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Abstract

This paper presents idealised natural general and special dynamical modelgt@flay re-
routeing and of day to day green-time response. Both green-time response models ava Hesed
responsive control policyAntroduced in Smith (1979a, b, ¢ 1987). Several results are proved. For
example, it is shown that, for any steady feasible demand within a flow motted, general day to
day re-routeing model is combined with the general day to day green-timesespodel then under
natural conditions any (flow, green-time) solution trajectory cannot leave the regiqupbf-&asible
(flow, green-time) pairs and costs are bounded. Throughput is maximised in the followsey se
Given any constant feasible demand; this demand is met as any routeing / gecérajgctory
evolves (following either the general or the special dynamical model). The ttegre considers
simple “pressure driven” responsive control policies, with explicit signal cycles of fixed positive
duration. A possible approach to dynamic traffic control allowing for variablgeerchoices is
outlined. It is finally shown that modified Varaiya (2013) and Le at al (2013) predsuen
responsive controls may not maximise network capacity, by considering a v@ig sing@ junction
network. It is shown that (with each of these two modified policies) there eadysttlemand within
the capacity of the network for which there is no Wardrop equilibrium consisiimthe policy. In
contrast, responsiveoRon this simple network does maximise throughput at a quasi-dynamic user
equilibrium consistent with 2 queues and delays remain bounded in natural dynamical evolutions in
this case. It is to be expected that thisr€sult may be extended to allow for certain time-varying
demands on a much wider variety of networks; to show that this is indeedstnés a challenge for

the future.
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1. Introduction

It is important
(1) to use traffic signal control to make good use of the capacity of a given road network and
(2) to do the best to ensure that the network, with the traffic control operating, is stable.
This paper considers both (1) and (2) within a day to day model with vagigpensive signal setting
strategies.

First the paper considers, in sections 2-4, two simple dynamical [flow + gregndiodels
involving route flows and signal green-times in which the signal adjustnseeis to ensure that
consequent natural travellers’ re-routeing decisions make the best utilisation of the capacity available
on a given road network. In these two models (which we call “the general model” and “the special
model”) signal setting changes actively encourage congestion-reducing route-swaps in the future; both
models maximise network capacity under natural conditions. The capacity magimfiict arises
because both models utilise thgd®gnal control policy. This policy has been studied previously (see
Smith (1979a, b, ¢, 1987, 2011), Smith et al (1987), Smith and Ghali (1990), Smith and van Vuren
(1993), Smith and Mounce (2011), Smith (2015) and Liu and Smith (2015). Both the perfoemdnce
stability of the re-routeing control interactions is considered. The dynamical models here, in sections
2-4, do not involve explicit queues.

Then, in sections 5-8, distributed traffic control / routeing models involgkmicit queues are
considered. Here the signal control policies include not oplyuPalso naturally modified versions of
control policies suggested by Varaiya (2013) and Le et al (2013); here calleg Mdliand policy
ML. It is shown that neither MV nor ML are certain to maximise network capatignwravellers are
free to choose their own routes, by displaying a network where neither ofctretsel policies is
consistent with equilibrium route choices by drivers: natural corresponding day toathgls give
rise to evelincreasing queues (if users continually swap to cheaper routes). It is staiywonttthe
other hand, the Ppolicy does maximise the capacity of this network at a user-equilibriuraimgut
pattern, where all drivers are on cheapest routes: queues are then bounded irdaattoatiay
models.

The policies suggested by Varaiya (2013) and Le et al (2013) are both mokiyatesl paper by
Tassiulas and Ephremides (1992); on stability in the control of constrained queugingkseT his
initial work was aimed at ensuring queueing stability (and maximum throughpum)liirhop radio
networks. In these networks only certain sets of nodes are allowed to transmirsioudy due to
power and interference limitations. These sets of nodes are rather likessagea at junctions where

only those links in a single stage are given green simultaneously.



1.1.Outline description and purpose of the day to day control/routeing models introduced here

The central control variables in severely congested networks asstgnes; these are the
proportions of time different links and stages are given green. We also (especigistions 2-4)
utilise red-times rather than green-times: using red-times givdntaitive way of adding signal
timings into traffic routeing models.

Sections 2-4 obtain capacity-maximization and stability results. In these sections tifa cen
formula for the “pressure” on a stage arises from the Py signal setting policy. It is shown (in sections 2
— 4) that with this policy the routeingcontrol dynamical loop is both capacity maximising and stable
for a general network without queues. Sections 5-8 show that other policies ecassarily have
this capacity-maximisation property.

Each dynamical [routeing and signal setting] model described in this paper may hbiedegmia
model of a system periodically updated by some new choices of route (by say car drivemhand
new choices of signal timings (by a signal engineer or by an automatic conteshsyEb be specific
in this paper we generally think of both the route choice and signal contrahitgnas operating
from day to day. (A more general context is possible: this is “epoch to epoch”. In this case both short-
term within day route swapping and longer term week to week or month to month route swapping may
be considered, very approximately along the lines described here.)

Route flow changes (in the general and the special model) are driven by the following printiple. O
each day:

for each route with positive flow yesterday, some of that flow may swap today

but only to a route which was less costly yesterday (and joins the same OD pair). (1.2)
This is a natural if rather conservative behavioural assumption and depehédsdafinition of route
cost. There is here no compulsion to swap rélate: yesterday’s route flows are permitted to remain
the same today. (Both the route-choice models and the above principle depends omittoan afi
route cost.) If no route flow changes consistent with (1.1) are possible theoutesflow, green-
time] distribution is a Wardrop or a routeing equilibrium. (See War{6p2).) Green-time changes
(in both the general and special model presented here) are driven by the fpjowaiple: On each
day:

for each stage with positive green-time yesterday, some of that green-time maypedcsteaay

but only to a stage which was under more pressure yesterday (and is at the same junction). (1.2)
Again this is a natural if rather conservative responsive signal settimgjpbei and depends on the
definition of stage pressure. There is in this principle no compulsion to change sigingks;t
yesterday’s timings may remain today. (The signal changing principle (1.2) depends on the definition
of stage pressures.) If no change ieaptime is possible consistent with (1.2) then the [route flow,

green-time] distribution will be called a green-time equilibrium.



1.2.Abrief context

The central work concerning traffic equilibria in capacitated networisdut traffic signals) is in
Beckmann et al (1956). Allsop (1974), Gartner (1976) and Dickson (1981) were amdirgt ttee
point to the need to combine models of route choice and traffic signal couatrthy; o that optimal
controls taking account of routeing reactions might be found. This approacledmgpirsued by
Meneguzzer (1997), Maher et al (2001) and many others.

Gartner et. al. (1975) considers a linear programming method for optimigingl dimings
assuming that routeing is fixed; Gartner (1983) designed the OPAC control systeruren and
Van Vliet (1992) was an early study of route choice and signal control; &ndtlvan Vuren (1993)
considered the equilibrium problem with responsive traffic control from a thedrétggoint. Hu
and Mahmassani (1997), Liu et. al. (2006), Liu (2010) and Flotteréd and Liu (2014) have considered
day to day evolution with reactive signal control using a micro-simulatimsemHeydecker (2004),
has considered modern objectives of traffic signal control; Aboudolas et al @@@Maher et al.
(2013) consider different signal control optimisation methods without regarmling choices. Taale
and van Zuylen (2001) provide an overview of the assignment / control problem and.Schlaich and
Haupt (2012) describe a large scale implementation of routeing and coittiol MISUM software
with a view to determining suitable timings for a whole network. Shepher@)1®8s a review of
real-life traffic control systems.

Cantarella et al (1991), Cantarella (2010) and Cascetta et al (2006)ecahsidhoice of optimal
controls taking account of route choices; stability issues not dissimilar to those conside@tisker

Dynamical route-swap methods have been considered by Cascetta (1989), Bellei et alIN{2005
and Zhang (2005) and Nie (2010). Mounce (2006, 2009), Mounce and Carey (2011) and Mounce and
Smith (2007) present route-swap results which are related to those presented here.

Bie and Lo (2010) have considered stability and attraction domains arising in route swap models
and He et al (2010) have considered link-based models of route swapping.

Quasi-dynamic equilibrium networks, with explicit capacity constraints aplicéxqueues, have
been studied by Bliemer et al (2012), Nesterov and de Palma (2003), These modeledrav
combined with control by Thompson and Payne (1975), Smith (1987), Yang and Yagar (1995) and
Yang (1996).

The day to day systems studied here are generalisations of day to day dynamicalstygiethi
Smith and van Vuren (1993). In that paper on day 1 the signals are held fikdteanute flows are
equilibrated; on day 2 the flows are kept fixed and the signals are updated ragc¢orthie policy
being studied; on day 3 the signals are held fixed and the route flows are equilibnatizy; 4 the
flows are kept fixed and the signals are updated according to the policy being studiegt; othe
signals are held fixed and the route flows are equilibrated . . . . .iiMehes paper (a) the

adjustments of signals and flows is simultaneous (some adjustment of botlethagour every day)



and also (b) each flow adjustment is not necessarily to an equilibriumu@tttiioat is not ruled out)
and each control adjustment does not necessarily seek to satisfy the policy exactly (although that is not
ruled out). Thus here we are looking at the disequilibrium day to day modefllbagh routeing and
green-time.

