)

—V[BByp, 4 BpB] + Vi = pg + D,y[(5 + pv)v], (A2)

MHD Code for Gravitationally Stratified Media using GPUs

9 3 .) 3 3
o +V.(v(e+ep) —BB-v+vp) — V[(BB, + BpB) - v]
+pwVV —BpByVv = pg - v+ De(e), (A3)
oB - . .
e +V.(v(B+By) — (B+Bp)v) =0+ Dp(B), (A4)
where)
- - B ~
Dt = Pk + > + ByB, (AS)
- - (op+ ~)V2 - B~2
=@ -n[e-2T20 _pBp-_—), (A6)
2 2
B2
Ptb = Dkb + Tb, (A7)
B2
o= (y — 1) eb—Tb : (A8)

The MHD equations for momentum (A2) and energy (A3) are re-ordered by taking
into account the magnetohydrostatic equilibrium condition. It was found advan-
tageous to use this, apparently more complex form, of the MHD equations for
numerical simulations of processes in a gravitationally stratified plasma. The 04
term in equations (A1) and (A4) indicates that the right hand side of these expres-
sions are zero without the inclusion of the numerical diffusion terms. It is important
to note that the fully perturbed expressions include diffusive source terms on the
right-hand-side. These terms are employed to stabilise the computational solutions
using proven hyperdiffusion method (Caunt & Korpi 2001; Stein & Nordlund 1998).
A helpful discussion of the hyper-diffusion method and its implementation is pro-
vided by Sgdergaard and Hansen (1999). The numerical algorithm implemented to
solve equations (A1)-(A8) is based on a fourth order central differencing method
for spatial derivatives and a second or fourth order Runge-Kutta solver for the time
derivatives. It is important to note that, since we use central differencing, the quantity
V -B is conserved and may be constrained to zero. Schemes preserving the constraint
V - B = 0 have been reviewed by Té6th (2000). The mechanism of hyperdiffusion
is used to control the stability of the solutions at discontinuities and shock fronts in
equations (A1)—-(A4). The additional hyper-diffusive terms for the perturbed density
and energy are written as

0 a .
D, = Z a—xivi(l))a—xiﬂ (A9)

1

The term D. in the energy equation (A3) consists of three parts:

De = Dgiffusive + DZiSCOUS + Dghmic’ (AIO)

M. K. Griffiths et al.

which describe thermal diffusion, viscous and ohmic heating of the plasma, respec-
tively,

s a a
Ddlffuswe — Vi E, All
e Ei Ey ’(6)_ax,- (ALD)
where € is the thermal energy perturbation,

cmim P (A12)
E=¢— —_—— .
Pb T P))
The hyperviscous and ohmic heating terms in equation (A10) are set as follows:
DS =V.(v-1), (A13)
and

DOMiC — v . (B x). (Al4)

For the vector variables the hyper-diffusive terms are
D,,=V.1, (A15)
and

Dg = -V x . (A16)

Here, 7 is the viscous stress tensor

| av; OV
T = (0 + pp) | vk (V) — +vi(v)— |, (A7)
2 0Xg Xy
and ¢ is defined by
. 0B
&k = €kim |:V1(Bm)—mi| , (A1)
0x;

where €y, 1s the Levi-Civita symbol and a summation of the indices / and m is
taken. The hyper-viscosity coefficient for the variable u in the i-th direction is

max |A3u|
vi (u) = 5 Axj v ————, (A19)
max |Ai u|
where v, = v, + vy is the sum of the maximum Alfvén and sound speeds in the
domain, A? and A ll are forward difference operators to third and first order, respec-
tively, in the i-th direction. The spatial resolutions are given by Ax;. The coefficient
cy is set such that it ensures numerical stability of the solution. The SAC code
uses the MPI VAC software as the basis for its implementation (Téth 1996) that
includes the MPI domain decomposition. However, this MPI implementation had to
be generalized to include the exchange of the hyper-diffusive contributions for the
neighbouring domains.

