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Abstract

Reliable predictive accident models (PAMs) (also referred to as Safety Performance

Functions (SPFs)) have a variety of important uses in traffic safety research and practice.

They are used to help identify sites in need of remedial treatment, in the design of transport

schemes to assess safety implications, and to estimate the effectiveness of remedial

treatments. The PAMs currently in use in the UK are now quite old; the data used in their

development was gathered up to 30 years ago. Many changes have occurred over that period

in road and vehicle design, in road safety campaigns and legislation, and the national accident

rate has fallen substantially. It seems unlikely that these ageing models can be relied upon to

provide accurate and reliable predictions of accident frequencies on the roads today. This

paper addresses a number of methodological issues that arise in seeking practical and

efficient ways to update PAMs, whether by re-calibration or by re-fitting. Models for

accidents on rural single carriageway roads have been chosen to illustrate these issues,

including the choice of distributional assumption for overdispersion, the choice of goodness

of fit measures, questions of independence between observations in different years, and

between links on the same scheme, the estimation of trends in the models, the uncertainty of

predictions, as well as considerations about the most efficient and convenient ways to fit the

required models.

Keywords: predictive accident models; negative binomial; overdispersion; MCMC methods;

prediction uncertainty.

Introduction

Reliable predictive accident models (or safety performance functions) have a wide variety of

uses in traffic safety analysis and modelling. For scheme appraisal, when it is necessary to

consider the likely effects of alternative transport proposals, this includes the effect on

accidents. For example, PAMs can be used in the design of junctions to estimate the effects

of any proposed design on safety as well as on operational measures such as capacity or

average queues and delays. In trying to identify sites in need of remedial treatment, rather

than focus on sites with the highest number of accidents in recent years, it is more efficient to

compare the observed number of accidents with the number expected from a site of that type,

carrying that amount of traffic. In order to estimate the effectiveness of any treatment, it is

natural to carry out before and after comparisons of the accident frequencies. However,

simple comparisons are known to suffer from the regression to mean effect that, if not

corrected for, can lead to exaggerated estimates of the treatment effectiveness. One way to
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overcome this problem is through the use of the empirical Bayes (EB) method, which

requires a reliable PAM (see, for example, Mountain et al., 2005; Persaud and Lyon, 2007).

The widespread importance of PAMs is therefore clear; meanwhile the availability of high

quality models is rather less certain.

A PAM is derived, for any given type of site, by the fitting of a regression model using data

from a large number of such sites. These models relate the expected number of accidents at a

site to the flows passing through the site and, possibly, to variables that describe the design,

or geometry of the site. In the case of the UK, following a review by Satterthwaite (1981), the

Transport Research Laboratory (TRL) carried out a series of large-scale studies for various

junction and link types in the 1980s and 1990s, starting with 4-arm urban traffic signals (Hall,

1986) and 4-arm roundabouts (Maycock and Hall, 1984). The models were at various levels

of detail, from models relating total accidents to an overall measure of total flow, through to

models for specific accident types in terms of relevant flows and various design variables.

These models are widely-used in the UK for scheme appraisal, being incorporated in software

such as ARCADY, PICADY and OSCADY for the design of roundabouts, priority junctions

and signalised junctions respectively.

These TRL studies were amongst the first to recognise the need to model overdispersion

(which is the effect on the mean accident rate of variables other than those in the predictive

model), and to propose the use of a negative binomial (NB) error structure in the regression

modelling. This approach has since become commonplace in accident modelling, though

primarily for mathematical convenience. Indeed, it has been demonstrated that other error

structures are equally plausible (see Maher and Mountain, 2009, Lord and Mannering, 2010)

and possibly more appropriate. Modern statistical techniques and software have mostly

overcome the need to restrict attention to the NB distribution for modelling overdispersion.

However, perhaps the most serious problem in the use of these models is the passage of time

since they were developed and the data on which they were based was collected. Over these

decades there have been changes in both road and vehicle design, in safety initiatives and

legislation and in driver training, so that the relationships between expected accidents and the

explanatory variables may well have changed. For example, the PAMs for 4-arm roundabouts

are based on data from 1974-79 (Maycock and Hall 1984), and those for rural priority

junctions on data from 1979-83 (Summersgill et al, 1996). In the UK, the annual number of

personal injury accidents fell by 30% from 1985 to 2009, whilst the annual total traffic (in

veh-kms) increased by 61% (DfT 2010a; DfT 2010b).

While it seems unlikely that the PAMs still in use but derived using data from 20-30 years

ago should provide accurate predictions now, it is not necessarily practicable to repeat the

large and expensive data collection and model development exercises carried out by TRL that

would be required to derive entirely new models. A more frugal approach is to see how

existing models may be updated rather than disposed of. This updating may be by re-

calibration (that is by application of a simple multiplicative scaling factor), or by re-fitting the

model parameters (that is, using the same explanatory variables and function form), and may

also involve the inclusion of a trend term. This is the objective of the present research study,
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of which this paper is one part. To achieve this, a new database has been compiled containing

recent data on accidents, flows and geometric design parameters. In this paper we use data for

modern rural single carriageway roads.

Data

The database comprises 341 rural single-carriageway links distributed amongst 73 schemes,

situated in various counties across England. A scheme refers to the largest structure studied,

and is a section of road with similar flow characteristics, between two major junctions (where

the traffic flow on the scheme has to give way). Each scheme is partitioned into minor

junctions (defined as any other junction properly marked with a give way or stop line and a

centre line on at least one junction arm), and links (the section of road between any two

junctions). Most of the schemes were analysed across a five year period (2005-2009), with

annual accident frequencies obtained from the STATS19 database or from local authorities,

and annual flow measures from the DfT or local authorities.

The total length of the 341 links was 310 km, with lengths ranging from 0.01 km to 3.9 km.

There was a total of 996 accidents giving an average of 2.92 accidents per link, or 3.21 per

km, over the five years. The flows (measured in two-way AADTs) ranged from 2887 to

42520, with a mean of 13590. Virtually all links had a carriageway width of less than 9m;

41% had a hardstrip; the mean bendiness (degs turned per km) was 45, with a standard

deviation of 58; the hilliness (metres gained / lost per km) had a mean of 21, and a standard

deviation of 14; and the mean access density (per km) was 43 and a standard deviation of 4.9.

The total length of links and the total number of accidents in the data were 60% and 71%

respectively of the totals in the corresponding TRL study from which the model in the next

section was developed. Further details of the data gathered and comparisons with the data

used in the original TRL studies can be found in Wood et al (2012).