The two main contributions made in this paper are as follows.
(i) The paper shows that certain control adjustments (using dipoliey) yield a stable dynamical
system when these are combined with natural routeing adjustments; and that the d\symsteice
which arise maximise throughput (with bounded costs) within a day to day system.
(i) The paper shows that certain control policies which have been proposed recantfail to
maximise throughput (or network capacity); with these policies queues may be unbdwseesl are
assumed to vary their routes by continually switching to cheaper routes even though idemiiduial
capacity.

1.3.The two dynamical route-flow swapping models considered in sections 2-4

The two main dynamical routeing models (the general model and the special mobisl)piaper
arise by supposing that the same travellers traverse a fixed network day after day dnivbtlanay
change their route from one day to the next. A general and a specific route swappigigare
utilised in this paper; both are driven by the principle given in (1.1). Plainly principle (1.1) depends on
the definition of route cost. There is also to be a step length constrtiit ladth the general and the
specific route-flow swapping model. All the directions employed in the general apping model
arise in Smith (1979a) and the single direction employed in the special seapping model is
derived from Smith (1984a).

1.4.The two dynamical {green-time or red-time swapping models considered in sections 2-4

In this paper the general and the special route-flow swapping models will benedmiith
corresponding general and special dynamical forms of the responssignl control green-time
swapping policy. Both the general and the special dynamicgtden-time swapping models satisfy
principle (1.2).

Again there is no compulsion in this principle to swap green-time from ont dlag next. Plainly
the general green-time adjustment (1.2) depends on the definition of stage ptassections 2-4
this pressure will be chosen to fit thggtgnal control policy, which has been specially designed to fit
within route choice models in strictly capacitated networks; seegxample, Smith (1979a, b, c,
2010, 2011), Smith and Mounce (2011) and Smith et. al. (2013). (A policy similar Ry pudicy is
considered also by Bentley and Lambe (1980).)

P, signal control policies utilise the stagipressure defined to be

the sum over all links i in stage J of the product



{saturation flow of link i} x {bottleneck delay experienced at the exlirdfi}. (1.3)
Then in this paper the general and specifjgfeen-time swapping dynamical systems both satisfy
(1.2) and a natural step length constraint.

In fact the paper initially utilises red-time rather than green-tingerGany stage J (this is a set of
links given green simultaneously) anti-stage J is the set of all dinkse same junction as staje
which are given red when stadeis green. Thus the red-time proportion allocated to siage J
equals the green-time proportion allocated to stage J. Then both of the dyfyméchtime systems
may both be written in terms of the red-time de€}of anti-stage J. This also is to be given by (1.3)
but with “stage” replaced by “anti-stage”. Using anti-stages and anti-stage costs, the stage green-time
swapping principle (1.2) becomes the following principle. On each day:

for each anti-stage with positive red-time yesterday, some of that red-tinigerssasapped today

but only to an anti-stage which was less costly yesterday (and is at the saime)unct (1.4)

1.5. Stability and convergence results in sections 2-4

It is shown in this paper that, under natural conditions, the general combined (rouyterftow
stage red-time) dynamical system directions (with a step length consgatable in the sense that if
the system is started at a feasible [route flow, anti-stage red-time] paiiolowls the general
dynamical system then

each possible solution trajectory never approaches the edge of the feasible region,
and costs are bounded along any trajectory. (1.5)

It will also be shown that the particular combined [route-flow, antiestiagl-time] dynamical
system not only remains within the capacity of the network (with bounded cost}biitas a much
more specific convergence property: the particular (route-flow, antistage egdiymamical system
converges is to a non-empty set of (route-flow, antistage redtime) equilibria consitteRf. wi

To state this property we need to define such consistent equilibria. Firstpaoferciute flows and
red-times is a Wardrop equilibrium if no route-swapping is possible when penggdl) holds.
Second, a vector of route flows and red-times ig-adq@ilibrium if no red-time swapping is possible
when principle (1.4) holds.

The paper shows that under suitable conditions every solution of the specific dInsysiem
converges to a non-empty feasible set of [route flow, anti-stage red-timeébegunilpairs; any such
pair (X, R) is simultaneously a Wardrop equilibrium and @eBuilibrium. (Such anX, R] will be
called a Wardrop - Pequilibrium.)

The general stability property (1.5) implies that the dynamigapdPicy “maximises network
capacity” in a very general way. This is because (1.5) says that if the steady demand is such that there
is a feasible start point (that is: there is a feasible [route flowstage red-time] pair) then any

solution trajectory of the dynamical system (1.1) + (1.4) (beginningesisible [flow, red-time] start



point) never hits or even approaches the edge of the feasible region. (Thisathe demand is
fulfilled and travel costs remain bounded throughout any solution trajectory.)

Of course it would not be good if an adaptive control system, when inteyragtih reasonable
routeing changes, either (i) reduces network capacity (by forcing the systemnd points which are
not supply-feasible so that costs become very large or unbounded) or (ijoféidsre reasonable
convergence properties; because such an adaptive control system when combined with reasonable
routeing dynamics may then on occasion create a costly system or an unpredistainbeosyboth.
The “general” results in sections 2-4 of this paper shows that with thgerBsponsive signal control (i)
cannot happen in the general model described here. The “special” (convergence) result shows that if

P, is utilized and the special dynamical system is followed then (ii) cannot happen either.

2. Some simple dynamical systems embracing route-flows and green-times (or red-times); and
stability

2.1.Route-flow costs and stage red-time costs

Now consider a network withKOD pairs and each OD pair p is joined hyrduites and also now
there are to be ¥hodes and each node n has a signal wistdges. A route is a contiguous sequence
of nodes and links without repetition; and a stage is a maximal set of approachesdioa which
may be shown green simultaneously. We suppose that if a particular lane is shewrthgn all
movements along that lane are shown green and that if two lanes are shown greéanesimly then
all movements from these two links are free to flow without interferesmdof each stage no two
movements given green simultaneously conflict).

In this paper we consider anti-stages and anti-stage red-times as well asasthgésye green-
times. Suppose that stage J at node n is green for a proportion of;titret @nti-stage J be the set of
all those approaches or links terminating at node n which are not in stageall linés in anti-stage
J are shown red simultaneously when stage J is shown green and anti-stage J éspeapfotion of
time R equal to G

There is now a simple way of placing control within the route assignmedeél above. This is to
think of the red time awarded to an anti-stage (and hence to the links amthstiage) as a different
type of flow (called red-time) taking up some of the available capacity at the ettitssefapproaches
in that anti-stage. Then the aggregated flow onilwkl comprise the flow of real vehicles added to
a suitable multiple of link “red-time” (designed to take up the capacity which cannot be used while
the signal is red for link ).

Henceforth for each linkwe let the new “total volume” v, = % + sr;; where Xrepresents the “real”
vehicular flow on linki (in vehicles per second say) andapresents the proportion of time linis
red. The multiple 3; (vehicles per second) is the capacity lost due to the proporfjaof ¢ed time,

bearing in mind the saturation flow(sehicles per second) at the link exit.



Then we suppose that the cost (in seconds) of traversing approach i equals
c(x) + fi(x + sri).

Here ¢x) now represents the cost (in seconds) of traversing the length of the link wtilenvtisex
and f represents the bottleneck delay (in seconds) felt at the traffic sibeal the flow is xand the
red time is . Both ¢(.) and f{.) are here to be non-decreasing non-negative functions. The slgpe of ¢
may be shallow and the slope pfrfay be steep; inay even have a vertical asymptote; a&nsl such
an asymptote naturally represents the finite capacity of most links ilif@e@rohibiting flows which
exceed this capacity.

A further natural “justification” of the form of the bottleneck delay formula above lies in looking at
other delay formulae for traffic signalled approaches. The most famous such afetayafis that
stated by Webster (1958). The second (unbounded) term of Webster’s two-term formula for the
average delay experienced at a signalised exit of linkx;i$s; g (s g — %)]. Now, writing this using
the red-time proportion r

Axil[sigi (sG—x)] = Alsig - x] - A(sg) = Als - (X +sTi)] - A[si-sri]
where 4 = 9/20, g; is the green-proportion awarded to link i, s; is the saturation flow at the link i exit
and x; is the average flow along i. So one natural steep cost function, with the form suggested above,
is

SO +s) = Allsi— (x; + si)].
This particular function captures the unbounded part of the second term of Webster’s delay formula. It
would be natural to extend the theory in sections 2-4 here to allow for the whole second term,

including -A/[s;- s;r;].
2.2.The central control assumptions in sections 2-4

For definiteness and clearness we will now suppose that

(i) ci(x) is non-negative, non-decreasing and continuous for @itk that 0 < x; < 5 and that (2.1a)
(i) fi(v) is non-negative, non-decreasing and continuous or) [@nd tends to infinity ag tends tos  (2.1b)
It is natural to insist as we do here that batlarfd ¢ are non-decreasing but this is not strictly
necessary for all of the analysis below. These suppositions (2.1a, b) essentmilyBetkmann et al
(1956) and ensure that the network is capacity constrained. (2.1a, b) alscaallery generous
dynamical model of control and routeing to be constructed (with very many solajectaries) and
thus enable a very general stability result to be proved. In essence we moav thhavcommodity link
model where the two commodities are:

% = vehicular flow on link i (vehicles per second) and

ri =red-time on link (a proportion and dimensionless).
(We also have;g green-time on link (again a proportion and dimensionless).)