MHD Code for Gravitationally Stratified Media using GPUs

Appendix B. Verification tests
B1. Brio and Wu shock tube

The Brio and Wu shock tube is a 1D ideal MHD test problem in which the initial
conditions of the model feature a discontinuity in the centre of the configuration,
i.e., the left and right states are initialized to different values at x = 0.5 (Brio & Wu
1988). On either side of the discontinuity the initial parameters are: p; = 1, p, =
0.1,0 = 1,p, =0.125,By; = 1, By, = —1, B, = 0.75. Brio and Wu used an
upwind differencing scheme and a linearization method called the Roe procedure to
solve a Riemann-type problem (Roe 1981). The Riemann problem is the solution
of a conserved system which has states separated by a discontinuity. In the method
employed by Brio and Wu, the exact solution is approximated by a linearised ver-
sion, which is averaged on either side of the discontinuity. Running the problem on a
numerical domain with 800 grid points, gives an excellent agreement with the orig-
inal SAC code results (Shelyag et al. 2008). Figure B1 exhibits features such as the
slow compound wave at x = 0.475, the contact discontinuity at x = 0.55, the slow
shock at x = 0.65; and the fast rarefaction at x = 0.85 are observed. This test
ensures the validity of the code by running the numerical simulation along the x, y
and z axis in turn. There was found to be no dependency on the orientation of the
Brio—Wu and shock tube problem.

B2. Orszag—Tang vortex

The complexities in the Orszag—Tang vortex present a challenging problem with
which the code may be further validated in two dimensional geometry (Orszag &
Tang 1979). The code is required to be sufficiently robust so that it can handle

Density Tangential Velocity (v2)
76 . : ; 65 : 5 > :
08
06
0.4F
0.2
0.0 i : i . -2.0 ; i ; .
0.0 0.2 0.4 0.6 0.8 0. 0.2 0.4 0.6 0.8 1.0
Narmal Velocity (v1) Tangential Magnetic Field (b2)
0.8 ! ! ! ! 1.0 ! ! ! !
0.6¢ 0.5
041
0.0
0.2
—-0.5
0.0
—02F -1.0
—-0.4 . =1:8 .
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

Figure B1. A snapshot of the Brio and Wu problem numerical solution taken at time t =0.1.
The density, tangential velocity, normal velocity and tangential magnetic field are shown.

M. K. Griffiths et al.

supersonic MHD turbulence. For this test, a 512 x 512 simulation box was used. The
boundaries of the computational domain were set as periodic. This problem provides
an excellent opportunity to test the background terms by assigning the initial density,
initial magnetic field and internal energy to the respective background fields.

The density distributions at t = 0.1, 0.26, 0.42 and 0.58 s generated by SMAUG
are shown in Figure B2 and demonstrate a very good and convincing agreement with
their counterpart output of SAC (Shelyag et al. 2008). The results demonstrate the
robustness of the code since it is now able to provide well-defined shock fronts.

B3. Blast waves in 2D and 3D

This section extends the testing of SMAUG from two-dimensions to a three-
dimensional grid with an emphasis on well-characterised blast problems. A blast
wave in hydrodynamics is the pressure and flow which results after the release of a
highly localized amount of energy. A good astrophysical example is the explosion
of a supernova. The comparison between SAC and SMAUG using blast wave prob-
lems was particularly useful for checking the extension of the application from 2D
to 3D. Also, by employing the Sedov shock wave, we were able to concentrate the

1.0 7
0.8 :
0.6 ’
0.4 .
0.2 _
0.0 v

00 02 04 06 08 1.0

Figure B2. Orszag-Tang vortex problem computed with SAMUG on a 512 x 512 grid. The
density distribution at t = 0.1 s (top left), 0.26 s (top right), 0.42 s (bottom left), 0.58 s (bottom
right) is shown.