The TRL Models

Similar methodological issues arise when fitting PAMs for each type of junction, link or

scheme. For simplicity we restrict attention here to models for the total number of accidents

on rural single carriageway links. One of the simpler TRL models for rural single-

carriageway links (see Walmsley et al, 1998) has the expected number of accidents  at site i
over a period of T years given by:

m α  ଶ (1)

where Li is the link length (in km), and  is the flow (two-way AADT in thousands). The

parameter estimates obtained by TRL were: a = 0.0552,  = 0.831, b = 0.0576. The

exponential term is intended to account for any “spillover” effects from the junctions at the

two ends of the link; the junction density is approximately  (accidents occurring within

20m of the junction, as determined by the police officer attending the accident, were

excluded). However, the form of this correction term is not ideal as it tends to infinity as Li

tends to zero. For a link of length 20m the correction term has the effect of multiplying the
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predicted number of accidents by 317; whilst for a length of 50m, the factor is 10. The TRL

data presumably did not include any short links, and hence TRL cannot have realised the

effect of this term on short links. Our data set includes seven links that are less than 50m in

length, so these are excluded from the data in our analyses.

Aims of the study

Our objective was to decide how best to adjust the existing TRL model to allow it to be used

as a predictive tool for modern data collected from a different set of sites. At its simplest the

adjustment could be by re-calibration: that is, by application of a scaling factor so as to

modify the value of a in (1), to take account of long-term trend since the original models

were fitted, whilst keeping other parameter values and the functional form the same. The

recommended method of re-calibration in the US Highway Safety Manual (AASHTO, 2010)

is to apply the existing model to each site in the new data to obtain a predicted number of

accidents, and then to calculate the scaling factor as the ratio of the observed number of

accidents and the predicted number. A more extensive approach is to re-fit the existing

models: that is, use the same explanatory variables and functional form as in the original

model but obtain new estimates for each of the parameters (a,  and b in (1)), possibly with

the inclusion of an additional term to allow for trend within the period of the new data. These

two cases, and the issues arising in them, will be dealt with separately in the following

sections of the paper.

Re-calibration of the existing model

Estimation of long-term trend and goodness-of-fit criteria

Suppose we have a set of predictions  from the TRL model for a set of sites (i = 1, .. N) ,

and observed accident frequencies  . To update the model, it is thought appropriate to

modify the constant in the model, and hence estimate a factor by which the model

predictions should be scaled to make them produce reliable predictions of the current

frequencies. A number of summary statistics are available, to measure the goodness-of-fit and

to compare the performance of different models, some of which have been suggested by Lord

and Park (2008). Examples include the root mean squared error (RMSE), the root mean

squared relative error (RMSRE), scaled deviance (SD) and the mean absolute deviation

(MAD). These statistics will generally provide differing estimates of the optimal scaling

factor . For example, if we choose to scale so as to give unbiased predictions, the estimate

will be: ଵ   , as recommended firstly by Harwood et al (2000), by Persaud et al

(2002), and then in the Highway Safety Manual (AASHTO, 2010). This minimises the

absolute value of the mean error (AME):  ଵm by making it zero. If instead we

minimise the RMSE, it can be shown that this gives: ଶ   ଶ . Again, if we

minimise the RMSRE, it can be shown that this gives: ଷ   . Next if we

maximise the log likelihood in a NB fit, this minimises the (NB) scaled deviance. (This is

equivalent to the re-calibration procedure proposed by Sawalha and Sayed (2006)). Finally

we could choose to minimise the MAD, so that ହ minimises  ହm .
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To illustrate, consider the 341 rural single carriageway links, and the TRL model (1), with no

scaling factor. As explained earlier, because of the vastly disproportionate effect of the

correction term for short links referred to earlier, it was decided to omit those

seven links of length of 50m or less. There are 996 observed accidents, whilst the sum of the

(modified) predictions from the TRL model in (1) is 840.8. The scatter plot of versus is

shown in Figure 1, where y is the observed number of accidents at the 334 sites over T = 5

years, and is the predicted number of accidents from equation (1). As expected there is a

considerable amount of scatter about the solid line (y = ) and it is not easy to tell visually

whether the TRL model provides accurate predictions.

Figure 1: Scatter plot of observed accidents versus those predicted by the TRL model

Table 1 shows the values of all five scaling factors, and the goodness of fit measures obtained

when using each scaling factor. The optimum values are italicised, and by definition occur on

the main diagonal. The modified predictions from applying these five different scaling factors

are represented in Figure 1 by the five dotted lines. It is not easy to tell visually which of

these gives the best fit.

Table 1: Comparison of goodness-of-fit measures for five estimators of scaling factor

Scaling Factor AME RMSE RMSRE SD MADଵ 0.000 2.662 1.107 0.561 1.851ଶ 0.134 2.657 1.113 0.564 1.873ଷ 0.217 2.692 1.104 0.562 1.830ସ 0.085 2.671 1.105 0.560 1.841ହ 0.334 2.719 1.105 0.566 1.826
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There is no unique, best way of determining the scaling factor, because the different methods

each optimise a different criterion for goodness of fit, although in many cases there is only a

small difference between the values for the five estimators. All of the criteria are sensible and

desirable (eg unbiassedness, minimum RMSE, max likelihood etc). The same considerations

hold when we wish to compare the performance of alternative models: which is the best

fitting model will depend on the criterion used to measure the goodness-of-fit of the models.

As well as summary statistics, graphical methods have been proposed for evaluating or

comparing model performance. One such method is the CURE plot (Hauer and Bamfo, 1997)

as used, for example, in Persaud et al (2002), and Lord and Park (2008). The CUmulative

REsiduals   are plotted against the ordered explanatory variables (or the fitted values)

to examine how closely the plot follows the zero-residual line, or horizontal axis. The main

benefit of this plot is that it aggregates the data, damping random fluctuations in individual

residuals. Substantial deviations from the horizontal axis indicate a systematic weakness in

the model.

Figure 2: CURE plot of cumulative residuals against flow (AADT in 000s), with 2
standard error lines (dotted)

A plot of raw residuals versus the flow values for the rural links data set is not very

informative, because of the large amount of variability in each individual point. Figure 2

shows a CURE plot for the same data (with the predictions scaled by a factor of ଵ 1.185,

in order to give unbiassedness) and contains more useful information due to the degree of
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aggregation (the code for this is given in section A4 of the Appendix). For example, it can be

seen that for flow values between 5 and 8.5 (AADTs, expressed in thousands), there is a

steady accumulation of positive residuals; followed by a steadily decline for flows between

8.5 and 11; then a shallow rise between 11 and 16; a steep fall between 16 and 20; and then a

steady rise from there to 29 or so. Interpretation is therefore through the rates of change in

the graph rather than the deviations from the horizontal axis: the steady rises and falls

indicate a run of observations where the residuals are mainly positive or mainly negative.