For any two vectorg, y of the same length we define:

Xey = [X1, %, Xa, - - -5 X 0 Yo Yo Va, - -0 W = [XaYa, XoV2, XaYa, - - - XY



This is the Hadamard product of the vectoendy.
Let the link-route incidence matrix l#eand the link anti-stage incidence matrixieso that

A: = 1iflink i forms part of route and = O otherwise; and

B;; = 1 if link i forms part of anti-stage J and = 0 otherwise.
Suppose that a fixed demand transportation network modelNvittutes andn links is given. Each
link i has a link-exit-capacity or saturation flowasd two cost-flow functions satisfying (2.1) above,
so the links are all capacitated. Using the Hadamard product defined above, \nat4xy R) is
supply-feasible if and only if

S={(X,R); AX +s¢BR) < s}; (2.2)
and then to ensure supply-feasibility of any non-negative veXtdR)Y we suppose thak( R) € S

(Non-negativity will be ensured by making a separate assumption.)
2.3.The network and signal stages in sections 2-4

For each OD pair p the total of the flows afong all routes joining OD pair p isp, (fixed and
non-negative). At each node n the total of the green-time proportioaitoGated to the stages at that
junction is 1 and so the total of the red time proportionalRcated to the anti-stagdsat that
junction n is also 1. Here we suppose zero lost times.

A setD of demand-feasible route-flow vectofsis defined by:

D={X>0; > X =p,forall OD pairs p} (2.3a)

{rrjoinsp}
where thep, are given OD pair p demands and rjoinsp means that route r joins OD plag geflRD

of feasible anti-stage red-time vect®&ds defined by:

RD={R>0; » R,=1foralljunctions n} (2.3b)

(J3;Jatd

where Jatnh means that antistagis at node n. The [routeing + red-time] dynamical systems in this
paper are: at eadBD pair some real vehicular flow may switch to cheaper routes as in section 2 and
now also at each node some tade may switch to “cheaper” anti-stages.

To determine the costs of routes and anti-stages (which then fix the permiteedoauand red-
time swap directions in the (routeing, control) dynamical systems to be std¢edntdink costs are
added.

For route r the relevant link costs are the link flow-cogts) c+ fi(x, + sr;) and for stage J the
relevant link costs are the link red-time-costgxs+ sr;). The (flow-) cost Cof traversing route is
then the sum over all linksn route r of the link flow-costs() + fi(x + sr;) and the (anti-stage red-
time) costRC,; of anti-stage J is the sum over all links in anti-sthgélink (red-time)-costs;lsi(x +
sri). Thus

C =GO, R)= ), [6(0) + f04 + 1) (2.42)
ieR.



R =RG (X, R) = ) sfi(x+ ). (2.4b)
ieA

In (2.4b), A is the set of links in anti-stage J anRG; is the red-time cost felt by the anti-stabed-
time.

The vectorx of link flows and the vectar of link red-times here are determined frédhandR via:

x=AX andr =BR. (2.5)

Here the link red-time costsfs(x + sr;) are those which define the, Bontrol policy (Smith
(19794, b, ¢)). Other control policies and so other “allowed” swap directions arise if this link red-time
cost formula is changed. So, for example, the equi-saturation policy arises if we gpetifiki red-
time cost as the degree of saturation

%/gis = x/[(1-r)s] = %/[s - sri]- (2.6)

It may be seen from the above allowed swapping directions that at a junctiowaiéipproaches

the R policy (in choosing red times) may be thought of as seeking to ensure that

sifi(x + sir1) = $fo(%e + ), (2.7)
since this holds when equilibrium is reached in the sense that no red-time swagi@egn anti-
stages occurs in theyRase; similarly the equi-saturation policy may be thought of as seeking to
ensure that

X /01$1 = % /025,
since this holds when equilibrium is reached and there is then no red-time reyveppween anti-
stages.

A comment: It is clear from the above equation (2.7) in theaBe that if the saturation flowis
high then the Ppolicy will (by a suitable choice dR and sor) seek to ensure that the bottleneck
delay $ will tend to be small; encouraging the use of the approach with the Higheation flow
(even if the actual flow on that approach is small). The policy is designeacturage re-routeing
toward higher capacity routes rather than rewarding travellers on existites. The results in this
paper show that in a sense this is generally true. In contrast, standacdctmafifol policies such as
the well-known equi-saturation policy tend to give greatest green-times twutrently most-used
approaches and so may encourage increased usage of already highly used approaches.

The results in this paper show that, under natural conditions,,theli€® maximises network
throughput at a feasible equilibrium distribution of traffic flows. Tkisds to confirm that the policy
encourages routeing shifts over time to more economical routeing patterns.cépheity-
maximisation proofs given here are natural developments of those in Smith (19Zpand, Smith

(1987); this last paper deals with a quasi-dynamic setting.)



3. Two simple capacity-maximising results
3.1.Route-flow costs and anti-stage red-time costs

We now utilize the 2-commodity link cost-flow function
(c(x) + fi(x + sri), sfi(x + sr)) (3.1

essentially just introduced above. The first component gives the linkctiowmfelt by “real” vehicle
link flow and the second component gives the link red-time cost felt bynthesd-time. This link 2-
vector (3.1) will in what follows give rise to all permitted rotltev swaps and stage red-time swaps;
since by summing it specifies the flow costs of all routes and themedetists of all anti-stages. The
cost of a route is obtained by adding relevant link flow-costs (thosecists corresponding to all
links in the route); and the red-time cost of an anti-stage is obtained by adding retdvesd-time
costs (those red-time costs corresponding to all links in the anti-stage). Theseisomaratgiven in
(2.4a) and (2.4b

3.2.[Routeing + R control] assignment intervals: a general route-flow swap and red-time swap
dynamical system

The permitted flow and red-time swaps will depend on the specificatidhs obute costs and the
anti-stage red-time costs. These costs are given in (2.4a) and (2.4b) in terms of link flows and link red-
times.

In this section we restrict the permissible swaps as follows, as indicated in section 2. Suppose that

[X, R] +t[AX, AR]
is both demand and supply feasible, and so belongs to (Dx&Opr allt such that 0 <t < 1.
Consider moving

from [X, R] to [X, R] + [AX, AR]
along the straight line path

{[X,R] +t[AX,AR]; 0<t<1} 3.2

by steadily increasingffrom 0 to 1. Any such path will be called an interval.
3.3.Definition of a routeing-pPassignment interval

We shall call this straight line path or interval in (3.2) a routeingcbRtrol assignment inter vl
() [X, R] + t[AX, AR] is demand-feasible (or belongs to Dx RD) fortaltisfying 0 <t < 1;
(i) [X, R] + t[AX, AR] is supply-feasible (or belongs to S) fortadhtisfying 0 <t < 1; and also
(i) — (C, RO)([X, R] +t[AX, AR]) - [AX,AR]>0forall 0 <t<1.
A routeing / B-control assignment interval is thus a straight line path (3.2) which is demand and
supply feasible at each point apart (possibly) framR] + [AX, AR] corresponding to= 1. Also, the
direction AX, AR] of the straight line path must have a non-negative dot product with



—(C, RO)([X, R] +t[AX, AR])
for all 0 <t < 1. (At the final point (K, R] + [AX, AR]), (C, RC) may not be defined as this final point
may not be supply-feasible.) Rather as befof€, RC)([X, R] + t [AX, AR]) may be thought of as a
force pushing
([X, R] + t[AX, AR])
in the direction AX, AR]. For routeing / i control assignment intervals this push is never negative.
The ideas here are developed from Smith (1979a); the key paper on dynamical systemss such
those described just above was written by Smale (1976).
At any X, R], any direction arising from (1.1) and (1.4) gives rise to a routegngsBignment
interval, provided the step length constraint to be introduced holds.

3.4.Ageneral stability result involving linear route flow swaps and antiestad-time swaps

With the above specification of an allowable path, or a routejrgRtrol assignment interval, in
section (3.2):

if {{X, Rl + t[AX, AR]; 0 <t< 1} is a routeing - Pcontrol assignment interval theX,[R] +
[AX,AR] € S.
This means that even with our very wide collection of admissible raedhd stage red-time swaps
(giving rise to all possible routeingfeontrol assignment intervals),

a routeing/l-control assignment interval does not leave S. (3.3)

It then follows that along any routeing/Bontrol assignment interval travel costs are bounded. The
proof of this reasonably general result is given in appendix A below. The abat (3.3) shows that
stage red-time adjustments following a dynamic form of poligywRen combined with the generous
re-routeing rules in section 2 above creates a stable routgiogfirol system in as much as there is
no routeing/B-control assignment interval which leaves the set (Dx®®)lt follows that along any
routeing/RB-control assignment interval travel costs are bounded. It is easy to chechkjirgy an
example, that no similar result is possible for the equi-saturation p8esy.for example Smith
(1979c).

3.5.Asstronger stability result using a slightly stronger assumption.

