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Abstract 

 

There exists limited information regarding the effect of temperature on the structure and 

solubility of calcium aluminosilicate hydrate (C-A-S-H). Here, calcium (alumino)silicate 

hydrate (C-(A-)S-H) is synthesised at Ca/Si = 1, Al/Si ≤ 0.15 and equilibrated at 7-80°C. 
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These systems increase in phase-purity, long-range order, and degree of polymerisation of C-

(A-)S-H chains at higher temperatures; the most highly polymerised, crystalline and cross-

linked C-(A-)S-H product is formed at Al/Si = 0.1 and 80°C. Solubility products for C-(A-)S-

H were calculated via determination of the solid-phase compositions and measurements of 

the concentrations of dissolved species in contact with the solid products, and show that the 

solubilities of C-(A-)S-H change slightly, within the experimental uncertainty, as a function 

of Al/Si ratio and temperature between 7°C and 80°C. These results are important in the 

development of thermodynamic models for C-(A-)S-H to enable accurate thermodynamic 

modelling of cement-based materials.  

 

 

1. Introduction 

 

Temperatures experienced by cement and concrete based construction materials in service can 

vary greatly, due to heat evolution from cement hydration, variable ambient environmental 

conditions, steam curing, and other factors. The effects of temperature on hydrated blended 

and neat Portland cement (PC) material properties are important, and can include: increased 

reaction rate and density of calcium silicate hydrate (C-S-H) a [1], coarsening of paste 

microstructures [2], and decreasing compressive strengths [3] with increasing temperature. 

Despite the wealth of engineering information available in this area, only a few studies are 

available in the literature regarding the equilibrium phase assemblages and aqueous 

chemistry of PC systems as a function of temperature [1, 4, 5]. However, a good 

a Cement chemistry shorthand notation is used throughout the text: A, Al2O3; C, CaO; H, 

H2O; and S, SiO2.  
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understanding of the nature of C-S-H and other constituent phases in these systems at 

equilibrium [6-9] has meant that hydrated neat PC materials can be accurately described by 

thermodynamic modelling at temperatures from 5°C to above 80°C [10]. Extending this 

analysis to the CaO-Al 2O3-SiO2-H2O system represents a major step toward applying this 

technique to hydrated PC blends with high replacement levels of supplementary cementitious 

materials, which are not fully described by existing thermodynamic models [11]. This will  

enable a much deeper understanding of the chemistry and phase composition, and hence 

durability, of these materials in service. 

 

The chemistry and structure of calcium (alumino)silicate hydrate (C-(A-)S-H) products at 

ambient conditions have been the subject of sustained research for more than half a century 

[12]. These products are structurally similar to the tobermorite group of minerals, which 

contain aluminosilicate chains in ‘dreierketten’-type arrangements that are flanked on either 

side by an ‘ interlayer’ region and a calcium oxide sheet (Figure 1) [13, 14]. Al substitutes into 

bridging sites with strong preference over paired sites in these chains [15, 16]. It has also 

been suggested that the aluminosilicate chains in C-(A-)S-H products can cross-link in low-

Ca (Ca/Si < 1) cements [17] to form disordered analogues of ‘double chain’ calcium silicate 

minerals, e.g. 11Å tobermorite [18] (Figure 1A). 
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Figure 1. Schematic representation of the nanostructures of finite chain length A) cross-linked 
and B) non-cross-linked C-(A-)S-H products as structural analogues of double chain 11 Å 

tobermorite [18] and 14 Å tobermorite [13] respectively. The grey diamonds are Ca species in 
the Ca-O sheet, and red and blue triangles are aluminosilicate units in paired and bridging 

sites respectively. The green circles and yellow squares represent sites which can be occupied 
by positively-charged species that charge-neutralise the structure as a whole (typically H+, 

Ca2+ and/or alkali species such as K+ or Na+).  
 

Studies analysing laboratory-synthesised C-(A-)S-H specimens have identified that phase-

purity decreases as the Al/Si and Ca/(Al+Si) molar ratios of the solid phase increase, 

suggesting that a ‘soft’ upper bound on the Al content of C-(A-)S-H exists in the composition 

range relevant to cementitious materials of Al/Si ≈ 0.2 [19-21]. The secondary phases formed 

in these systems are typically AFm (Al2O3-Fe2O3-mono) type phases such as strätlingite 

(C2ASH8), katoite (C3AH6, which is the Si-free end member of the hydrogarnet series 

C3ASyH6-2y, 0 ≤ y ≤ 3) and/or the ‘third aluminate hydrate’ (TAH) [19, 21]. 

 

Considering the aqueous phases in equilibrium with C-(A-)S-H at different temperatures, it 

has been observed that the dissolved concentrations of Ca and Si are inversely related [20, 

21], similar to the solubility of these elements in C-S-H systems [22, 23]. The dissolved Al 

content is closely linked to the amount of Al incorporated into C-(A-)S-H, and the nature and 
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quantity of secondary phases formed. However, more experimental work is needed to provide 

data covering the full range of compositions and temperatures relevant to modern 

cementitious materials. Therefore, this paper aims to clarify the effects of temperature and Al  

on the chemistry, structure and solubility of equilibrated C-(A-)S-H systems at 7°C, 50°C and 

80°C, which are not yet well-described in the literature, and also utilises a recently published 

data set collected at 20°C [21] to complete the temperature series.  

 

 

2. Materials and methods 

 

C-(A-)S-H samples were prepared by mixing Milli -Q water (Merck Millipore), SiO2 (Aerosil 

200, Evonik), CaO (obtained by burning CaCO3 (Merck Millipore) at 1000°C for 12 hours) 

and CaO·Al2O3 at a water/solid ratio of 45 in an N2-filled glovebox to obtain bulk molar 

Al/Si ratios (Al/Si*)  of 0 to 0.15, with all experiments conducted at a bulk Ca/Si ratio of 1. 