MHD Code for Gravitationally Stratified Media using GPUs

iteration=1000 15 iteration=10000
100 100 {--
10
> >
N oo o
50 (.- 2 50 - 2
L w
0l ol
100 = 100 e
Yy 00 X
iteration=20000 08 iteration=39000 }
100 |- 100 |-
0.6
bl >
N &N | 0.3 2
50 {--- i 04 2 50 -1 £
N w | w
0.2
102 0.1
0 L. S .
100 » 0 0
50
Y ¢ 0 X

Figure B3. The result of simulation of Sedov blast test problem on 128 x 128 x 128 numerical
grid with SMAUG. The energy distributions as a function of time are shown at time 1000 (top
left), 10000 (top right), 20000 (bottom left) and 30000 (bottom right) iterations, respectively.

hyperdiffusion tests on the momentum terms. Additionally, the Sedov shock wave
problem enables a test of the code’s capability to model spherically symmetric sys-
tems using Cartesian geometry. A solution of the blast wave problem, known as
the similarity solution, was developed independently by Taylor (1950) and Sedov
(1946). The similarity analysis provides a prediction of the radius of the shock front
as a function of time, i.e.,

1

R(t) = <£>5 i3, (B1)

Lo

where E is the energy released by the explosion, pg is the density of the surrounding
medium. The similarity solution can be derived by starting from the expression for
the radius of the shock front as

R(t) = ESpllt*. (B2)

By ensuring that both sides of equation (B2) have the same dimensions, the indices ¢,
n and & can be determined using the similarity solution given by equation (B1). The
simulations were performed using a 128 x 128 x 128 numerical domain with a side of
length 1.0 and a surrounding space of uniform density of 1.0 (Figure B3). The initial

M. K. Griffiths et al.

pressure was set to P = 0.1, however, for a shell of radius, r < 0.1, the pressure was
set to 10.0. The initial velocity was zero and the adiabatic parameter was set to 5/3.

References

Brio, M., Wu, C. C. 1988, Journal of Computational Physics, 75, 400.

Caunt, S. E., Korpi, M. J. 2001, AA, 369, 706.

Chmielewski, P., Srivastava, A. K., Murawski, K., Musielak, Z. E. 2013, MNRAS, 428, 40—49.

Chmielewski, P., Murawski, K., Musielak, Z. E., Srivastava, A. K. 2014, AJ, 793(1), 43.

Cook, S. 2012, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs
(Applications of GPU Computing Series), Morgan Kaufmann.

Farber, R. 2011, CUDA Application Design and Development, Morgan Kaufmann.

Fedun, V., Erdélyi, R., Shelyag, S. 2009, SP, 258, 219.

Fedun, V., Verth, G., Jess, D. B., Erdélyi, R. 2011c, AJL, 740, L46.

Fedun, V., Shelyag, S., Verth, G., Mathioudakis, M., Erdélyi, R. 2011b, Annales Geophysicae,
29, 1029.

Fedun, V., Shelyag, S., Erdélyi, R. 2011a, AJ, 727, 17.

Govett, M. 2009, The Fortran-to-CUDA compiler.

Han, T. D., Abdelrahman, T. S. 2011, IEEE Transactions, 22, 78.

Harvey, M. J., De Fabritiis, G. 2011, Computer Physics Communications, 182, 1093.

Hasan, S. S., van Ballegooijen, A. A., Kalkofen, W., Steiner, O. 2005, AJ, 631, 1270.

Kestener, P., Fromang, S. 2012, Astronomical Society of the Pacific Conference Series, 459,
222.

Kirk, D. 2010, Programming Massively Parallel Processors: A Hands-on Approach (Applica-
tions of GPU Computing Series), Morgan Kaufmann.

Kirk, D., Hwu, W. 2010, Programming Massively Parallel Processors: A Hands-on Approach,
Elsevier Direct.