A slightly stronger condition than (2.1b) above is:

fi(v)) is non-negative, non-decreasing and continuous or) @nd

5

[ fi(v)dy = . (3.4)
0

This condition is plainly somewhat stronger than (2.1b). Assuming that (3.42da) fiold we may
utilize Lyapunov arguments like those in Smith and Mounce (2010). Fgk;anysuch that

X+ Sr<s,



consider the standard Beckmann et al (1956) objective function

X
zZ) =Y. J’ ¢ (u)du (3.5)
i 0
and also the red-time-modified Beckmann objective function
X+ST
CEDY j f (u)du (3.6)
i 0
Then let
V(X, 1) = VieckmankX, I) = Z(X) + WX, r). (3.7)

It follows that:
oVIox; = ci(x) + fi (% + s1;) andoVior, = sfi (X + sT7)
and so
grad VK, r) = [c(x) + f(x + ser), sef(x + ser)]
(This uses the Hadamard product defined above in section 2.2.) It now further fobowséiify in
section 3.3 thaV cannot increase at any point along any assignment / control interval; so the value
taken byV along this interval cannot exceed the valu® ef\(x’, r% at the start of the interval.
Now (3.4) implies that W r) = Z(x) + WX, r) tends to infinity asx, r) approaches the boundary
of Swhere x+ sr; = 5 for at least one link. It follows that no assignment / contrt@rival (along
which V does not increase) can even get close to the unfeasible boundary of S, betalidahgi
corresponding V values would exceedd/¢°).
More can now be said: under condition (3.4) no sequence of assignment intervals can #mproach
boundary of S since such a sequence beginning ax%a$) (must remain within
{(x, r)e(DxRD)"S, (X, r) < VX’ r%}
and this set is a positive distance from the boundary of S. It followstttas case (where 3.4 holds)

travel costs are bounded along any sequence of assigngneamtkl intervals.

4. Outline of a simple global convergence result as route flows and stage red-times follow a

single trajectory

Here we consider certain sequences of particular routeipgdri®rol assignment intervals. For any
such sequence we demonstrate convergence to the set of those (route flow vestaigeantid-time
vector) or K, R) pairs which are Wardrop Ronsistent equilibria. Thus the sequence not only stays
clear of the boundary of the feasible set but also converges to a non-empfyVéatdrop— P,

consistent equilibria.



4.1.The modified proportional switch route-flow and stage red-time adjustment process MP AP

Let us suppose that a fixed demand model is given. There are to be K OD pairs, eachpOb pair
joined by N routes, and for each p the total flow for OD pair p,i¢fixed and non-negative). There
are also a humber of junctions and at each junction there are a number of stagesstagieantzach
router has an associated flow variableaXd each anti-stagehas an associated red-time variable R

For route-flow, X, subscripts, r ~ s means that roud®d routes join the same OD pair and are
different. For any route-flow subscripts r, s we define (the route-flow sveap fouter to route s
vector)As as follows:

Asr=-land Ais= +1if r ~'s; and\sq= 0 in all other cases.

For red-time, R, subscripts, r ~ s means that sta®l stages are at the same junction and are
different. For any red-time subscripts r, s we define (the red-time swap fronr stagege s vector)
RAs as follows:

RAr=-1 and Rss= +1if r ~ s; and R = 0 in all other cases.
We define a direction satisfying principles (1.1) and (1.4) at every fegXipR). This is to baJ(X,

R) where:

U(X, R) = Z KX, R)X: g[Ci(X, R) — C{X, R)] Arst Z KX, R)R 0[RC,(X, R) — RC(X, R)] (RA)s. (4.1)
{(r9r-5 {(r9r-5

Here ki, R) is a scalar and X R) is to be a continuous function ok(R). Asis the “swap flow
from route r to route sector” and (RA)s iS the “swap red-time from anti-stage r to anti-stagé
vector defined above. We insist that the functiais smooth, non-negative, non-decreasing; also we
insist that
p(X) =0ifx<0; p(x) >0 if x>0 and ¢(x) tends to 1 ag tends to to.
Additionally, the factor KK, R) in (4.1) is to be chosen so that for eaxhR) which is both supply
and demand feasible (see 2.2, 2.3a, 2.3b),
(X, R) +U(X, R) is also demand and supply feasible; and
[(X,R), (X, R) + U(X, R)] is an assignmentpRontrol interval.
Under reasonable conditions such a funck@xists. It follows immediately that, for any feasiblg (
R),
VI(X, R) + U((X, R))] < (X, R).
Now consider the dynamical system:

(X, R)(0) = (X, R)°and K, R)(t+1) = (X, R)(t) + U(X(t), R(t)) fort=0,1,2,3, ... 4.2)
where K, R)? is a given feasible starting [route flow vector, anti-stage redotor]; this starting
point is to be both demand and supply feasible. That,iR}(0) = (X, R)° belongs to (Dx RD)S
where D andRD are given by 2.3a and 2.3b aBib given by (2.2).

Now U(X, R) (in (4.2)) is a continuous bounded function of (current) flows, red-timete omsts

and anti-stage costs so, for any given continuous cost flow function



[C, RC] =[C(X, R), RC(X, R)]
defined on (Dx NS, U(X, R) becomes a continuous function &f, R) also defined on (Dx F)S.
The dynamical system (4.2) gives rise to a sequence of assigngasoniti®l intervals and V
declines to zero along this sequence. This is proved below.

4.2.Convergence of MPAP withsRignal adjustments

Suppose that (Dx RD)Sis non-empty and thaX( R) € (DxRD)S. If (X, R) is not a Wardrop-§
equilibrium then the directiotJ(X, R) is not zero andX, R) + U(X, R) € (DxRD)~S by our
construction (4.2).

It now follows that the set of Wardropr&quilibria is nonempty and that any solutioiX{[R)(t)}
of the dynamical system (4.2) converges to the non-empty set of WarglempiRbria. (Or: the
distance betweerX( R)(t) and the set of Wardropgfequilibria tends to zero.) This proof is given in

detail in appendix B below.
5. Stable responsive traffic control policies with explicit queues and cycle times

In the previous section it is supposed that for each link there is a “real” delay formula f; and that the
bottleneck delay felt at the link i exit equils; + s1;), where sis the saturation flow at the link exit,
x; is the flow out of the link exit and rs the proportion of time that the linkexit is red. This is a
major supposition which may not hold. To exploit the analysis in sections Z4hus natural to
consider what happens if the cost of travel along link i has a different form.

In a quasi-dynamic network lirika reasonable delay formula i$/@ g;; where Qis the number of
vehicles in a vertical queue at the link i exit apgghe proportion of time that the link i exit is green.
To make the previous analysis work in this case suppose given a quasi-dynamik aetivarnon-
decreasing unbounded functigrfdr each link i. Then (given thesg),fsuppose given a bottleneck
delay b, flow x and “red-time proportion” r; satisfying

b=fi(x +sn).

A little thought shows that typically (in a quasi-dynamic sgjtithe ¢ here cannot in fact be the
real red-time: however, can be no greater than the true or real red-time. So here it is necess#dly t
in a “slack” red-time r° which “corrects” each r;; so that the “real” red-time is ¢ + r° = r*; (say). To
allow for these increased real red times it is necessary to aaliiaed stage at each junction and it
is convenient to suppose that the link-antistage mBtr&invertible; this might be relaxed.

. When this is done the red-timefs comprise a feasible set of “real” link red-times. (Both rand ¢
need to be determined as controls.) Now we select tbdit the given artificial delay formulagdnd
then ¢° are determined to ensure that the total red-time is feasible, within the quasi-dyrmaigic m

Suppose that for each linlat a certain time [xb, r;, r;’] are known and satisfy:

b=f(x+sr)andx+sr+sr’=s. (5.1)



Let X, R, R°andR’ satisfyx = AX, r = BR, r*= BR* andr’ = BR". To exploit the results in
sections 2-4, we consider route-flow swaps and red-time swasAR*] such that X, R*] + {[AX,
AR*] is both demand and supply feasible, and so belongs to (Dx&D9r allt such that 0 <t < 1.
Consider moving

from [X, R*] to [X, R*] + [AX, AR¥]
along the straight line path

{[X, R*] +t[AX, AR*]; 0 <t< 1} (5.2)
by steadily increasingfrom 0 to 1. Such a [route-flow, red-time] path will be called an intervait. A
increases from 0 to 1 the separate component red RftpandR®(t) must evolvein such a way that
(5.1) holds at each t in [0, 1). Red tinfe&) andR®(t) evolve along a curve which is not typically a
straight line path because (5.1) always holds.

Imitating section 4, we here call a straight line path in (5.2) a routdPggdntrol assignment
interval if

() [X, R*] + t [AX, AR*] is demand-feasible (or belongs to Dx RD) fortaltisfying 0 <t <1;
(i) [X, R*] + t[AX, AR*] is supply-feasible (or belongs to S) foriadhtisfying 0 <t < 1; and also
(iii) — (C, RO)([X, R](1)) - [AX(t), AR(t)] >0 forall 0 <t< 1.

Here, at eachin [0, 1) the direction of motion o¥{(t), R(t)], namely AX(t), AR(t)], arising from
the straight line path (5.2) must have a non-negative dot product @hRC)([X(t), R(1)]) for all O
<t < 1. (At the final point, X(1), R(1)], (C, RC) may not be defined as this final point may not be
supply-feasible.) As before (C, RC)([X(t), R(t)]) may be thought of as a force pushixdt), R(t)]
in the direction AX(t), AR(t)]. For routeing / Pcontrol assignment intervalsq] R*], [X, R*] + [AX,
AR*]] this push is never negative.

With this new specification of a routeing § €ontrol assignment interval the results established in
section 4 also hold in this quasi-dynamic context. In this new setting, it igwgilthat no routeing /
Py control assignment interval can leave S, siMakeclines along any such interval and,\() tends

to infinity as §, r) tends to the boundary of S.