The CaO·Al2O3 (99.1 wt.% determined by X-ray diffraction (XRD) with Rietveld analysis) 

was made from CaCO3 and Al2O3 (Sigma Aldrich) by heating for 1 hour at 800°C, 4 hours at 

1000°C and 8 hours at 1400°C in a Carbolite HTF 1700 furnace (the heating rate to 800°C 

and between each subsequent temperature was 300°C/hour), then cooled at 600°C/hour under 

laboratory atmosphere and ground with a Retsch PM100 ball mill to a Blaine surface area of 

3790 cm2/g [24]. Samples were equilibrated at 7°C, 20°C and 50°C in polyethylene vessels 

and at 80°C in Teflon vessels. The 7°C, 50°C and 80°C samples were shaken twice per week 

and the 20°C samples were shaken continuously at 100 rpm. Once equilibrium was 

approached  (1 year at 7°C, 182 days at 20°C, and 56 days at 50°C and 80°C), the samples 

were vacuum filtered with 0.45 µm nylon filters in a N2-filled glovebox. Equilibration times 

were selected following the study of C-(A-)S-H kinetics at 20°C in [21], which showed 
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approximately constant supernatant compositions after 182 days; additional analysis 

generally showed small differences (< ±25%) in dissolved Si, Al and Ca concentrations 

between 91 days and 1 year for the 7°C samples and 56 and 91 days for the 50°C samples. 

The filtered solids were washed with a 50% v/v water-ethanol solution, followed by a >94 

vol.% ethanol solution, and then freeze-dried for 7 days. The dried solids were stored in N2-

filled desiccators with humidity and CO2 traps made from saturated CaCl2 solutions (~30% 

relative humidity, RH) and solid NaOH pellets, until analysis. 

 

A Dionex DP ICS-3000 ion chromatograph was used to determine Ca, Si and Al 

concentrations in the filtrates (relative measurement error ±10% in the concentration range of 

interest and detection limit of 0.1 ppm). Si was detected using a sodium 

carbonate/bicarbonate eluent and a postcolumn reagent of sodium molybdate/sodium lauryl 

sulphate in metasulfonic acid. Al was measured using a HCl eluent and a Tiron/ammonium 

acetate postcolumn reagent. Aqueous hydroxide concentrations were determined at ~23°C 

with a Knick pH meter (pH-Meter 766) equipped with a Knick SE100 electrode that was 

calibrated against KOH solutions of known concentrations. Thermogravimetric analysis 

(TGA) data were recorded on a Mettler Toledo TGA/SDTA851e at a heating rate of 20°C/min 

under an N2 atmosphere. Mass losses between 30°C and 550°C were assigned to the 

combined dehydration and dehydroxylation effects of C-(A-)S-H, katoite, Al(OH)3 and 

strätlingite products during firing. Powder XRD patterns were recorded on a PANalytical 

X’Pert Pro MDF diffractometer equipped with a Ge(111) Johansson monochromator for Cu 

KĮ radiation, and an X’Celerator detector, and a step size of 0.017° 2ș. An external CaF2 

standard was used for Rietveld analysis, enabling quantification of the amount of C-(A-)S-H 

in each sample [25]. Average basal (d(002)) spacings of the C-(A-)S-H products were 

determined by visual inspection. Solid-state 29Si magic angle spinning nuclear magnetic 
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resonance (MAS NMR) spectra were collected for the Al/Si* = 0 and Al/Si* = 0.1 samples at 

79.49 MHz on a Bruker Avance 400 MHz NMR spectrometer with a 7 mm CP/MAS probe. 

The measurements were recorded using a 4500 Hz spinning rate, 9216 scans, ʌ/3 pulses of 

2.5 ȝs, and 20 s relaxation delays. 29Si chemical shifts were referenced to external 

tetramethylsilane. Spectral deconvolutions were carried out using component peaks with a 

Lorentzian/Gaussian ratio = 0.5, full width at half height ≤ 3 ppm, constant chemical shifts 

for each peak, and constrained peak amplitudes, as described in Appendix S1 (Electronic 

Supporting Information). 

 

Thermodynamic modelling was performed in the GEM Selektor v.3 software 

(http://gems.web.psi.ch/) [26, 27] using the PSI/Nagra 12/07 thermodynamic database [28], 

which is updated from [29] via the inclusion of two additional dissolved (alumino)silicate 

species, and the CEMDATA07 thermodynamic database [9, 10, 30-35] updated to include 

recently published data for Al(OH)3 and hydrogarnet phases [24, 36]. Solubility products 

(Kso) for C-(A-)S-H, and effective saturation indices (SI*) for relevant solid phases, were 

calculated from experimental data obtained here. Activity coefficients were calculated using 

the extended Debye-Hückel equation (in Truesdell-Jones form) with ion size and extended 

term parameter for KOH (л = 3.67 Å and bȖ = 0.123 kg/mol) [37]. The thermodynamic 

properties of the aqueous species and solid phases used in these calculations are shown in 

Appendix A.  
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3. Results and discussion 

 

3.1. X-ray powder diffraction with Rietveld analysis 

 

The XRD results show that C-(A-)S-H phases are the dominant reaction products in each 

sample (Figure 2). Katoite (C3AH6, PDF# 00-024-0217) and strätlingite (C2ASH8, PDF# 00-

029-0285) are also observed in some systems. Siliceous hydrogarnet (C3ASyH6-2y, 0 < y ≤ 3) 

is not identified in any of the samples. Katoite and strätlingite are more commonly found as 

secondary products in the systems with higher bulk Al/Si ratios and lower equilibration 

temperatures: strätlingite and katoite are observed in every Al-containing system at 7°C, but 

these phases are only observed in the Al/Si* ≥ 0.1 samples at 20°C, and only katoite is 

identified in the Al/Si* ≥ 0.1 samples at 50°C. Small amounts of katoite are also found in the 