Figure 3: Plot of observed versus predicted and standardised residuals versus predicted

(for individual sites and in bins of size 10)

An alternative, and simpler, approach is to use “binning”, in which the sites are sorted by

ascending order of the predicted value and grouped into bins containing equal numbers of

successive sites. The top left-hand plot in Figure 3 shows the observed value versus the

predicted, for all 334 individual sites; and the top right plot is of the standardised residuals
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versus the predicted values. The lower plots are similar but for the grouped data, using 34

“bins” each containing nine or ten sites. In the left-hand plot, the mean of the observed values

in each group is plotted against the mean of the predictions, and in the right-hand plot the

mean of these standardised residuals is plotted against the mean predicted value for each

group. The horizontal dotted lines in the residual plots indicate approximate 95% confidence

bands. It can be seen that, by aggregating the data, a lot of the variability is removed and this

permits a more informative view of the data and any systematic deviations.

Re-fitting the existing model

Distributional assumptions for overdispersion

Equation (1) gives a prediction for the expected number of accidents  at site in terms of

the flow and design variables. Typically it is assumed that the observed number of accidents is Poisson distributed about the mean  for site , where the difference between  and 
is due to other variables, not in the model, that affect the actual value of the mean at that site

and thereby contribute to what is known as overdispersion.

Conventionally it is assumed that  follows a gamma distribution about  , so that the

combined distribution of  is negative binomial (NB). This has been motivated by

computational convenience, as there is no particular reason to suppose that the overdispersion

truly follows a gamma distribution. Availability of suitable and easy-to-use software

inevitably plays a role in the formulation of models and most statistical software packages

include a routine for fitting regression models with NB errors.

For some time now it has been known that alternative distributions for the overdispersion are

equally plausible and whilst less straightforward they can be fitted using either Markov Chain

Monte Carlo (MCMC) methods or methods involving numerical integration and maximum

likelihood. There is potentially a long list of possible distributions that are appropriate to

describe continuous and non-negative variables but it is not practicable to consider them all.

Distributions that have been proposed and used include the lognormal, Weibull, variable

shaped gamma and others, in addition to the standard gamma (see Maher and Summersgill

(1996), Maher and Mountain (2009), Lord and Park (2008), Lord and Geedipally (2011),

Cheng et al (2012) for example).

The general form of model can be formulated as:  is Poisson distributed with a mean 
and    where the site factors  are randomly and independently drawn

for each site i from an appropriate overdispersion distribution scaled so that its mean is 1.

Each overdispersion distribution has a parameter that measures its variability or spread: for

example the shape parameter r in the gamma, the standard deviation  in the lognormal, and

v in the Weibull. Table 2 shows the density functions for these distributions, the

parameterisation used, and the expressions for the mean and the coefficient of variation, ௩
(the ratio of standard deviation to mean).
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Table 2: Density functions of distributions, and expressions for , ࢜
Distribution Density function: E(X), Cv

Gamma

β

 ିଵ β

β
, , ௩ ଵξ
needs β

Lognormal ଶ ଶ ଶଶ
ଶ

௩ ఙమ
E(X) = 1 needs

σమଶ
Weibull

λ

௩ିଵ ௩ ଵ ௩ൗ
௩ ଶ

needs
ଵ௩ ௩

Figure 4: gamma, lognormal and Weibull

density functions, with and࢜ .

Figure 5: Weibull density functions, with

and ࢜ = 1.0, 0.5 and 0.25.

Figure shows a comparison of these density functions when all have a mean of 1, and ௩
values of 0.8. To achieve this, the parameter values required are: r =  = 1.563 (gamma), d =

-0.247 and  = 0.703 (lognormal), and  = 0.913 and v = 1.258 (Weibull). Figure 5 shows

Weibull densities for three different ௩ values, all with unit mean, showing very different

shapes. Clearly the choice of distribution may play a role in determining the goodness of fit

achievable from any model for overdispersion, but the degree of dispersion ( ௩ value) is the

dominant factor.
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Fitted models: fixed shape

The key question is whether, for any particular data set, the regression parameter estimates

are sensitive to the distribution used, and whether one distribution fits significantly better

than others. We fit the PAM in (1) to the links data (with the 5-year totals and the average

flow) to obtain estimates of and , using gamma, lognormal and Weibull distributions,

and denote these models by PG (Poisson-gamma), PLN (Poisson-lognormal) and PW

(Poisson-Weibull) respectively. The PG model can be fitted exactly using negative binomial

regression in R (R Development Core Team (2006)). The resulting parameter estimates (with

standard errors in parentheses) are shown in the first row of Table 3. The PG, PLN and PW

models were then all fitted using MCMC methods, in WinBUGS (Lunn et al, 2000), using a

burn-in stage of 5000 iterations, followed by 25000 further iterations to collect the statistics

on the parameters. Core parts of the WinBUGS code for the lognormal model are given in

Appendix A1. The estimates from these are given in the next three rows of Table 3, denoted

by PG-MCMC etc, with the goodness-of-fit given by the DIC (Deviance Information

Criterion), a measure similar to the AIC (Akaike Information Criterion) – see Lunn et al

(2000). Finally, the three models were fitted using numerical integration / maximum

likelihood (NIML) techniques. In these the value of the likelihood for each observation, for

any given values of the parameters, was achieved using numerical integration with 1000 steps

(corresponding to evenly-spaced quantiles of the overdispersion distribution), and the log

likelihood (logL) was then maximised using the maxLik optimisation function in R. Like

MCMC methods, the NIML method can be quite time-consuming, so is not necessarily ideal

for everyday use. It is however deterministic (unlike MCMC methods), and can be used to

serve as a method that can be used for any form of overdispersion distribution. The estimates

produced by this method are denoted in in Table 3 by PG-NIML, PLN-NIML etc. The fact

that the estimates from the PG-exact and PG-NIML are virtually identical provides

reassurance that the numerical integration method produces estimates of sufficient accuracy,

so that we make take the estimates from the PLN-NIML and PW-NIML models, where we do

not have any exact fitting method, as being reliable.

It can be seen that there is relatively little difference between the parameter estimates for the

gamma, lognormal and Weibull models, and that the values of the dispersion parameters are

such that the implied coefficients of variation ௩ are again very similar, suggesting that

whichever overdispersion distribution is assumed, the amount of overdispersion, as measured

by the Cv value, is what is most important.