5.1.Pressure-driven responsive control policies

RC.(X, R) given in (2.4b) is the anti-stagecost but we may also use for each stag®ee stage
pressures PREJX, R). These are to be felt by stage r green-time. Anti-stage dynamics above may
then be written instead as pressure driven green-time dynamics; and this is tlomeest of the
paper.

Many real life traffic control systems have green-times which are peadésuen”; green-time
proportions are continually swapped toward those signal stages under greatest pressure faom away
stages under the least pressure. A point at which the green-time proportionsriveds a point at

which all the stages which receive some green-time are under equal pressure;t adhgmssible



then to move green-time toward any more pressurised stage. The simplest pfahsgee driven real

life responsive traffic control systems have fixed cycle times and the pormomf green-time
awarded to the stages during each cycle are determined at the start of thatMeyconsider such
simple systems in this section. These systems are more realistic than those described previmusly in t
paper in part because signal cycles and queues are explicitly represented.

Here we suppose that each stage pressure is constructed from “pressures” on the links comprising
that stage. Examples of such link pressures from the previous sections dsg;(and (i) sb. A
stage pressure equal to the maximum of the relevant link pressisgs gives rise to the
equisaturation policy and a stage pressure obtained by adding the relbvanhere bhis in the
discussion above given by a functiphdives rise to the fpolicy.

We now have explicit cycle times and queues. Also henealy be the measured bottleneck delay
felt on exitting link i, and is not necessarily given by a function of flowgmeén-time (or red-time).
At each junction the signal cycles are all to be the following time intervals ofafurateconds:

[0, ], [1, 21], [27, 31), .. . .. ,[t-Dr, ], e

The cycle [(t-1), tr] will be called the t" cycle. Other notation here is as follows

s = the saturation flow at the link i exit (veh/sec; for all i);

C, = the free-flow cost / time of travel via routé¢seconds; for all)t

x(t) = the average outflow from link i during tHeaycle (veh/sec; for all i)t

bi(t) = the average bottleneck delay experienced on exitting from link deniitg the ' cycle (secs,
for all i, t);

Qi(t) = the average number of vehicles queueing onilihkring the f cycle (vehicles; for all i, t);
G(t) = the proportion of time that stage k is green during'tegtle (for all k, t); and

gi(t) = the proportion of time that link i exit is green during theycle (for all i, ).

In this section the responsive control will have the following form. At eachiganat the end of
cycle t the stage green-times are changed (for implementation during the foltywlagcycle t+1)
only by green-time swaps from one stage to another stage under more pressure, and bgsthms of
swaps. In order to do this, at the end of cycbgt), Q(t), G(t), b(t) are all supposed known and for
each stag¢ the pressure PRESSt), Q(t), G(t), b(t) at time t is then determined. The stage green
time vector G(t+1) to be utilised in cyclé+1 is then in turn determined (for implementation during
the next cycle (cycle t+1) by adding @&(t) a sum of elementary swaps; each elementary swap must
obey the following rule.

Elementary (pairwise) green-time swap rule. For each pair of stagesirggle junction, say stage |

and stage k:
If PRESEX(t), Q(t), G(1), b(t)) > PRESEx(t), Q(t), G(t), b(t)) then some green-time is
swapped from stadeto stage j and no green-time is swapped from gtemstage k (513

The elementary swap rule (5.1) is applied to each pair of stages at;ttien the whole green-time

vector change determined at time 1t must be a feasible suf of such pair-wise elementary swaps



which each follow (8:3). The updated stage green-time ve@gr+ 1) = G(t) + S then determines the
green-times to be implemented in cycté.t

Rule (513) depends on the functions PRE&8d so the choice of these functions is critical. Also
(513 allows a large family of policies even if the functions PRESB8 given. Control policies
suggested by Smith (1979a, b, ¢), Wongpiromsarn et al (2012), Varaiya (2013), Le et ak(2013)
Gregoire et. al (2014) all belong to one of these families. For example, thignal control policy
belongs to this family if

PRESgX, Q, G, b) = Y jinki belongs to stage &1 (24

or PRESX, Q, G, b) = Yjinki belongs to stage &i/Ti- (539

5.2.Green-time equilibrium and some reasonable stage pressures

Here we call the state vectoqt], Q(t), G(t), b(t)) a green-time equilibrium if for each pair of

stages j, k at the same junction less pressurised stages receive no green-time or:
PRESgx(t), Q(t), G(1), b(t)) > PRESZx(t), Q(t), G(t), b(t)) implies that &t) = 0.

In this case the signal green-time is not changed. It is natural to expect that utaileicoaditions
a responsive control policy should have a green-time equilibrium. Further it is nasoréb axpect
that there should under reasonable conditions be a seque(i}eQ(t), G(t), b(t))} which is both a
routeing equilibrium (where more costly routes are not used) and also a green-time equilibrium at each
cycle t.

Table 1 gives a list of some reasonable stage pressure formulae and selecaad pelpers. Each
sum is over all links in stagek and p is the proportion of traffic leaving link to enter the
downstream link j. The idea of using backpressure (in telecommunication netwedwm} to have

first arisen in Tassiulas and Ephremides (1992).

Table 1. Some stage pressure formulae and references where correspantdahgpalicies are considered. The
sign “(BP)” means that the relevant stage k pressuredrmula involves backpressure and the sign “(NBP)”” means

that the relevant stage pressure does not involve backpressure.

Pressure Stage k Pressure Some corresponding references
number Formulae

1 2. s[Qi -2 pQl Tassiulas and Ephremides (1992), Wongpiromsarn

2 > WIQi - Y piQl (2012),

Gregoire et al (2014), Varaiya (2013a, b) (BP)
3 {exp ¥ s[Qi- 3 Le et al (2014) (BP)
P Q1Y G«
4 (XQ)/G Le et al (2014) (NBP)




S 2(Q79); X(sh) Smith (1979a, b, ¢, 1987) (NBP)
6 2IQ-XipiQl/ g This paper (BP)
7 >sibi - 2pib] This paper (BP)

The argument in Le et al (2013) appears to apply to show that (under theonsrsfiecified in Le
et. al.) this new Pbackpressure policy 6 stabilises queue lengths if route choices (and gp ahe p
fixed.

5.3.An outline of an extension of assignmergontrol formulations in sections1-4 into a dynamic

regime using P

To move the steady state theory in sections 1-4 toward a dynamical thsorgtiiral to consider

the following dynamic (time-slice) variation of the standard Beckmann efl@86] objective

function:
N %) N %(D+sr(t)
w.n=>> [cudu+> in(u)du.
iot=l 0 iot=l 0
Here there are N time slices corresponding+dl, 2, 3, . .., N. Then as in section 4 above, for each
@i, ):

oVIoxi(t) = ci(x()) + fi (x(t) + s ri(t)) andoViori(t) = s fi (x(t) + s ri(t))
and so grad W, r) = [c(X) + f(x, r), sef(x, r)]. This is similar to sections 2-4. To carry through the
theory in sections 2-4 in this dynamic context it is necessary to imposenaiime and FIFO

constraints. This is not done here.

6. A modified Varaiya max pressure policy which is not capacity maximising when route choice

is allowed for

The policies and models considered in 6, 7 and 8 below are smooth versiensawof policies
considered in section 5 above; just think of the cycle time being very, seailtles being very short
and the lost time being zero.

There has recently been a sharp increase in interest in local distributed gatiacsintrol policies
which are queue stabilising; see for example Varaiya (2013) and Le et al (20alB)ost all of this
work the interaction between these policies and routeing decisions by travelleraliewed for; and
thus merits attention. In the special network in figure 1 below we consider natnaalified versions
of the Varaiya Max-pressure control policy (called MV here) and the la¢ @introl policy (called
policy ML here). We show that in this network neither policy MV nor policy Mlkesathe best of
available network capacity when selfish route choices are allowed for; el ip sometimes not

consistent with routeing equilibrium and may lead to unbounded queues.



6.1. Anetwork on which neither the MV control policy nor the ML control policy maximizegniet

capacity

Routes 2-4

Route 1

Figure 1. A four route signalised network; links 2-4 all have exit saturatien=fl 1 veh/sec; link 1
has exit saturation flow 2 veh/sec. Stage 1 contains link 1; stage 2 contains links 2-4.

Consider the network in figure 1. Let:
s = the saturation flow at the link i exit (v/sec, fori=1, 2, 3, 4);
G = the freeflow cost/time of travel via routes 1, 2, 3, 4 (seconds; constant);
X, = the flow on route i (veh/sec, fori =1, 2, 3, 4);
b = the bottleneck delay at the link i exit (seconds, fori =1, 2, 3, 4);
Q = the queue volume on lirnk(vehicles, foii = 1, 2, 3 and 4);
G = the proportion of time that stage i is green (i = 1, 2);
0, = the proportion of time that link 1 exit is green (equal it G
0> = the proportion of time that link 2 exit is green (equal i G
0: = the proportion of time that link 3 exit is green (equal 1 énd
g4 = the proportion of time that link 4 exit is green (equal ip G
Suppose that
s=2ands=s3=4=1
so that the greatest flow is possible when the green-time proportion awarded to staged&de as
possible. Suppose also that the fil@av travel times Calong the four routes satisfy
C.< G< G< C,.
Of course we impose the natural constraints:
G +G,=1,G>0and G>0.
But we also here impose a further constrainGon (G,, Gy):
G, <4/7 (or Gy > 3/7).
This green-time constraint is needed to make the counterexample here work iplas siray as
possible. However this constraint @ may be very natural in practice. There are two possible

scenarios which might require such a constraint in practice when signadl aerfbeing utilised to



help with traffic management. First: the green-time constraiat 357 and G < 4/7 may be thought of

as protecting the environment along the three routes 2, 3 and 4, supposing that thesetdsr@ass
through sensitive areas, by disallowing large values 0fS8cond: suppose that link 1 is the main
commercial street of a thriving town and the routes 2, 3 and 4 represent different “bypasses”. Then it
would be natural to always encourage at least a minimum flow through the taimnstreet for
commercial purposes, and §3/7 might be thought of as doing this.