Al/Si* = 0.15, 80°C sample. Calcite (CaCO3, PDF# 00-005-0586) is identified in some 

samples, which is attributed to minor carbonation during sample preparation, storage and/or 

analysis. 
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Figure 2. Cu KĮ diffractograms of the A) C-S-H, and B) Al/Si* = 0.05, C) Al/Si* = 0.1 and 
D) Al/Si* = 0.15 C-A-S-H systems. Data at 20°C are reproduced from [21]. The peaks 

marked by C1 and C2 represent C-(A-)S-H products with average basal spacings similar to 14 
Å tobermorite and 11 Å tobermorite respectively, and C represents C-(A-)S-H products with 
similarities to both tobermorite types. There is an additional unassigned minor peak at ~43° 

2ș in the trace for the Al/Si = 0.1, 7°C sample (not shown). Al/Si* = bulk Al/Si. 
 

The long-range order of the C-(A-)S-H products formed, as identified particularly by the 

intensity and sharpness of the reflections below 8° 2ș and at ~16° 2ș (Figure 2), increases as 

a monotonic function of temperature and Al content, to a maximum at Al/Si* = 0.1 or 0.15, 

and a temperature of 80°C. The peaks for the C-(A-)S-H products correspond to poorly-

ordered structural analogues of 14 Å tobermorite (5CaO·6SiO2·9H2O, PDF# 00-029-0331), 

and 11 Å tobermorite (4.5CaO·6SiO2·5.5H2O, PDF# 01-074-2784) [18]. These phases can be 

differentiated in the diffractograms by their different basal spacings; peaks marked C1 and C2 

in Figure 2 correspond to C-(A-)S-H products with basal spacings that match closely to the 

(002) reflections for the 14 Å and 11 Å reference tobermorite patterns used here, respectively. 

The peaks simply marked C indicate reflections of C-(A-)S-H phases with structural 

similarities to both 14 Å and 11 Å reference tobermorite types. These assignments are 

consistent with the analysis in [38], where mixtures of 11 Å and 14 Å tobermorite-like 

structures could best explain the observed shifts of the (002) reflections in the diffractograms 

of C-S-H systems over the composition range 0.6 < Ca/Si < 1.8. The average (002) spacings 

that correspond to the positions of the reflections in the XRD results here do not vary 

systematically with equilibration temperature or Al/Si ratio, and are between 11 Å and 14 Å 

for each system studied (Table 1).  
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Table 1. Average (d(002)) basal spacings and solid phase assemblages of the C-(A-)S-H 
systems, determined from Rietveld analysis. Data at 20°C are reproduced from [21]. The 

estimated absolute error is ±2 wt.% for the secondary products. Al/Si* = bulk Al/Si. 
Al/Si  * = 0 

Temperature (°C) 
Average basal 

spacing, d(002) (Å) 
C-S-H 
(wt. %) 

Katoite 
(wt. %) 

Strätlingite 
(wt. %) 

Calcite 
(wt. %) 

7 12.1 100 0 0 0 
20 11.9 100 0 0 0 
50 12.9 100 0 0 0 
80 12.1, 14.0 a 100 0 0 0 

Al/Si* = 0.05 

Temperature (°C) 
Average basal 

spacing, d(002) (Å) 
C-A-S-H 
(wt. %) 

Katoite 
(wt. %) 

Strätlingite 
(wt. %) 

Calcite 
(wt. %) 

7 12.6 99 0.4 0.6 0 
20 12.8 100 0 0 0 
50 12.3 100 0 0 0 
80 11.6 100 0 0 0 

Al/Si* = 0.1 

Temperature (°C) 
Average basal 

spacing, d(002) (Å) 
C-A-S-H 
(wt. %) 

Katoite 
(wt. %) 

Strätlingite 
(wt. %) 

Calcite 
(wt. %) 

7 13.1 98.8 0.8 0.4 0 
20 12.4 97.2 2.8 0 0 
50 13.6 97.6 1.9 0 0.5 
80 11.6 100 0 0 0 

Al/Si* = 0.15 

Temperature (°C) 
Average basal 

spacing, d(002) (Å) 
C-A-S-H 
(wt. %) 

Katoite 
(wt. %) 

Strätlingite 
(wt. %) 

Calcite 
(wt. %) 

7 - 96.1 2.1 1.4 0.4 
20 - 93.4 2.2 4.5 0 
50 - 98.5 1.3 0 0.2 
80 11.8 99.7 0.3 0 0 

a Two distinct d(002) reflections were distinguished in the diffractogram of this sample. 

 

Rietveld analysis of the diffractograms indicates that at most only small amounts of 

secondary products were formed in the systems studied (all samples contained ≥ 93 wt.% C-

(A-)S-H, Table 1). Phase purity increased with increasing temperature and decreasing Al 

content; phase-pure C-S-H was formed in the Al-free systems, and ≥ 99.7 wt.% C-A-S-H was 

found in the Al -containing samples that were equilibrated at 80°C.  