More noteworthy however is that if one was to choose between the three models on the basis

of the MCMC fits, it is the Weibull that has distinctly the lowest value of the DIC and so

would be the preferred model. However, when one looks at the results from the NIML fits,

one sees that all three models have virtually the same logL value, so that there is nothing to

choose between the three models. The reason for this would appear to be that whilst the DIC

value is a valid way to choose between nested models with different numbers of parameters,

it is less reliable when choosing between non-nested models as we have here. The DIC is

based on the scaled deviance statistic which is twice the difference between the log likelihood

of the fitted model and the log likelihood of the “full” model (in which there are as many
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parameters as observations – see McCullagh and Nelder (1983)), with a penalty for the

number of parameters used in the model. Here, the number of parameters is identical for all

three models, but the value of the log likelihood of the full model is different for the three

models, (being -465.1 for the PG, -457.9 for the PLN and -469.9 for the PW), and so this base

value for the deviance is different. The conclusion is that choosing the best fitting model

between PG, PLN and PW models cannot be done reliably using their DIC values from

MCMC fits. The conclusion here, for this data set, is that the fits from the three models are

virtually identical, so that it makes no difference which overdispersion distribution is

assumed.

Table 3: Comparison of estimates from fixed-shape models

Model dispersion ࢜ DIC/logL

PG-exact 0.08902 0.7210 (0.12) 0.0411 (0.013) r = 2.95 (0.53) 0.5822 -652.6

PG-MCMC 0.09064 0.7352 (0.12) 0.0396 (0.013) r = 2.976 (0.55) 0.5797 1233.57

PLN-MCMC 0.08726 0.7489 (0.11) 0.0385 (0.013)  = 0.5652 (0.05) 0.6135 1243.95

PW-MCMC 0.09248 0.7227 (0.11) 0.0405 (0.012) v = 1.806 (0.18) 0.5731 1226.87

PG-NIML 0.08898 0.7212 (0.12) 0.0411 (0.013) r = 2.95 (0.53) 0.5823 -653.0

PLN-NIML 0.08384 0.7473 (0.12) 0.0398 (0.013)  = 0.5603 (0.05) 0.6073 -653.0

PW-NIML 0.09324 0.7017 (0.11) 0.0418 (0.012) v = 1.799 (0.17) 0.5751 -653.1

Fitted models: variable shape

Lord and Park (2008) illustrate the application of what they refer to as a generalised negative

binomial distribution in which they allow the NB dispersion parameter (or reciprocal of the

shape), as well as the mean , to be a regression function of the covariates instead of taking a

fixed value for all sites. This form of model is rather similar to the variable-shaped NB,

suggested by Cameron and Trivedi (1986), and applied by Maher and Summersgill (1996), in

which r the shape parameter, instead of being constant for all observations, is a function of

the predicted mean . The Lord and Park model was fitted to the links data, with the shape r

having the same functional form as  in (1) but with parameters a,  and b instead of a, 
and b and a power s on the link length L. Code is given in section A2 of the Appendix to

show how this was fitted in R. The technique adopted was to fit the fixed-shape negative

binomial model first (using the function glm.nb ), and use the estimates of the parameters a,

 and b to provide initial values (together with a = r0,  = 0, b = 0 and s = 0 where r0 is the

estimate of the fixed shape) in a maximum likelihood estimation routine using the function

maxLik . The NB likelihood for a single observation is given in (2).

Γሺ௬ାሻ௬ǨΓሺሻ ାm  mାm ௬
(2)

The estimates obtained were: a = 0.0896,  = 0.7248, b = 0.0397, a = 0.0697,  = 0.7720,

b = 0.0281 and s = 0.5816, with logL = -649.71. As we know, the shape r and the coefficient

of variation are directly related by Cv = 1/r. Figure 6 shows a scatter plot of the fitted Cv

value versus the predicted  values, from which a clear and strong relationship can be seen.

From this it would seem simpler to allow Cv to be a power function of , as this is a more
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parsimonious and smoother way than the regression function as done by Lord and Park.

Therefore we allow Cv to be a power function of : ௩ , The resulting fitted function

for the shape has estimates c = 0.8701 and n = -0.3114, as indicated by the dotted line in

Figure 3, with the value of the log likelihood (logL) = -650.13. So this representation is

preferable, given that it uses fewer parameters, is smoother in form and gives almost as good

a log likelihood value.

This variable-shape Poisson-gamma (VS-PG) model then includes, as special cases, the fixed

shape PG model ( ) and the quasi-Poisson ( and gives a better fit than the

fixed-shape model.

Figure 6: scatter plot of fitted Cv versus m from the Park and Lord generalized gamma

model

It is possible to bring the same type of flexibility into the other two distributions. By inverting

the expression for ௩ in

Table 2 for the lognormal distribution, it is possible to see how the value of ଶ for a site must

be related to the predicted mean , for any particular values of c and n in ௩ = cn
.

For the Weibull distribution it is not possible to invert the relationship between ௩ and v.

However, the plot of ௩ versus in Figure 7 reveals an almost linear

relationship over the range of practical interest: v > 1, and ௩ < 1. Therefore, if we allow

to follow a power law with in the Weibull case, it is almost equivalent to assuming the

same power law relationship between ௩ and as used in the gamma and lognormal cases.

Hence we can fit models VS-PG, VS-PLN and VS-PW that are each generalisations of the

PG, PLN and PW cases. These three variable shape models may be again fitted using MCMC
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methods (WinBUGS code illustrating the VS-PW model is shown in section A3 of the

Appendix) or by the NIML method described earlier. The results are shown in Table 3.