We suppose in this example tfais feasible, bearing in mind the saturation flows and the green-
time constraint. Clearly (given that & 3/7 and links 2 + 3 + 4 have together a greater saturation flow
than link 1) choosings = [3/7, 4/7] maximises the green-time allocated to stage 2 and also the
possible OD flow through this network. So

the maximum feasible value df= the maximum possible throughput = 2.(3/7) + 3.(4/7) =
18/7.

So we also suppose here (for the purposes of this counterexample) that the feabitdaragndT

(veh/sec.) for travel from the origin to the destination satisfies
2=14/7 <T<18/7;

so that T is feasible (because<TL8/7) but route 1 alone has insufficient capacityTaven if link 1
were given green all the time: because T > 2 the saturation flow ofLliido if all of the given
demand flowT (veh/sec) does reach the destination then some of that flow must use @ éecafkthe
routes 2-4.

Consider a fixed stage green-time ve@oand a corresponding quasi-dynamic equilibricend,
b, G). (This is a 4-vector of route flows, a 4-vector of queue volumes, a dradbottleneck delays
and G, in which flows are all on cheapest routes, unsaturated link exits have zero qudne and
Q/gis.) We assume that link 5 has a saturation flow > 3 and so is wide enough to accomnhodate al
possible outflows from links 1-4. We consider these 4-vectors.

We also suppose vertical queueing; so that the cost of traversing routetilis D this paper we
further assume, for eadhr 1, 2, 3 and 4, that the queue volumete bottleneck delay; land the
link green-time gare related by:

b= Q/gs. (6.1)
(Of course g= G, = G, 3= G;and g = G,.) This formula (6.1) may be motivated in a dynamic
context by assuming that the green-times are slowly varying (in which case b@caes
approximately true); here however we are assuming xh&, (b, G) is a quasi-dynamic equilibrium,
so that %, Q, b, G) is a constant vector (not varying with time) and in this case (6.1) lescom
accurately true.

Since X, Q, b, G) is a quasi-dynamic equilibrium, all flow must be on cheapest/quickest routes and
as shown above some flow must use at least one of the routds Rince these routes have a free-

flow travel time which is greater than that of route 1, the bottleneck delagute 1 (and possibly on



other routes too) must equilibrate the network. Singe C,< C;< C, these equilibrating bottleneck
delays must thus satisfy:

bs<b3<b,< by (6.2)
(At a quasi-dynamic equilibrium the bottleneck delays on shorter routes must comgsastiefor
the longer free-flow travel time of the longest utilised route.)

We will suppose that, in addition to the above conditions which include the quamidyusser-
equilibrium condition, the green times given to stages 1 and 2 arasy saimore general dynamic
version of Varaiya’s control policy (2013); within this continuous model. We here also assume that
link 5 has a very high capacity and that there is zero queue on link 5 so thatkpeessure term in
the Varaiya policy is zero.

6.2. Amore general dynamic version of the Varaiya Max Pressure signal control Policy

Suppose for the moment now that time is slotted and that all data (ondleeues and green-
times) is available at the time when the “current” time-slot starts. To determine the signal green-times
in the “current” time-slot the Varaiya Max Pressure signal control policy on this network utilises
Varaiya stage pressures defined as follows:

VP, = the Varaiya pressure on stage 1,8,@and (6.3a)

/P, = the Varaiya pressure on stage 20,3 $Qs;+ Q.. (6.3b)
The Varaiya Max Pressure policy then gives all gnés-in the “current” short time-slot to the stage
with the greatest pressure at the start time of the current timefshat.two stage pressures are both
maximal (and so equal) then resolve the tie arbitrarily.

We modify this policy to the following smoother policy (where we allow alsipdes proportions of
green-time within a time slot instead of 0 or 1). Suppose given the current que@s@, Q,; these
are the queues at the start of the curtiemt slot. Then the current stage pressifes VP, are given
by (6.3a) and (6.3b). Suppose given also the previous stage green-time propartiGpsttiese are
the green-time proportions which were implemented in the previous time slot.

Then the modified Varaiya control policy MV allocates current green-titodse(implemented in
the current time slot) according to the following principle:

MV: given stage green-times in the previous time-slot, eage gfeeen-time can only be reduced
in the current

time slot by swapping some of the previous stage green-time onto currentlpmassarised
stages.
The policy of always swapping all green to the most pressurised stage satisfiggepMV, so
Varaiya’s original policy satisfies MV. (However green-time allocations arising from principle MV
swaps are not necessarily all-or-nothing; so it is more likely that there isdymagnic equilibrium

consistent with MV than with the original Varaiya policy.)



Definition of an MV green-time equilibrium. If in a time slot n@gn-time changes are possible
under the defining principle of MV given above, then the distribution of queuktgraen-times is
said to be an MV green-time equilibrium. An MV equilibrium is thus a trigleq, b, G) such that:

less pressurised stages have no green-time

where the pressures are givenv®; andVP,.
6.3. Policy MVis inconsistent with quasi-dynamic user equilibrium on some networks.

Under the conditions specified in section 6.2 above, assume now that we are at a qoasi-dyna

equilibrium consistent with MV equilibrium. This is to be

(a) a routeing equilibrium (where all used routes have the same travel time),

(b) an MV equilibrium (as defined above) and (6.4)

(c) a queueing equilibrium (where queues are constant and occur only on saturated links).
(Such an equilibrium is a quasi-dynamic equilibrium [(a) and (c)] consistémtiva MV equilibrium
condition (b).) At such a consistent equilibrium there is no incentive for rlowis,fgreentimes or
gueue lengths to change.

Here (in our continuous context) we now show that (6.4) is impossible on thisrkethown in
figure 1; even though the demafd(which satisfies 2 = 14/7 9§ < 18/7) is within the network
capacity.

So assume that 2 = 14&' T < 18/7 and that (6.4) holds aX,(Q, b, G). As we are at a user
equilibrium and (6.1) holds it follows that (6.2) also holds and so

Qul 404 <03 15505 < 02 150, < Qu/ 101
Then, using the given saturation flows and the stage green-times,
Qul G203/ G, <0,/ G < Qi 2G..
So
Qi< 03 0>< (Qu/ 2)(G/ Gy)
This line above yields the following three inequalities:
Q< (QV2)(GIGy);
Q:< (Q/2)(G/Gy); and
Q< (QU2)(GIGy).
Adding the three inequalities:
Qi+ G+ Q< 3(Q/2)(G/Gy).
Thus, sinces= 2, s =s3=5=1 and G/ G; < 4/3 (this is the green-time constraint we are imposing),
$Qs + $Q3+ $Q2< (3/2)(sQ/2)(GAGy) = (3/4)(sQN(GA/Gy) = (3/4)(51Q1)(4/3) = sQu.

It follows that at any user equilibrium and at any green-time vegt¢satisfying the green-time

constraint):
the Varaiya stage 2 pressure®@,st Qs + Q4 < 5Q; = the Varaiya stage 1 pressure.



It now follows that, at an MV equilibrium green-time, the stage 2 gtiessn= 0 and the stage 1
green-time = 1. But T > 14/7 = 2 (the saturation flow of link 1); smdhe inflowT exceeds the
maximum possible outflow of link 2 and the queue on link 1 cannot be constant.

Thus the any feasible demamdsatisfying 2 = 14/7 <I < 18/7 cannot be satisfied at a quasi-
dynamic equilibrium when the MV policy is followed. (A slow dynamical model nd¥e unbounded

queues.)

7. A modified Le et al signal control policy which is not capacity maximising taen route choice
is allowed for

7.1. The Le et. al. signal control policy may not be consistent with quasi-dynamegudédsrium.

A similar analysis to that given above may be applied to a signal control gek@yned by Le et al
(2013), with no modification; still using the network in figure 1. In thasti®n the definitions and
constraints in section (6.1) all hold including the added green-time coh&€rair3/7. One difference
now is that time slots are replaced‘ipyoper” signal cycles.

Stage pressures are also defined very differently by Le et al (2013tarhavith stage weights as
follows:

Le et al stage 2 weight = exps + Qs + $Q,) and
Le et al stage 1 weight = exp(s).
Then, given the values of these weights in a current cycle, Le et al Q@dgst making the stage
green-times during the next cycle proportional to these weights; or
Gi= exp(sQu)/[exp(sQ. + $Qs + $Qa) + exp(sQy)]
and
Go= exp(sQ. + $Qs + sQq)/[exp($Q. + $Qs + 51Qu) + exp(sQy)]
Such a green-time vect@ equalises the two Le et al stage pressures given below:
LP,;=Le et al stage 1 pressure = ex@(¥G;;
LP,= Le et al stage 2 pressureexp(sQ.+ Qs+ $4Q4)/Go.

Here we show that for a range of feasible demdnitiés policy is inconsistent with quasi-dynamic
equilibrium on the network in figure 1, by using arguments very similandset given above in the
Varaiya case.