Lin, L., Ng, C.-S., Bhattacharjee, A. 2011, GPU Accelerated Reduced MHD Simulations
of Coronal Loops, Twenty Second International Conference on Numerical Simulations of
Plasmas.

Lindholm, E., Nickolls, J., Oberman, S., Montrym, J. 2008, /IEEE, 28, 39.

McLaughlin, J. A., De Moortel, 1., Hood, A. W., Brady, C. S. 2009, AA, 493, 227.

Mumford, S., Fedun, V., Erdelyi, R. 2014, Generation of Magnetohydrodynamic Waves in Low
Solar Atmospheric Flux Tubes by Photospheric Motions, ArXiv e-prints.

Orszag, S. A., Tang, C. M. 1979, Journal of Fluid Mechanics, 90, 129.

Pang, Bijia, li Pen, Ue, Perrone, Michael 2010, Magnetohydrodynamics on Heterogeneous
Architectures: A Performance Comparison.

Pressman, R. S. 1997, Software Engineering (A Practitioners Approach), McGraw Hill.

Roe, P. L. 1981, Journal of Computational Physics, 43, 357.

Schive, H.-Y., Zhang, U.-H., Chiueh, T. 2011, Directionally Unsplit Hydrodynamic Schemes
with Hybrid MPI/OpenMP/GPU Parallelization in AMR, ArXiv e-prints.

Scullion, E., Erdélyi, R., Fedun, V., Doyle, J. G. 2011, AJ, 743, 14.

Sedov, Leonid 1. 1946, Journal of Applied Mathematics and Mechanics, 10, 241.

Selwa, M., Ofman, L., Murawski, K. 2007, AJL, 668, L83.

Shelyag, S., Fedun, V., Erdélyi, R. 2008, AA, 486, 655.

Se¢dergaard, Peter, Hansen, Jan Vittrup 1999, Numerical Computation with Shocks.

Stein, R. F., Nordlund, A. 1998, AJ, 499, 914.

Taylor, G. 1950, Proceedings of the Royal Society: A Mathematical Physical and Engineering
Sciences, 201, 159.

Toéth, G. 1996, AJL, 34, 245.

Téth, G. 2000, Journal of Computational Physics, 161, 605.

MHD Code for Gravitationally Stratified Media using GPUs

Toth, G., Keppens, R., Botchev, M. A. 1998, AA, 332, 1159.

Vigeesh, G., Fedun, V., Hasan, S. S., Erdélyi, R. 2011, 3D Simulations of Magnetohydrody-
namic Waves in the Magnetized Solar Atmosphere, ArXiv e-prints.

Wang, T., Ofman, L., Davila, J. M. 2013, AJL, 775, L23.

Whitehead, N., Fit-florea, A. 2011, Precision and Performance: Floating point and IEEE 754
compliance for NVIDIA GPUs. NVIDIA white paper, 21(10), 767.

Wienke, S., Springer, P., Terboven, C., an Mey, D. 2012, Lecture Notes in Computer Science,
7484, 859.

Wolfe, M. 2008, Compilers and More: A GPU and Accelerator Programming Model.

Wong, H. C., Wong, U. H., Feng, X, Tang, Z. 2011, Computer Physics Communications, 182,
2132.

Wong, U. H., Aoki, T., Wong, H. C. 2014a, Computer Physics Communications, 185, 1901.

Wong, U. H., Wong, H. C., Ma, Y. 2014b, Computer Physics Communications, 185, 144.

Zink, B. 2011, HORIZON: Accelerated general relativistic magnetohydrodynamics, ArXiv
e-prints.

	A Fast MHD Code for Gravitationally Stratified Mediausing Graphical Processing Units: SMAUG
	Abstract
	Introduction
	GPU programming using CUDA
	Equations and numerical methods
	Implementation of Sheffield advanced code on GPUs
	Verification tests
	MHD wave propagation in magnetized and gravitationally stratified 3D solar atmosphere

	Performance measurements
	Conclusions