Figure 7: plot of ࢜ versus for the Weibull model, showing their close

approximation

Table 4: Comparison of estimates from variable-shape models

Model dispersion DIC/logL

VS-PG-exact 0.08922 0.7278 (0.12) 0.0391 (0.014)
c = 0.8699 (0.15)

n = -0.3114 (0.13)
-650.1

VS-PG-MCMC 0.08986 0.7417 (0.11) 0.0394 (0.014)
c = 0.8667 (0.16)

n = -0.2966 (0.14)
1221.93

VS-PLN-MCMC 0.09084 0.7370 (0.11) 0.0416 (0.015)
c = 1.029 (0.28)

n = -0.3669 (0.18)
1236.84

VS-PW-MCMC 0.09882 0.7024 (0.10) 0.0392 (0.014)
c = 0.8621 (0.17)

n = -0.3299 (0.14)
1217.34

VS-PG-NIML 0.08924 0.7277 (0.12) 0.0391 (0.014)
c = 0.8698 (0.15)

n = -0.3112 (0.13)
-650.1

VS-PLN-NIML 0.08704 0.7368 (0.11) 0.0409 (0.015)
c = 0.9762 (0.24)

n = -0.3607 (0.17)
-650.8

VS-PW-NIML 0.09160 0.7180 (0.11) 0.0389 (0.014)
c = 0.8462 (0.16)

n = -0.3260 (0.14)
-650.8
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It can be seen firstly that the results for the VS-PG models from the exact method and from

the NIML method are virtually identical, demonstrating the accuracy of the numerical

integration method. Secondly we again can see that if the best-fitting model were to be

selected on the basis of the DIC values from the MCMC fits, the VS-PW model would be the

choice. However, when the logL values from the three models are compared from the NIML

fits, it can be seen that they are almost identical, and that it is the VS-PG that is marginally

fitting best. (The values of the log likelihood for the full models are -466.9 for the VS-PG, -

457.8 for the VS-PLN and -471.0 for the VS-PW). Therefore again, as with the fixed-shape

models, it can be seen that the choice of overdispersion distribution has virtually no effect on

the fit. Comparison of the results from Tables 3 and 4 shows that the variable shape model fit

significantly better than the fixed shape models.

The reason why the spread of the overdispersion distribution reduces as the predicted value

increases is probably because of aggregation effects. Sites with higher  are generally sites

that have longer length, or have long observation period, or have more traffic. A longer link,

for example, might be thought of as being an aggregate of several shorter sub-links, with

similar but not necessary identical overdispersion errors. The aggregation of these sub-links

with partially correlated errors leads to a reduction in the relative amount of overdispersion.

Overall, then, we conclude that basing the choice of overdispersion distribution on the DIC

values from MCMC fits can be very misleading, that the choice of overdispersion distribution

has virtually no effect on the goodness-of-fit but that the freedom of allowing the Cv to vary

with the mean has a more significant effect, and that this beneficial effect is of similar

magnitude for each of the three distributions.

Estimation of current trend: a multinomial model

The links data consists of annual accident frequencies ௧ and annual flows ௧ over the

period 2005-2009 ( ; ), along with link lengths  and other design

variables that do not change over time. The disaggregate nature of the data (in the sense of

disaggregation by year and not by accident type) allows the estimation of a current trend term

of the form that multiplies the base year (2005) prediction so that we have:

m௧ ௧α  ଶ β (3)

as the predictive model.

Whilst we could use the annual data as the observational unit, this involves the assumption of

complete independence between all observations. This issue will be discussed in the next

section. An alternative approach that avoids this assumption is to consider the model in two

linked parts. In the first we model the aggregate data: using the total accidents at a site  and
relating it to the average flow  to obtain estimates of the parameters a,  and b. In the

second part, we model the distribution of the total accidents at each site across the five years

via a multinomial distribution. Using the estimate of , the probability of observing the

distribution of  (total accidents at site i) is given by
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ଵǡ ହ ௬!௬భǨǤǤ௬ఱ! ଵ௬భ ହ௬ఱ (4)

where the probabilities are given by:

௧ ொαୣ୶୮�ሺஒ௧ሻσ ொೞαୣ୶୮�ሺஒ௦ሻೞ (5)

Then, to find the maximum likelihood estimate of , we need to maximise

௧ ௧௧ (6)

with respect to the single parameter using, for example, the maxLik function in R on the

log likelihood function in (6) . To complete the loop between parts 1 and 2, we iterate

between estimation of the trend and the aggregate fitting, with a revised set of weighted

average flows:

 ௧ ௧௧ where ௧ ୣ୶୮�ሺఉ௧ሻσ ୣ୶୮�ሺఉ௦ሻ (7)

and repeat until convergence. R code for this is in section A5 of the Appendix.

To illustrate, consider the re-fitting of the model (1) using annual data on accidents and

flows, with an exponential trend term. In the first iteration we assume , and an NB

model is fitted to the aggregate data to give estimates for a,  and b. In the second half of the

iteration, these estimates are used to fit the multinomial model in (5) and (6) to re-estimate .

Table 5 shows the estimates at the end of successive iterations. The rapid convergence is

clear, even with the excessive level of precision quoted here.

Table 5: Convergence of the multinomial model

Iteration

1 0.08872734 0.7301594 0.03350563 -0.06004986

2 0.08848451 0.7310552 0.03347281 -0.06004527

3 0.08848452 0.7310551 0.03347281 -0.06004527

4 0.08848452 0.7310551 0.03347281 -0.06004527

The advantage of this approach is its simplicity: it uses the aggregate accident data in fitting

the predictive model, and the multinomial model to estimate the trend (which here is aఉ per year reduction in accident risk). Crucially in this method, no

assumptions are made about the independence of observations from difference years at the

same site: a topic which will be discussed in the next section.

Assumption of independence

When using disaggregate data for the accident frequencies ௧ and flows ௧ the question

arises as to whether it is safe to assume independence between years at each site. Given that

the overdispersion error represents the effect of the unobserved design variables of a site, it

would seem likely that this effect remains the same from one year to another at any site, so
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that although the Poisson errors are independent, the overdispersion errors are common (or at

least highly correlated) across different years at any site. Therefore if the number of accidents

at site i in year t is denoted by ௧ it may be better to assume that these are drawn randomly

and independently from Poisson distributions with means ௧ and that ௧  ௧ where the
factor  is randomly drawn from the overdispersion distribution independently for each site i

but is constant for all years t at any site. The question arises as to whether the fitted model

from this formulation is much different from that from a model in which independence

between the ௧ is assumed for all sites and all years.

We therefore have two alternative versions of the model:

M1: ௧ ௧ where ௧ ௧ ௧ and the ௧ are independent for all .

M2: ௧ ௧ where ௧  ௧ and the  are independent for all .

These models were fitted to the links data using WinBUGS for the four overdispersion

distributions (gamma, lognormal, Weibull and VSG) and for the two versions of each model.

The results are shown in Table 6. In the VS-PG, the coefficient of variation ௩  where

 is the per-year average prediction for a site. The WinBUGS code for version M2 is given in

section A6 of the Appendix.