Suppose we are at a quasi-dynamic user equilibrium so that (6.1) and {®.2)olb Then as
shown above in the Varaiya case (using (6.1), (6.2) and the green-time congtradit 5

SQs + $Qs+ $Q:< 5Q1.
It follows immediately that (at a quasi-dynamic user equilibrium)

exp(sQs + $Q3+ $Q,) < exp(sQy)
and so ifG is to satisfy the Le et al policy then & G, and so G< %2 and G> %.



Now, in this Le et. al. cas€,is restricted by this additional green-time restriction €G% and G>
%) which has arisen from the Le et al control policy combined with quasi-dynamiequgibration.
Any feasibleT must therefore, at a quasi-dynamic equilibrium, satisfy:

T<%.3+%.2=5/2.
Thus if 5/2 = 35/14 g < 36/14 then there is no quasi-equilibrium which is also consistent witlethe
et al policy.

7.2. Aslow quasi-dynamic signal control adjustment with unbounded queues

Consider a natural slow dynamic (with green-times adjusting, accomlistage pressures, only
very slowly as in the modified Varaiya case described above, and flows adjustingntaimtie
guasi-dynamic equilibrium state) starting at any quasi-dynamic equilibrium3®iitd <T < 36/14.
Suppose that there are substantial positive initial queues and an initial stagéingeeeactorG°
consistent withl and so satisfying & > 4. Then the natural dynamic would sees®wly decrease
to < ¥ and G slowly increase to > %2, with green-time swapping slowly from the less peessur
stage 2 to the more pressurised stage 1, causing ever increasing queues as time passes.

8. The R signal control policy is capacity maximising and queue-stabilising when route choice is

allowed for in the network of figure 1.
8.1. R is consistent with quasi-dynamic user equilibrium on this network

Now we apply a similar analysis to that given above but using the signal control Bglisyll
using the network in figure 1. The big difference is that signal coptiaty P, is here shown to be
consistent with quasi-dynamic user equilibrium. We follow Smith (1979a, b, ¢, 198hifdamwo-
stage network the twopressures are given below:

P, stage 1 pressure zbs;
P, stage 2 pressure sbst+ Sshst s4by.
The R policy is satisfied exactly if the two pressures above are equal. The mosil dermaulation
of Py is the following dynamic formulation which allows for the case where the signals are ribt exac
satisfying the policy. LeG be the signal green-time in the last stageariTh
if Py stage 1 pressure shs< shy+sbstsb, = Py stage 2 pressure,
increase Gand decrease; @ the current signal stage and
if Py stage 1 pressure sbs> shy+sbstsb, = Py stage 2 pressure,
increase Gand decrease,@ the current signal stage.
Here we show that for any feasible demand this policy is consistent with goasiidy

equilibrium by constructing a quasi-dynamic equilibrium consistent with P



The delay formula = Q/gs is natural for quasi-dynamic networks and we suppose that this holds
here at a quasi-dynamic equilibrium. This formula allows stage pressureswdtien in terms of
either bor Q (at a quasi-dynamic equilibrium). Using this delay formula, these stage pressures may be
written:

P, stage 1 pressure sbs=Q:/0;;
P, stage 2 pressure 3bst s+ by = Qg + Qo/gs + Qu/0a.

The following specification gives a quasi-dynamic equilibriofm Q, b, G) consistent with Pfor
anyT such that 2 g < 3 (this is the relevant range of T for this network):

Xi=2B-T)>0;%=T-2>0;%=T-2>0;%=T-2>0,G=3-T>0,G=T-2>
0;
so that

Xi+ Xo+ X+ X=2B3-M+[T-2)+T-2)+(T-2)=Tand G+ G,=3-T+ T-2=1,
and X, G) is feasible. Also we put

b= C+Cs+Cy - 3G;
b, = G+Cy - 2G;
by =C, +C, - 2C; and

b,=Co+C; - 2G;

so that G+ b= C+C3+ C,— 2C, = Co+ b= G+ b= G4+ by and the four route costs are equal.
Thusb ensures that the route flows are equilibrated. Also, using the equati@Qydss or Q=sg b,
it is clear that for each Q > 0 and X= s ¢g; so that (the bottleneck queues are all non-zero and) the
links are exactly saturated, and hence the queues are equilibrated. XTHRsk, G) is a quasi-
dynamic equilibrium. Finally,

Sib; = 2[C+C3+ Cy— 3C] = 1[C5+ Cy - 2C] +1[C, + C, — 2C] + 1[C,+ C3— 2C] =
Sobo+ 533+ 540,
so that policy RPholds. Therefore thisX, Q, b, G) is a quasi-dynamic equilibrium consistent with
control policy R.

8.2. Aslow quasi-dynamic signal control adjustment with bounded queues

Consider a natural slow dynamic (with green-times adjusting, accomlistage pressures, only
very slowly) starting at any quasi-dynamic equilibriuky Q, b, G) with 35/14 <T < 36/14 and
maintaining that quasi-dynamic state. Suppose that there are substantial posdivguigiies and an
initial stage green-time vectd@® consistent withT and so with & > %. Then G would slowly
converge to

T-2>35/14-2=7/14=1%
and G would slowly converge to
3-T<3-35/14 = (42-35)/14 = 7/14 = Y.



(In this case queues also converge to the above equilibrium queues as time passes.)

It appears possible that the aboyeaRalysis may also apply in certain cases when the demand
varies with time and is such that there are time varying green-tintesima@ varying route flows
which ensure that all link-exit flows are within capacity; possiblyofeihg the approach outlined in

section 5.4.

9. Conclusion

This paper has presented several idealised natural general and speciatalymadels of daye-
day re-routeing and of day to day green-time response. Both green-tirneseespodels have been
based on the responsive control poligyiRroduced in Smith (1979a, b, ¢ 1987). Several results have
been proved. For example, it has been shown that, for any steady feasible demand spitisiala
flow model, if the general day to day re-routeing model is combined with theafjelagr to day
green-time response model then under natural conditions any (flow, green-timi@nsohkjectory
cannot leave the region of supply-feasible (flow, green-time) pairs and costs are baunagdelen
shown that throughput is maximised in the following sense. Given any constant fdasilled; this
demand is met as any routeing / green-time trajectory evolves (followiimgy ¢he general or the
special dynamical model). The paper has then considered simple “pressure driven” responsive control
policies, with explicit signal cycles of fixed duration. A possible approach to respoositrol
within a within-day dynamic network, allowing for variable route choices han kegy briefly
outlined. It has finally been shown that modified Varaiya (2013) and Le 205B) pressure-driven
responsive controls may not maximise network capacity when route choices are vényable,
considering a very simple one junction network. There are many opportunitiestifier farork in the
directions discussed in this paper. For example it would be interesting to andevgtiether §

(perhaps suitably modified) maximizes the capacity of within-day andaddsty dynamic networks.
Appendix A. Showing that there is no assignment P, control interval which leavesS

Here we show that with the above general specification of an allowable pathoatemng/R-

control assignment interval, in section 3.2,
a routeing / i control-assignment interval does not leave S.
(A.1)

(There are different ways of writing the following argument down. Below is chesers to be as
simple and clear as possible. The argument follows that in section 2 above.)

To prove that (A.1) (or (3.3)) holds, suppose that there is a routegpagohBol assignment interval
which leaves S. Let this beX] R] + t [AX, AR]; 0 <t < 1}. Then (i), (ii) and (iii) hold in section 3.3
(where a “routeing / Po-control assignment interval” is defined and also

[X, R] + [AX, AR] ¢ S.



It follows that, for this interval, asincreasesX, R] + t [AX, AR] swaps red-time and route flow in
such a way that{, R] + t [AX, AR] € Swhen 0 <t < 1 but K, R] + [AX, AR] ¢ S (when t =1). This
means that at least one link exit becomes exactly saturated justaabies 1. Here link i is said to be
exactly saturated if

X+ s =s.

Let SAT denote the (non-empty) set of all thoseach that link becomes exactly saturated at t = 1.
Since all links are unsaturated if t < 1 (this is becads&R] + t [AX, AR] € (DxRD)S for all 0<¢
< 1), each link i withi in SAT must have a steadily increasing«xsr;) as t increases. In fact; (x
sr;) must increase linearly with t (and must equalst ast reaches 1).