 

 

11 
 

http://dx.doi.org/10.1016/j.cemconres.2014.10.015


Preprint version of accepted article. Please cite as: 
R.J. Myers, E. L’Hôpital, J.L. Provis, B. Lothenbach, “ Effect of temperature and aluminium on calcium 
(alumino)silicate hydrate chemistry under equilibrium conditions”, Cement and Concrete Research 2015, 
68:83-93. 
Official journal version is online at http://dx.doi.org/10.1016/j.cemconres.2014.10.015 
 
3.2. Thermogravimetric analysis 

 

The solid phase assemblages identified in the TGA results (Figure 3) are similar to those 

identified by XRD (section 3.1); the peaks centred at 80-150°C in the TGA results indicate 

that >77% of the total mass lost in each sample is from interlayer and structurally bound 

water in C-(A-)S-H (noting that samples were freeze-dried and equilibrated to ~30% RH to 

remove the capillary and gel water [39]). The central positions of these mass loss peaks, and 

the total mass losses in each temperature range, do not vary systematically across the sample 

synthesis temperature range of 7-80°C, which suggests that the equilibration temperature is 

not the primary factor controlling the interlayer and structural water content of the C-(A-)S-H 

products formed here. The relationship between temperature and bound water content in 

tobermorite [40] and hydrated PC pastes [2] is different; these materials dehydrate 

progressively with increasing temperature over this temperature range.  
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Figure 3. TGA results for the A) C-S-H, and B) Al/Si* = 0.05, C) Al/Si* = 0.1 and D) Al/Si* 
= 0.15 C-A-S-H systems. Data at 20°C are reproduced from [21]. The data are represented by 
short-dashed traces at 7°C, long-dashed traces at 20°C, solid traces at 50°C and dotted traces 
at 80°C. The peaks labelled † and ‡ are assigned to C-(A-)S-H and the decomposition of C-

(A-)S-H to wollastonite (CaSiO3), respectively (Appendix S2, Electronic Supporting 
Information). Al/Si* = bulk Al/Si. 

 

A distinct shoulder at ~200°C is observed in the differential mass loss trace for the Al/Si* = 

0.15 sample equilibrated at 20°C (Figure 3D), which is assigned to strätlingite [41]. Small 

peaks at ~300°C are observed in the differential mass loss traces for the Al/Si* = 0.1 and 

Al/Si* = 0.15 samples at 7°C and 50°C (Figures 3C-3D), and at ~275°C in the trace for the 

Al/Si* = 0.1 and Al/Si* = 0.15, 20°C systems. These peaks are assigned to Al(OH)3 at 

~275°C and katoite at ~300°C [24]. Minor carbonation during sample preparation, storage 

and/or analysis is also identified in some samples, by peaks centred at ~650°C.  

 

The derivative mass loss traces for the Al/Si* = 0.05, 50°C sample and the Al/Si* ≥ 0.05, 

80°C samples contain wide and shallow peaks at ~380°C and ~500°C (marked by † in 

Figures 3B-3D). These features are principally affected by equilibration temperature because 

they are only apparent in the 50°C and 80°C samples, but also appear to be related to Al 
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content because the band at ~500°C is largest in the Al/Si* = 0.1, 80°C sample compared to 

the other samples equilibrated at this temperature. These peaks are assigned to thermal 

decomposition of C-(A-)S-H because none of the additional phases identified by TGA or 

XRD (section 3.1) can explain the mass losses associated with these bands. The peaks at 

~810°C are present in all of the samples studied here (marked by ‡ in Figure 3) and are 

assigned to the decomposition of C-(A-)S-H to wollastonite (CaSiO3) [42]; wollastonite is 

known to crystallise from C-S-H [43] and tobermorite [44] at this temperature. 

Decomposition of C-A-S-H in the temperature range 600-950°C also forms mayenite 

(C12A7), although distinct differential mass loss peaks for this process are not apparent in 

Figure 3. Additional XRD data supporting these assignments are shown in Appendix S2 

(Electronic Supporting Information). 

 

3.3. Aqueous phase chemistry and C-(A-)S-H chemical composition 

 

Figure 4A shows that the concentrations of Si and OH- in the supernatant solutions generally 

increase slightly with increasing temperature in the C-S-H systems (Figure 4A). However, 

there is not a clear dependence of the measured Ca concentrations on temperature. This result 

is consistent with published solubility data for C-S-H systems [5, 7, 8, 22, 23, 45-49]. In both 

the C-S-H (Figure 4A) and C-A-S-H (Figure 4B) samples, the concentrations of Ca, Si and 

OH- species in the filtrates change by less than an order of magnitude between 7°C and 80°C 

(Table S2 in Appendix S3, Electronic Supporting Information). 
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Figure 4. Concentrations of Si, Ca, Al and OH- species in the filtrates of A) C-S-H and B) C-
A-S-H (Al/Si* = 0.1) systems. Data at 20°C are reproduced from [21]. Previously published 
C-S-H solubility data for systems with solid-phase Ca/Si ratios = 1 ±0.1 [5, 7, 8, 22, 23, 45-

49] are shown as small white and grey symbols in A), with shapes corresponding to the 
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coloured points for the new data. The data measured here (relative error = ±10%) are 
tabulated in Table S2 (Appendix S3, Electronic Supporting Information). Minor amounts of 
additional solid products were identified by XRD and TGA in some systems, as marked by 

horizontal black and grey bars in B). 
 

The C-A-S-H systems, Figure 4B and Appendix S3 (Electronic Supporting Information), 

show weak increasing trends in the concentrations of dissolved Si and OH- species as a 

function of temperature and little variation of aqueous Ca content, which is a similar result to 

that found for the C-S-H systems (Figure 4A). In general, the concentration of dissolved Al is 

lower at higher temperatures. An increase in bulk Al/Si ratio generally leads to a higher 

concentration of dissolved Si and Al, and less Ca and OH- (Figure 4 and Table S2 in 

Appendix S3, Electronic Supporting Information). The variation in chemical composition of 

the C-(A-)S-H products is the main factor contributing to the trends in dissolved Ca, Si, Al 

and OH- concentrations, and will be addressed in detail in section 3.4. This result is consistent 

with the published solubility data for C-S-H, which show the same trends in Ca, Si and OH- 

concentrations as functions of Ca/Si in the solid phase [22, 23]. Small amounts of secondary 

products precipitated in the Al-containing systems (sections 3.1-3.2), and also contribute 

slightly to the measured solubilities of Ca, Si, Al and OH- species.  