Table 6: Results from models with alternative independence assumptions

Model dispersion ௩ DIC

M1: PG 0.0733 -0.063 r = 3.475 0.5364 3065.8

M2: PG 0.0714 -0.060 r = 2.934 0.5839 2969.2

M1: PLN 0.0732 -0.062  = 0.5144 0.5504 3088.3

M2: PLN 0.0716 -0.060  = 0.5502 0.5946 2980.2

M1: PW 0.0732 -0.062 v = 2.047 0.5120 3052.2

M2: PW 0.0716 -0.061 v = 1.799 0.5752 2963.0

M1:VS-PG 0.0730 -0.059
c = 0.519

n = -0.264

0.623 ( = 0.5)

0.466 ( = 1.5)
3049.2

M2: VS-PG 0.0730 -0.062
c =0.529

n = -0.298

0.650 ( = 0.5)

0.469 ( = 1.5)
2957.6

The results show the superiority of the VS-PG over the three other models but more strongly

show the superiority of version M2 in each case. This confirms that the overdispersion error

is, for any site, constant from year to year. The DIC for model (M1) indicates this assumption

of independence (in both and ) is not valid.

If it is not safe to assume independence between years at the same site, it might also be the

case that it is not safe to assume independence between all links on the same scheme. Miaou

and Song (2005), Wang et al (2009), and Noland and Quddus (2004) have fitted models that

include a spatial autocorrelation effect: in the first case, for ranking sites (intersections in a

city and rural links across a state), allowing for the distance between sites; in the second case,

between neighbouring segments of a motorway when investigating the possible effect of

congestion on accident frequency; and in the latter, between neighbouring wards when
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considering the effect of deprivation on road casualties. Recall that in the rural links data

there are 334 links drawn from 73 schemes: some schemes contain just a single link, whilst

others comprise up to ten links. Therefore if link is part of scheme , it could be that there is

correlation between the overdispersion errors for links on the same scheme, on the grounds

that the design of one the link within a scheme will be similar to that of another link within

the same scheme. In an extreme case, with perfect correlation, the  may be drawn randomly

and independently from Poisson distributions with means    where the

overdispersion factor  is randomly and independently drawn from the overdispersion

distribution for each scheme but is the same for all links within that scheme.

Here we can formulate three alternative versions of the model:

M1: ௧ ௧ where ௧  ௧ and the  are independent for all .

M2: ௧ ௧ where ௧  ௧ and the  are independent for all .

M3: ௧ ௧ where ௧   ௧ and the  are independent for all , and

the  are independent for all .

These were fitted for the gamma model, with results as in Table 7. In each of M1 and M2

there is just one source of overdispersion error: from the link and the scheme respectively. In

the case of M3 there are two separate sources: from the link (with shape ) and from the

scheme (with shape ). It can be seen from the results that the best fitting model is M1, as it

clearly has the lowest DIC value. The very large shape value for the scheme errors in M3

confirms that there is no virtually no correlation between the errors for different links within

the same scheme. So, the conclusion is that it is safe to assume independence between all

links, including those on the same scheme: that is there is no discernible scheme effect.

Table 7: comparison of three model versions, investigating scheme effects

Model a  dispersion Cv DIC

M1: PG 0.0714 (0.0045) -0.059  0.5364 2969.1

M2: PG 0.0781 (0.0058) -0.058  0.5839 3073.9

M3: PG 0.0721 (0.0049) -0.061
 0.5504 2992.4

Similar fits were carried out for other distributional forms (Weibull and lognormal), and the

conclusions were the same.

Prediction uncertainty

The purpose of fitting models is generally to use them for prediction. Whilst the fitted model,

such as that in (1) or (2), provides a point estimate for , it is usually desirable to have an

idea of the uncertainty that should be attached to this prediction of the number of accidents to

be expected at a new site: either in the form of a standard error or as a confidence interval.
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Wood (2005) showed how these may be derived for the standard negative binomial

regression model. Here we provide a more general treatment for a variety of models and

fitting methods. Since , with , we have , so that

because of the independence of the and variables, we can write:

(8)

Because of this additive form, and the fact that both and are non-negative, it is best to

obtain confidence intervals on the log scale, and then transform. The second term on the right

hand side is the variance of the linear predictor: and, following a fit in R,

is given by the function predict for any specified new sites with given values of Q, L and

T. Since , is given approximately by ௩ଶ which, for the gamma case, is

equal to where is the shape estimated in the fitting process.

For example, consider the model in (1) with gamma overdispersion, the estimates from which

are given in the first row of Table 3, fitted using R. Details of the calculations, and the R

code, for the calculations and plotting of 95% CIs for both and can be found in section

A7 of the Appendix. Figure 8(a) shows a plot of the 95% confidence intervals for and ,

for sites that have values of ranging from 0 to 60 (the range in the fitting data set is from 2

to 42), whilst holding at 5 years and the link length at 1km (close to the mean for the data

set). It is noticeable how the CI widens appreciably as increases, especially beyond the

range in the original data. It can also be noted how much wider the confidence intervals are

for compared with those for .

Figure 8: plots showing the 95% confidence intervals on predicted values of and

as (a) varies, and (b) as varies (gamma case, using R).

Similarly if we investigate the prediction uncertainty when we vary over the range 0 to 2

kms, whilst keeping = 14 (the approximate mean of the data), and = 5 years, we obtain

the plot in Figure 8(b), where the rapid rise in the predicted number of accidents is evident as

L becomes small. The CI width also increases rapidly. This effect was discussed earlier and
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as a consequence seven short links (of less than 50m) were omitted from the fitting process.

Altogether these plots illustrate the potential dangers in extrapolating beyond the extent of the

fitting data set.

For models fitted using WinBUGS, similar information can be obtained rather simply by

adding a set of dummy links for which predictions, and their uncertainties, are to be

calculated. These extra links do not affect the model fitting (they have no values for the

observed numbers of accidents) but use the fitted model. In Figure 9, for example, a

lognormal distribution was assumed for the overdispersion (the model whose results were

given in the third row of Table 3). In addition to the 334 real links, 60 dummy links were

included. These had no observed accident frequencies, but all had T = 5 years, and L = 1km,

and values of flow Q ranging from 1 to 60. At the end of the model run, using 25,000

iterations following 5000 iterations for burn in, the output showed not only the statistics for

the model parameters a, b,  and  but also for the i and mi (i = 1, ... 60), including the

mean, 2.5% percentile and 97.5% percentile. From these the graphs in Figure 9(a) can be

drawn. Figure 9(b) shows the same sort of results for variation in the link length L which was

allowed to vary over the range 0 to 2 kms. The slight wobbles in the upper limit for are due

to the process being Monte Carlo. The overall nature of these plots for this lognormal case,

fitted in WinBUGS, is very similar to those produced for the gamma case, fitted in R, in

Figure 8, thereby showing a reasonable degree of robustness of the uncertainty estimation to

the distributional assumptions.