Letx = AX, r =BR, [AX, Ar] = [AAX,BAR] and also let

[X, R](t) = [X, R] + t [AX, AR] and [, r](t) = [, r] + t [AX, Ar] for 0 <¢<1.
Now, if i € SAT, astincreases to {x + sr;) must increase towarg and
A(X + sr)>0
and also (using (2.1b) in section 2)
bi(x + sr;) must increases toward infinity.
It follows that both components of the 2 commodity link cost vector
[ci(%) + b(x + sri), sbi(x + sr)]
must increase toward infinity as t approaches 1. (This uses (2.1a) and (2.1b).
On the other hand, for aliz SAT, ast increases toward 1, linkkemains unsaturated in
[X, R](t) = [X, R] + t[AX, AR] or in [X, r](t) = [X, r] + t [AX, Ar].
Hence (for ali ¢ SAT) [x + sri](t) is bounded away from, $0th components of the two-vector
[ci(x) + b(x + sri), sbi(x + sri)]
are bounded for atlsuch that 0 <t <1 and the sum
D [e(%) + b0x + sr), shx + sr)I) - [Ax, Ar]
i2SAT
is bounded below (by B say) for alkuch that 0 <t < 1. (The dot products above may have either
sign.) Hence:
- (C,RO)([X, R] +t[AX, AR]) - [AX, AR] =- (c+b, s*b)([X, r] + t [AX, Ar]) - [AX, Ar]
= - (c+b, 3b)([x, r](t)) - [AX, Ar]

= -2 (e by sD)(Ix, () - [A%, Ar] = - D [e(x) + bk + sri), sbx + sr) -

[AX;, Ari]
= - D %) + b + sr), shix + SR - [, Ar] - D (%) + b + sr), sbix + sl
ieSAT igSAT

- [AX;, Ar]



< - D [a(x) + bk + sr), shi(x + SR - [Ax, Ar] + B

ieSAT
(since Z [ci(x) + b(x + sr), sbi(x + sr)](t) - [AX, Ar] is bounded above by
igSAT
ast varies)
<o D b+ sr), b+ SN - (A%, Ar] + B°
ieSAT

(since gx(t)) - Ax is bounded for ad< 1 and all links i)

- Z [AX bi(x + sr;) + Ar sbi(x + sr)](t) +B’ = - Z [AX + sAri]bi(% + sri)(t) +B’
ieSAT ieSAT

and this tends te « as t tends to 1 since, foré SAT, (Ax + SAr;) > 0,

(% + sr)(t) tends to sast tends to 1 and

bi(x + sr;)(t) tends to + oo as t tends to 1.
Thus, under the current conditions,

- (C, RCY[X, R] +t[AX, AR]) - [AX, AR] =- (C, RC) ([X, R] +t[AX, AR]) - [AX, AR]
tends to- infinity ast tends to 1. It follows immediately that

- (C, RC) ([X, R] +t[AX, AR]) - [AX, AR] <0
for all t sufficiently close to 1. This implies that

-(C,RC) ([X, R] +t[AX, AR]) - [AX,AR]>0forall0<t<1
cannot hold (under the current conditions) and 3g ff] + t [AX, AR]; 0 <t < 1} is not a routeing /
Py -control assignment interval as we have defined it.

We have established a contradiction and therefore the supposition which led tnthediction
cannot in fact hold. Our supposition was thgiere is a routeing / Po-control assignment interval
which leaves 3 So this cannot hold and no routeing/d@ntrol assignment interval can leave S
whichis the result we are seeking to prove. O

The above result shows that stage red-time adjustments following a verglghmemic form of
policy P, when combined with the generous re-routeing rules in section 2 above cresiddea
routeing/RB-control system in as much as there is no routegggRtrol assignment interval which
leaves the set (DxRD)S. It follows that along any routeingtontrol assignment interval travel
costs are bounded. It is easy to check, by giving an example, that no similaisrpsskible for the

equi-saturation policy. See for example Smith (1979c).

Appendix B. Proving convergence to equilibrium of MPAP with B signal adjustments following
4.2)

This appendix gives the detailed proof of the assertion in section 4 abowyrbatical system

(4.2) converges to a non-empty set of consistent routeingreBn-time equilibria.



Suppose that (Dx RD)Sis non-empty and thaX( R) € (DxRD)~S. If (X, R) is not a Wardrop-§
equilibrium then the directio(X, R) is not zero andX, R) + U(X, R) € (DxRD)NS by our
construction (4.2).

In this section we prove that the set of Wardrgdgilibria is nonempty and that any solution
{(X, R)(t)} of the dynamical system (4.2) converges to the non-empty set of WargezuiRbria.
(Or that the distance betweenX{(R)(t)} and the set of Wardropgfequilibria tends to zero.)

To do this we suppose that{( R)(t)} is any solution of (4.2). We (i) show that the &ebf all
limit points of the sequenceX( R)(t)} is non-empty. This implies that X, R)(t)} converges to this
non-empty set. of limit points. We then (ii) and (iii) show that each membet @ feasible and a
routeing / B green-time equilibrium so that the &edf limit points is contained in the set of Wardrop-
Py equilibria. It then follows that the sequencX {R)(t)}, in converging to the set of limit points L,
must also converge to the set of routeing ¥daiteing equilibria, because this set contains L.

() Showing that L is non-empfyX, R)(t)} following (4.2) is an infinite sequence of points in
(DxRD)NS and so in(DxRD)(clS) where clS stands for the closure of S. Now (DxRDIS) is a
closed bounded subset of Euclidean space and so is compact; this implies thajesutessf points
in (DxRD)(cIS) has at least one limit point. Thugs non-empty.

(i) Showing that each member of L is in (DxRES. Let X, R)* be a point of L. Then at least
along a subsequenceX{(R)(t)} converges to X, R)* and so along this subsequence X\), R(t))}
of V-values is strictly decreasing and so cannot tend to +oo. This implies that (X, R)* cannot belong to
bdryS, the boundary of S; becausXWR) tends to infinity asX, R) tends to bdryS.

(iii) Showing that each member of L is a Wardrop, consistent equilibrium (in (Dx RD)S). We
have shown above that all limit points of our sequence lie in (Dx8DB0 now we just need to
show that if Ko, Ro) belongs to (Dx RD)S and Ko, Ro) is not a Wardrop- Py equilibrium then Xo,
Ro) cannot belong th. So suppose thak, Ro) belongs to (Dx RD)S and also thai{,, R) is not a
Wardrop- P, equilibrium.

We need to show that our sequene&t], R(t)} cannot have X,, Ro) as a limit point; so let us
suppose that

the non-Wardrop P, equilibrium Ko, Rg) in (DxRD)S is a limit point of ¥(t), R(t)}.
We will show that this leads to a contradiction. This will demonstratestett a non-equilibrium
point cannot be a limit point of{(t), R(t)} and so all limit points are WardropsBquilibria.

Our assumption is that the sequencé&tf R(t)} does have the non-equilibriumXg Rg) €
(DxRD)NS as a limit point. It follows at once (since V is continuous) thak{®( R(t))} has V(Xo,
Ro) as a limit point.

By the definition of the directiotd in (4.2) and continuity of k an@, each assignment interval
generating the sequencexX{t), R(t))} begins with a subinterval along which V strictly decreases. So

there are two constants h, a > 0 (possibly small; probably h < 1); so small that



- [C, RC]((Xo, Ro)+0RU((Xo, Ro))) - U((Xo, Ro)) > aforall 0<H<1.
Then, integrating with respect éoover [0, 1],
{VI(Xo, Ro) + hU((Xo, Ro))] = VI(Xo, Ro)]} < - ah
and so,
{VI(Xo, Ro) + U((Xo, Ro))] = (X0, Ro)]} < - ah.
(B.1)
This is because (sinceq§, Ro), (Xo, Ro) + U(Xo, Ro)] is an assignment interval)
- [C, RC]((Xo, Ro) + 8 U(Xo, Rg)) - U((Xo, Rp)) >0 forall 0 <0< 1
and so V((%%, Ro) + 8 U(Xo, Ry)) is nondecreasing throughout 0 < 6 < 1. (Note that, by the definition
of the directionU and continuity, each assignment interval begins with a subinterval along which V
strictly decreases.)
We are supposing that{(t), R(t))} has Xo, Ro) as a limit point, at least along a subsequence SUB
of1,2,3,..
(X(1), R(t)) converges toX,, Ro);
[(X(1), R() + UX(1), R(t))] converges to Ko, Ro) + U(Xo, Ro)];
and by continuity o¥:
V(X(1), R(t)) converges to Ko, Ro); and
VI(X(1), R(1)) + U(X(1), R())] converges to NXo, Ro) + U(Xo, Ro)].
Therefore, at least along the subsequence SUB,
VI(X(1), R(1)) + UX(1), R(1))] - VIX(1), R(t)) converges to [(Xo, Ro) + U(Xo, Ro)] - V(Xo, Ro).
Hence (using (B.1)) there is @elonging to SUB such that whenevertt and belongs to SUB:
V(X(t+1), R(t+1)) - V(X(1), R(t)) = V[(X(1), R(t)) + U(X(1), R(t))] - V(X(1), R(t)) < - ah/2 <

Moreover there must then also ety such that wheneveptt; and belongs to SUB:
V(X(1), R(t)) - (X0, Ro) < ah/4.
Thus for allt > ¢ > t,, belonging to SUB:
V(X(t+1), R(t+1)) = M(X(t), R(t)) + U(X(t), R®)] < VX(1), R()) - ah/2 < (Xo, Rg) + ah/4—
ah/2< V(Xo, Ro).
Now V(X(t), R(t)) is in any case strictly decreasing as t increases. So the above iyegpusilires
that:
V(X(t), R(t)) < (Xo, R) for all £ > ;.
Again since VK(t), R(t)) is strictly decreasing as t increases, it now follows that
V(X(1), R(t)) cannot converge to X, Ro) as t tends to infinity in SUB.
Now V is continuous and it then follows thaX{t), R(t)} cannot converge toXj, Ro) as t tends to
infinity in SUB.
But we are assuming that(€), R(t)) does converge tXg, Rg) for tin SUB. So our assumption has

led to a contradiction and therefore this assumption cannot in fact hold. Xs R(t)} cannot



converge to the nongfequilibrium (Xo, Ro) as t tends to infinity in SUB. It follows that the only limit
points of the sequenceX(t), R(t))} must be Wardrop-pequilibria; and hence that X(t), R(t))}

converges to the set of Wardrop-djuilibria. i
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