 

Analysis of C-(A-)S-H solubility from these results is complex because the aqueous Si, Ca, 

Al and OH- concentrations do not follow monotonically increasing or decreasing trends, and 

because the samples with Al/Si ≥ 0.1, and the Al/Si = 0.05, 7°C system, contain additional 

strätlingite, katoite and/or Al(OH)3 products (see sections 3.1-3.2), meaning that the results 

do not represent the solubility of C-(A-)S-H alone. Therefore, the measured aqueous phase 

compositions were used to calculate effective saturation index (SI*) values for each 

precipitated phase and for some common solid products in the CaO-SiO2-Al 2O3-H2O system 

using eq.(1), as shown in Table 2, to clarify the relative solubilities of the solids formed here: 
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  (1) 

 

where the ion activity product (IAPi) and solubility product (Kso,i) refer to the dissociation 

reactions defined for solid i (Appendix A), and ni is the total stoichiometric amount of ions in 

the i th dissociation reaction. Here, n is 3.75 for C-S-H (C1.25S1.25H2.5), 3 for CH, 2 for SiO2 

(am), 2 for Al(OH)3, 9 for katoite, 9 for Si-hydrogarnet, and 6 for strätlingite. These 

calculations define effective supersaturation (SIi*  > 0, precipitation), saturation (SIi*  = 0) and 

undersaturation (SIi*  < 0, dissolution) states with respect to each phase, in each sample at 

equilibrium.  

 

Table 2. Effective saturation indices for the relevant reaction products in the C-S-H and C-A-
S-H systems, calculated from the solution compositions in Figure 4 and Table S2 (Appendix 
S3, Electronic Supporting Information). Effective saturation indices marked in bold represent 
solid phases that are observed in the TGA and/or XRD results of the respective experimental 
systems. A ‘near saturated’ condition of -0.4 ≤ SIi*  < 0 is assumed, as discussed in the text. 

Al/Si* = bulk Al/Si. 
Al/Si* = 0 

Temperature 
(°C) 

C-S-H a CH SiO2 (am) 
b Al(OH)3 

c 
Katoite Si-hydrogarnet Strätlingite 

7 -0.4 -1.4 -1.6 n/a d n/a d n/a d n/a d 
20 -0.1 -0.9 -1.7 n/a d n/a d n/a d n/a d 
50 -0.1 -0.6 -1.7 n/a d n/a d n/a d n/a d 
80 -0.2 -0.6 -1.4 n/a d n/a d n/a d n/a d 

Al/Si* = 0.05 
Temperature 

(°C) C-S-H a CH SiO2 (am) 
b 

Al(OH)3 
c Katoite Si-hydrogarnet Strätlingite 

7 -0.3 -1.4 -1.5 -0.5 -1.1 -0.6 -0.4 
20 0.0 -0.9 -1.6 -0.8 -0.8 -0.3 -0.3 
50 -0.1 -0.7 -1.6 -1.3 -0.9 -0.4 -0.7 
80 -0.2 -0.6 -1.5 b.d.l. e b.d.l. e b.d.l. e b.d.l. e 

Al/Si* = 0.1 
Temperature 

(°C) C-S-H a CH SiO2 (am) 
b 

Al(OH)3 
c Katoite Si-hydrogarnet Strätlingite 
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7 -0.3 -1.5 -1.4 -0.3 -1.1 -0.5 -0.4 
20 -0.1 -0.9 -1.7 -0.7 -0.8 -0.3 -0.3 
50 -0.1 -0.8 -1.4 -0.7 -0.8 -0.3 -0.4 
80 -0.3 -0.6 -1.5 -1.2 -0.9 -0.4 -0.8 

Al/Si* = 0.15 
Temperature 

(°C) 
C-S-H a CH SiO2 (am) 

b Al(OH)3 
c 

Katoite Si-hydrogarnet Strätlingite 

7 -0.4 -1.6 -1.3 -0.2 -1.2 -0.6 -0.4 
20 0.0 -1.1 -1.3 -0.7 -1.0 -0.4 -0.3 
50 -0.1 -1.0 -1.1 -0.5 -0.9 -0.3 -0.3 
80 -0.3 -0.8 -1.4 -0.6 -0.8 -0.3 -0.5 

a C-S-H is represented here by the mean chain length (MCL) = 5 end-member of the 
‘downscaled CSH3T model’ (Ca/Si = 1, Al/Si = 0) [11].  

b Amorphous SiO2.
  

c Microcrystalline Al(OH)3 at 7°C, 20°C and 50°C, and gibbsite at 80°C [24].  

d n/a = not applicable (systems contain no Al).  
e Dissolved Al concentration is below the detection limit (b.d.l.). 
 

The effective saturation indices (Table 2) show that the supernatant solutions are near 

saturated (-0.4 ≤ SIi*  < 0) with respect to C-S-H, and undersaturated with respect to Ca(OH)2 

and SiO2, which is consistent with the solid phase assemblages observed experimentally in 

these systems (sections 3.1-3.2). The ‘near-saturation’ range of SIi*  values chosen here 

represents the uncertainty associated with both concentration determinations and solubility 

calculations.  