Figure 9: plots showing the 95% confidence intervals on predicted values of and

as (a) varies, and (b) as varies (lognormal case, using WinBUGS).

Conclusions

The paper has reported on a number of methodological issues that arise in the re-calibration

and the re-fitting of existing predictive accident models, here illustrated by application to data

on the accidents occurring over a five-year period on 334 rural single-carriageway links in the

UK. These issues are not specific to that particular type of data but may arise in a wide
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variety of circumstances. Therefore the intention is to contribute to the steadily-widening

literature on the subject of predictive accident modelling.

In the context of scaling up an out-of-date model to enable it to fit well to current data, the

question of goodness-of-fit measures arises as there are a number of seemingly sensible

criteria by which to assess the effect of applying any given scaling factor; these include the

unbiassedness, minimising the RMS error or the RMS relative error, and minimising the

mean absolute deviation or scaled deviance. The paper highlights the fact that these different

criteria generally will result in quite different values of the scaling factor and that there is,

therefore, no unique or correct criterion. Others have proposed graphical approaches, such

the CURE plot, in which the pattern of the cumulative residuals is inspected, to provide

insights into where the model does not fit well, or to confirm its satisfactory behaviour. The

paper has suggested the use of “binned” residual plots as a way of overcoming the inevitable

variability associated with individual observations and their residuals, as it is easier to detect

any systematic pattern without the eye being distracted by a small number of outliers.

The widely-used negative binomial regression model implies that the overdispersion

distribution is gamma. Developments in statistical modelling software (especially the wider

use of MCMC methods) have demonstrated that other distributions such as the lognormal and

Weibull are practicable alternatives to the gamma. The paper has shown that when these

alternative models are fitted, their resulting ௩ values are very close, and that more

substantial improvements in goodness-of-fit come from allowing this coefficient of variation

to depend on the predicted mean  in a power function. The form and effect of this

additional freedom is somewhat similar to that adopted by Lord and Park (2008), but uses

fewer parameters. This variable shape device ௩ m may be equally-well applied to other

distributions, and not just to the gamma, it has been shown. Of some importance is the

finding that the DIC values from MCMC fits are not a reliable way to compare the goodness-

of-fit for models with different overdispersion distributions. The numerical integration

maximum likelihood fits showed that there was hardly any difference between the log

likelihood values from the different models. This suggests that the choice of overdispersion

distribution is not particularly important.

When using disaggregate (eg annual) flow and accident count data in order to fit a model

with current trend estimated, it is important to consider the way in which the overdispersion

errors are modelled. Since the overdispersion error (the difference between a site meanand the predicted value m) is due to site factors that are not included in the predictive

model, it seems likely that these site factors will largely persist at a site from year to year.

Therefore it is important to recognise this in the model formulation and not treat the

observations from all links and all years as if they were independent. It is relatively easy,

using MCMC methods, to formulate a model either with independent overdispersion errors௧ or with constant (year-to-year) errors  . Comparisons between these alternative

formulations showed, with the links data set, that the latter model gave a far superior DIC

value, confirming that the overdispersion effect does remain constant at any site from year to

year, and that the independence model is incorrect. A simple alternative way to fit such a
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model, without the need for MCMC methods was shown to be the use of the multinomial

model to estimate the trend effect.

Finally, whilst in principle almost any model form for the distribution of observations can be

used and the likelihood function written as a numerical integral, and maximised using some

general function minimisation routine, users generally are influenced in the choice of model

formulation by the availability of software and algorithms to solve the model. Therefore, the

negative binomial model, with fixed shape, has dominated in predictive accident modelling

work in recent years. But the availability of MCMC methods, and other algorithms in open

source software such as R now means that the typical user has a wider choice of model and

solution methods than was previously the case. By providing details of algorithms, and code

for R and WinBUGS, we hope that this encourages others to try alternative model

formulations and thereby improve the fit to their data.
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Appendix A

Here we give sample code (for R and WinBUGS) for some of the model fitting and other

calculations carried out in the paper. In each case, only the core part of the code is shown:

that is, excluding data entry and manipulation. The versions used were R 2.14.1 and

WinBUGS 14.

A1. Fitting a Poisson-lognormal model in WinBUGS
# lognormal model for SC links data
# y = accidents; Q = flow; L = link length
model{a <- exp(k)

sigma <- 1/sqrt(tau); av <- -0.5/tau # to make E(f)=1
for(j in 1:NLinks){

y[j] ~ dpois(m[j])
m[j] <- f[j]*mu[j]
log(mu[j]) <- k+log(L[j])+alpha*log(Q[j])+b*(2/L[j])
f[j] ~ dlnorm(av, tau)

} # end Links loop
k ~ dnorm(0,0.0001)
alpha ~ dnorm(0,0.0001)
b ~ dnorm(0,0.0001)
tau ~ dgamma(0.001,0.001)

}

A2. Fitting the Lord and Park generalised negative binomial model in R
require(MASS);require(maxLik); require(miscTools)
# uses max likelihood to fit variable-shaped NB
# y = vector of accidents; Qav = vector of flows;
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# L = vector of link lengths; T = no. years data
nrate <- 2/L

# fit standard (fixed-shape) gamma first
fit <- glm.nb(y ~ log(Qav)+nrate+offset(log(T*L)))
k0 <- summary(fit)$coef[1,1]; alpha0 <- summary(fit)$coe f[2,1];
b0 <- summary(fit)$coef[3,1]; shape0 <- theta.ml(fit);
param0 <- c(k0,alpha0,b0,shape0,0,0)
# extracted coeffs to act as initial values in VS fit

# set up log likelihood function
logL <- function(param){
k <- param[1];alpha <- param[2];b <- param[3];
k1 <- param[4];alpha1 <- param[5]; b1 <- param[6]; s <- param [7]
mu <- exp(k)*T*(Qav^alpha)*L*exp(b*nrate)
shape <- exp(k1)*T*(Qav^alpha1)*(L^s)*exp(b1*nrate)
t1 <- log(gamma(y+shape))-log(gamma(y+1))-log(gamma(s hape))
t2 <- shape*log(shape)+y*log(mu)-(shape+y)*log(mu+sha pe)
z <- sum(t1)+sum(t2)}