 

The effective saturation indices (Table 1) indicate that C-S-H is the solid phase most likely to 

precipitate in each of the Al-free systems. The filtrates in the Al-containing systems are near 

saturated with respect to C-S-H in each of the systems studied, with respect to Al(OH)3 at 

7°C and higher Al concentrations, with respect to strätlingite (C2ASH8) at temperatures ≤ 

50°C and bulk Al/Si ratios ≥ 0.05, and with respect to Si-hydrogarnet (C3AS0.84H4.32) at 

temperatures ≥ 20°C and bulk Al/Si ≥ 0.05, which suggests that the systems are close to 

equilibrium. Katoite (C3AH6) was calculated to be undersaturated in each simulated system, 

although small amounts of this phase were identified in some of the Al-containing systems 

19 
 

http://dx.doi.org/10.1016/j.cemconres.2014.10.015


Preprint version of accepted article. Please cite as: 
R.J. Myers, E. L’Hôpital, J.L. Provis, B. Lothenbach, “ Effect of temperature and aluminium on calcium 
(alumino)silicate hydrate chemistry under equilibrium conditions”, Cement and Concrete Research 2015, 
68:83-93. 
Official journal version is online at http://dx.doi.org/10.1016/j.cemconres.2014.10.015 
 
(sections 3.1-3.2), which indicates that katoite forms initially from CaO·Al2O3, CaO and H2O 

and that the dissolution of this phase is kinetically hindered. Similar observations have been 

reported for laboratory-synthesised C-(A-)S-H samples aged for more than 1 year at 20°C 

[21]. These results suggest that the solid phase assemblages in the CaO-Al 2O3-SiO2-H2O 

systems studied here are likely to contain several Al-containing solid products at equilibrium. 

However, the solid phase assemblages found in the experimental samples are dominated by 

C-(A-)S-H (sections 3.1-3.2), which suggests that this phase outcompetes the other near-

saturated phases to form in these systems. 

 

A mass balance was performed using these results, the XRD and Rietveld refinement results 

and the TGA data, to determine chemical compositions for the C-(A-)S-H products formed in 

each sample (Table 3). This analysis excluded contributions from Al(OH)3 because no 

diffraction lines for this phase are present in the XRD results: small mass losses (≤1 wt.%) 

were associated with Al(OH)3 in the differential mass loss traces for the Al/Si* = 0.1 and 

Al/Si* = 0.15, 20°C samples only (section 3.2), meaning that any error introduced in the 

reported C-(A-)S-H compositions by neglecting Al incorporated into this phase, is minor.  
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Table 3. Chemical compositions of the C-S-H and C-A-S-H products, determined from the 
aqueous phase concentrations, TGA results and Rietveld analysis. Data at 20°C are 

reproduced from [21]. The estimated absolute errors are ±0.04 units in the Ca/Si ratios, ±0.2 
units in the H2O/Si ratios, and ±0.04 units at 7°C, ±0.03 units at 20°C, ±0.02 units at 50 and 

80°C in the Al/Si ratios of the C-(A-)S-H products. Al/Si* = bulk Al/Si. 
Al/Si  * = 0 

Temperature (°C) C-S-H chemical composition 
7 (CaO)0.99(SiO2)1(H2O)1.2 
20 (CaO)0.98(SiO2)1(H2O)1.5 
50 (CaO)0.99(SiO2)1(H2O)1.4 
80 (CaO)0.99(SiO2)1(H2O)1.4 

Al/Si* = 0.05 
Temperature (°C) C-A-S-H chemical composition 

7 (CaO)0.98(Al2O3)0.022(SiO2)1(H2O)1.3 
20 (CaO)0.99(Al2O3)0.025(SiO2)1(H2O)1.4 
50 (CaO)0.99(Al2O3)0.025(SiO2)1(H2O)1.4 
80 (CaO)0.99(Al2O3)0.025(SiO2)1(H2O)1.2 

Al/Si* = 0.1 
Temperature (°C) C-A-S-H chemical composition 

7 (CaO)0.98(Al2O3)0.045(SiO2)1(H2O)1.3 
20 (CaO)0.95(Al2O3)0.039(SiO2)1(H2O)1.4 
50 (CaO)0.96(Al2O3)0.043(SiO2)1(H2O)1.6 
80 (CaO)0.99(Al2O3)0.050(SiO2)1(H2O)1.1 

Al/Si* = 0.15 
Temperature (°C) C-A-S-H chemical composition 

7 (CaO)0.95(Al2O3)0.061(SiO2)1(H2O)1.7 
20 (CaO)0.94(Al2O3)0.051(SiO2)1(H2O)1.5 
50 (CaO)0.97(Al2O3)0.070(SiO2)1(H2O)1.7 
80 (CaO)0.98(Al2O3)0.074(SiO2)1(H2O)1.3 

 

The calculated Ca/Si and Al/Si ratios of the C-(A-)S-H products are generally more similar to 

the bulk conditions used (Ca/Si = 1 and 0 ≤ Al/Si ≤ 0.15) in the systems with lower Al 

content and higher temperatures, because these samples typically contain lower amounts of 

secondary phases. The Al content of the C-(A-)S-H products and the concentrations of Al 

dissolved in the supernatant solutions are directly related (Figure 5), and both typically 

increase with increasing bulk Al/Si ratio. In general, the concentration of dissolved Al 

decreases and the Al/Si ratio of the C-(A-)S-H phase increases as a function of the 

equilibration temperature.  
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Figure 5. Al /Si ratios of the C-(A-)S-H products as a function of the concentration of Al in the 
supernatant. Data at 20°C are reproduced from [21]. The uncertainties of the Al/Si ratios 

calculated for the C-(A-)S-H phases are ±0.04 units at 7°C, ±0.03 units at 20°C, and ±0.02 
units at 50 and 80°C. A relative measurement error of ±10% is specified for the aqueous 

concentrations. Lines are for eye-guides only. 
 

The low water contents determined for the C-(A-)S-H products formed here (1.1 ≤ H2O/Si ≤ 

1.7) compare closely to the proposed values for C-S-H with no adsorbed water (1.3 ≤ H2O/Si 

≤ 1.8 [50, 51]), which suggests that only interlayer and structural water remains after the 

drying procedure used here (dried to RH ≈ 30% [39]). The use of a more severe drying 

procedure here than in a recent study of temperature effects on PC pastes [2] explains why 

the H2O/Si ratios of the low-Al C-(A-)S-H in that study were found to vary as a function of 

temperature and were significantly higher (2.28 ≤ H2O/Si ≤ 3.31) than those determined here.  

 

3.4. 29Si magic angle spinning nuclear magnetic resonance 

 

The 29Si MAS NMR spectra are dominated by intense bands at -79.4 ppm, -83.5 ppm and -

85.3 ppm (Figure 6), which are characteristic of silicate species in chain-end (Q1), bridging 
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(Q2

b) and paired (Q2p) sites respectively (Figure 1) [52]. An additional peak is apparent 

between the Q1 and Q2
p sites in the Al/Si* = 0.1 spectra compared to the Al-free samples, 

which indicates that Q2(1Al) sites are present in the C-A-S-H systems. These species lead to 

bands centred at -81.9 ppm in the deconvoluted spectra [53]. Cross-linked Q3(1Al) and Q3
 

sites are also evident at -91.9 ppm and -96.6 ppm respectively in the spectrum of the Al/Si* = 

0.1, 80°C sample, which is the only spectrum that contains clearly visible resonance signals 

for these sites. Q3-type sites have also been identified in 29Si MAS NMR spectra of hydrated 

60% PC/40% silica fume cements (Ca/Si ≈ 0.83 and Al/Si ≈ 0.035), which were found to 

increase greatly in intensity at 80°C relative to 20°C and 50°C [54], although these sites are 

not observed in more Ca-rich materials in this temperature range (e.g. hydrated PC and C3S 

[55]). Strätlingite is not explicitly taken into account in deconvolutions of the 29Si MAS 

NMR spectra; this phase is thought to contain aluminosilicate species with 29Si isotropic 

chemical shifts of -80 to -90 ppm [56], but is not expected to greatly affect the deconvolution 

analysis because it was seen to be a minor component via Rietveld analysis for the Al/Si* = 

0.1 samples (≤ 0.4 wt.%, Table 1).  
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Figure 6. Solid-state 29Si MAS NMR spectra of the A) C-S-H and B) Al/Si* = 0.1 C-A-S-H 
systems. The fits and deconvoluted peaks for the spectra of the 80°C samples are shown as 

bright red and blue lines respectively. The chemical shift range corresponding to 
aluminosilicate sites in strätlingite is approximately -80 to -90 ppm [56]. Data at 20°C are 

reproduced from [21]. Deconvolutions for each spectrum are shown in Figures S3-S4 
(Appendix S4, Electronic Supporting Information). Al/Si* = bulk Al/Si. 
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The lineshapes of the spectra for the samples equilibrated at ≤ 50°C and the same bulk Al/Si 

ratio are similar, which indicates that the C-(A-)S-H products formed in these samples have 

similar degrees of polymerisation, as shown in Figure 7, calculated using eq.(2) for non-

cross-linked C-(A-)S-H (subscript NC) [57]. Al/Si ratios for non-cross-linked C-(A-)S-H are 

calculated by eq.(3) [57]. 
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Here, mean chain length (MCL) represents the average number of aluminosilicate tetrahedra 

per tobermorite-like chain in C-(A-)S-H. The MCL and Al/Si values for cross-linked C-(A-

)S-H structures (subscript C, i.e. a C-(A-)S-H product containing Q3 and/or Q3(1Al) sites) are 

given by eqs. (4-5) [17]:  
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Figure 7. C-(A-)S-H structural parameters calculated from deconvolution analysis of the 29Si 
MAS NMR spectra, determined using the ‘Substituted General Model’ [57] for the non-cross-
linked phases and the ‘Cross-linked Substituted Tobermorite Model’ [17] for the cross-linked 

phases. The sizes of the symbols represent the expected error bounds of the deconvolution 
results, except for the Al/Si* = 0.1, 80°C sample, where the uncertainty of the MCL 

calculation is represented by error bars. The cross-linked phase fraction for the C-A-S-H 
product in this sample has an error bound of +0.05 and -0.1, as marked by the dotted black 

lines. These results are tabulated in Table S4 (Appendix S4, Electronic Supporting 
Information). Al/Si* = bulk Al/Si. 

 

The C-(A-)S-H products formed in the samples equilibrated at 80°C are significantly more 

polymerised than those produced at lower temperatures; the same trend has been reported for 

C-(A-)S-H products formed in hydrated 60% PC/40% silica fume cements [54]. MCL values 

of 8.8 and 19.8 ± 6 were calculated for the C-(A-)S-H products in the Al /Si* = 0 and Al/Si* = 

0.1 systems at 80°C, respectively. This increase in chain length is associated with a 

significant increase in the long-range order of the C-(A-)S-H products at 80°C relative to the 

C-(A-)S-H phases formed at lower temperatures (section 3.1), which is particularly 

pronounced for the Al-containing samples. The increase in chain polymerisation from 50°C 

to 80°C is much smaller in the Al-free system relative to the Al/Si* = 0.1 system, and this is 
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consistent with the observation of cross-linked chain structures only in the Al/Si* = 0.1 

sample. Therefore, these results indicate that the formation of highly polymerised and cross-

linked C-(A-)S-H products is promoted substantially by the presence of Al.  

 

Figure 8 shows that the Al/Si ratios determined from analysis of the 29Si MAS NMR spectral 

deconvolution results (Figure 7) match closely with the chemical compositions of the C-(A-

)S-H products determined independently by the TGA results, measured filtrate compositions 

and Rietveld analysis (Table 3). The formation of a highly cross-linked C-A-S-H product in 

the Al/Si* = 0.1, 80°C sample is also consistent with the low average basal spacing for the C-

A-S-H phase in this system (11.6 Å, Table 1), which is similar to the layer spacing of double 

chain 11 Å tobermorite (11.3 Å, Figure 1A). 