# now optimise log likelihood for variable-shaped case
optbeta <- maxLik(logL,start=param0)
summary(optbeta)

A3. Fitting a variable-shaped Poisson-Weibull model in WinBUGS
# variable shape Weibull model for SC links data
# y = accidents; Q = flow; L = link length
model{a <- exp(k)

for(j in 1:NLinks){
y[j] ~ dpois(m[j])
m[j] <- f[j]*mu[j]
log(mu[j]) <- k+log(L[j])+alpha*log(Q[j])+b*(2/L[j])
v[j] <- 1/(c*pow(mu[j],n)) # 1/v is power function of mu
lam[j] <- pow(exp(loggam(1 + 1/v[j])),v[j]) # to make E(f)= 1
f[j] ~ dweib(v[j], lam[j])

} # end Links loop
k ~ dnorm(0,0.0001)
alpha ~ dnorm(0,0.0001)
b ~ dnorm(0,0.0001)
n ~ dnorm(0, 0.001)
c ~ dgamma(0.001,0.001)

}

A4. Drawing a CURE plot in R
nLinks = 334; nrate <- 2/L; T <- 5; alpha <- 0.831; b <- 0.0576
a <- 0.0552;
mu <- a*T*(Q^alpha)*L*exp(b*nrate)
res <- y - mu # residuals
# order the data by increasing value of Q
o <- order(Q) ; rord <- res[o]; Q <- Q[o]; muord <- mu[o]
r <- cumsum(rord); vr <- cumsum(muord); vmax <- max(vr)
# r = cumulative resids; vr = var(cumulative resids)
se = sqrt(vr*(1-vr/vmax)) # se(cumulative residuals) (adj usted)
Qmax <- max(Q); rmin <- min(r); rmax <- max(r)
plot(c(0,Qmax),c(rmin,rmax),type="n",xlab="flow",yl ab="cumulative
residuals"); lines(Q,r,lwd=0.25);
lines(c(0,Qmax),c(0,0),lwd=2.0); lines(c(0,0),c(rmin ,rmax),lwd=2.0)
lines(Q,2*se,lwd=0.25,lty="dotted");lines(Q,-2*se,l wd=0.25,lty="dotted")
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A5. Multinomial model for fitting model with trend in R
require(MASS);require(maxLik); require(miscTools)
# y[i,t] = accidents on link i in year t
# Q[i,t] = flow on link i in year t
# L = vector of link lengths
# T = no. years; N = no. links
ytot <- dim(N); Qav <- dim(N);p <- dim(T);mu <- dim(T);sumL < - dim(N);w <-
dim(T)
nrate <- 2/L;
beta <- 0 # initial estimate of beta (current trend)
for(i in 1:N) {ytot[i] <- sum(y[i, ])}

# Stage 1: fit using aggregate data, with current beta value, to estimate
k, alpha, b
for(t in 1:T){w[t] <- exp(beta*(t-1))}
for(i in 1:N){Qav[i] <- sum(w*Q[i, ])/sum(w)} # weighted av erage of flow
fit <- glm.nb(ytot ~ log(Qav)+nrate+offset(log(T*L)))
k <- exp(fit$coef[1]); alpha <- fit$coef[2]; b <- fit$coef[ 3]

# Stage 2: fit multinomial model, with current k, alpha, b to g et beta
estimate
beta0 <- beta
logL <- function(beta){
for(i in 1:N){
for(t in 1:T){mu[t] <- k*(Q[i,t]^alpha)*L[i]*exp(b*nrat e[i])
p[t] <- mu[t]*exp(beta*(t-1))}
sump <- sum(p)
for(t in 1:T){p[t] <- p[t]/sump}
sumL[i] <- sum(y[i, ]*log(p))}
totL <- sum(sumL)}
optbeta <- maxLik(logL,start=beta0) # find MLE of beta
beta <- optbeta$estimate # new estimate of beta
k; alpha; b; beta # print latest estimates. Return to Stage 1.

A6. WinBUGS code for fitting VS-PG model with trend
# VSG model for SC links data with trend
# overdispersion error same in each year
# y[j,t], Q[j,t] = accidents/flows on link j in year t; L[j] = l ink length
model{a <- exp(k)

for(j in 1:NLinks){
f[j] ~ dgamma(shape[j], shape[j]) # ensures E(f) = 1
for (t in 1:5){

y[j,t] ~ dpois(m[j,t])
m[j,t] <- f[j]*mu[j,t]
log(mu[j,t]) <- k+log(L[j])+alpha*log(Q[j,t])+b*(2/L[ j])+beta*(t-1)

} # end t loop
muav[j] <- mean(mu[j, ]) # average mu for this site
cv[j] <- c*pow(muav[j],n) # cv a function of av mu
shape[j] <- 1/sqrt(cv[j])
} # end Links loop
k ~ dnorm(0,0.0001)
alpha ~ dnorm(0,0.0001)
b ~ dnorm(0,0.0001)
beta ~ dnorm(0,0.0001)
n ~ dnorm(0,0.001)
c ~ dgamma(0.001,0.001)

}
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A7. Prediction uncertainty in R for the Poisson-gamma model
# y = accidents; L = link length(km); T = time period; Q = flow (0 00s)
nrate <- 2/L # junction rate (per km)
fit <- glm.nb(y ~ log(Q)+nrate+offset(log(T*L)))
# plot of prediction and uncertainty for range of values of Q
# keeping T = 5, and L = 1
Qnew <- 0.1*c(1:600) # range of Q's for predictions: (0,60)
Tnew <- rep(5,600); Lnew <- rep(1,600); nratenew <- 2/Lnew
new <- data.frame(Qnew,nratenew,Tnew,Lnew)
colnames(new) <- c("Q","nrate","T","L")
pred <- predict(fit,new,se.fit=TRUE)
eta <- pred$fit; etase <- pred$se.fit; mu <- exp(eta)
mulow <- exp(eta - 1.96*etase); muhigh <- exp(eta + 1.96*eta se)
lmse <- sqrt(etase^2+1/shape);
mlow <- exp(eta - 1.96*lmse); mhigh <- exp(eta + 1.96*lmse)
plot(c(0,60), c(0,20),type = "n",xlab="Q",ylab="predic ted accidents",
cex.axis=1.5,cex.lab=1.5)
lines(Qnew,mu,lty="solid",col="black",lwd=2)
lines(Qnew,mlow,lty="dotted",col="red",lwd=2)
lines(Qnew,mhigh,lty="dotted",col="red",lwd=2)
lines(Qnew,mulow,lty="dashed",col="blue",lwd=2)
lines(Qnew,muhigh,lty="dashed",col="blue",lwd=2)
legend(0,20,c("mean","95% CI on mu","95% CI on
m"),lty=c("solid","dashed","dotted"),col=c("black",
"blue","red"),lwd=2,cex=1.5)