 

 

Figure 8. Comparison between the chemical compositions of the C-A-S-H products in the 
Al/Si* = 0.1 samples, as determined by mass balance (TGA, XRD, aqueous phase 

compositions – Table 3) and deconvolutions of 29Si MAS NMR spectra (Figure 7). The sizes 
of the symbols represent the expected uncertainty in the spectral deconvolution results. The 

solid y = x line is intended as an eye-guide only. 
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3.5. C-(A-)S-H solubility  

 

Solubility products (Kso) were calculated for hypothetical C-(A-)S-H end-members with 

chemical compositions corresponding to the bulk chemistry of the systems studied (Al/Si = 0, 

0.05, 0.1, 0.15) but normalised to Ca/(Al+Si) = 1 and H2O/Si = 1.2, using the reaction 

represented by eq.(6): 

 

 ( ) ( ) ( )
( ) ( )

2 2 3 2

2 2
3 (( ) ( ) ( )) 2 ( )2  2  2   

( )

aq aq aq aq l

so
a b c f

CaO SiO Al O H O

Ca bSiO cAlO a b c OH b c f H

K

a Oa + − − −+

→←

+ + − − + + + −

  (6) 

 

where a, b, c and f are the respective stoichiometric coefficients for CaO, SiO2, Al2O3 and 

H2O in the C-(A-)S-H end-members. This reaction implies the following relationships for Kso 

(eq.(7)):  

 

 { } { } { } { } { }2 2
( ) 3 ( ) 2 ( ) ( ) 2 ( )

2 2( ) ( )

aq aq aq aq l

a b c a b c b c f a

soK Ca SiO AlO OH H O+ − − − − − + + −
= ⋅ ⋅ ⋅ ⋅  (7) 

 

Activities of Ca2+
(aq), SiO3

2-
(aq), AlO2

-
(aq), OH-

(aq) and H2O(l) were determined in GEM-

Selektor (http://gems.web.psi.ch/) [26, 27]; the OH- concentration was matched to the 

measured pH values. The results of these calculations, for the hypothetical C-(A-)S-H end-

members, are shown in Figure 9. Solubility products were calculated in the same way for the 

experimental C-(A-)S-H products with chemical compositions determined from the measured 

supernatant concentrations, TGA data and XRD results (Table 3), which are shown in Table 

S3 (Appendix S3, Electronic Supporting Information).  
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Figure 9. Calculated log10(Kso) values for hypothetical C-(A-)S-H end-members with 
chemical compositions of Ca/(Al+Si) = 1, Al/Si = 0, 0.05, 0.1 and 0.15, and H2O/Si = 1.2, 
and normalised to 1 mol SiO2. The approximate uncertainty in the log10(Kso) values are ±1 

log10 unit. The solubility product for the C-A-S-H product formed in the Al/Si* = 0.05 sample 
equilibrated at 80°C was calculated with [Al] = 0.001 mM because the measured Al 

concentration was below the detection limit. Al/Si* = bulk Al/Si. 
 

The solubility products of the hypothetical C-(A-)S-H end-members change slightly between 

7°C and 80°C, and very slightly as a function of Al/Si ratio, but remain within the error 

bound of ±1 log unit (Figure 9). These solubility products (-9 < log10(Kso) < -10) are 

comparable to those recalculated from reported Ca, Si and OH- solubilities in laboratory-

synthesised Ca/Si = 0.83 tobermorite specimens using eq.(6) (-8.1 ±0.3 at 25°C, -9.3 ±0.6 at 

55°C and -9.6 ±0.2 at 85°C [58]), as expected for these structurally and compositionally-

similar phases. Despite the large uncertainty relative to the variation in the calculated 

solubility products, the 80°C data do show a small systematic reduction in C-(A-)S-H 

solubility as the Al/Si ratio of this phase increases, which could indicate that these phases are 

slightly stabilised by the incorporation of Al at high temperature, but further experimental 
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solubility data are necessary to clarify this point. The precipitation of small amounts of 

katoite, strätlingite and calcite (Table 1) is not expected to significantly affect the trends in C-

(A-)S-H solubility reported here, although the results depend slightly on this factor. 

 

Nonetheless, the weak dependency of C-(A-)S-H solubility on temperature, clearly shown by 

these data, is an important result which will influence the development of thermodynamic 

models for cementitious materials across the temperature range of interest for the majority of 

service conditions worldwide. 

 

 

4. Conclusions 

 

This paper has analysed the structure and solubility of calcium (alumino)silicate hydrates, 

with and without the inclusion of Al , as a function of temperature. The long-range order and 

degree of polymerisation of the C-(A-)S-H products, and the type and quantity of secondary 

phases formed in the equilibrated CaO-Al 2O3-SiO2-H2O systems studied here, were 

significantly influenced by the synthesis temperature. The supernatants in these systems were 

close to saturation with respect to strätlingite and Al(OH)3 products at lower temperatures 

and higher Al/Si ratios, and equilibrium was attained more rapidly at high temperatures, 

meaning that the Al-free and 80°C systems contained the most phase-pure C-(A-)S-H 

products. The C-(A-)S-H phases formed at 80°C were much more polymerised and long-

range ordered than those produced at 7, 20 and 50°C, and the C-A-S-H product in the 80°C, 

Al/Si = 0.1 system was also highly cross-linked. However, no Q3-type sites were evident in 

the 29Si MAS NMR spectra for the C-S-H formed in the Al-free system at this temperature, 

indicating that cross-linking in C-(A-)S-H products is promoted by the presence of Al. 
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Solubility products for the C-(A-)S-H phases formed here did not vary beyond the 

experimental error bounds as a function of temperature or Al/Si ratio, but a small systematic 

reduction in C-(A-)S-H solubility at 80°C as the bulk Al /Si ratio was increased could indicate 

that these phases are slightly stabilised by Al at this temperature. Therefore, this study is an 

important step towards the development of thermodynamic models for C-A-S-H and 

advances the application of thermodynamic modelling to C-(A-)S-H based cements across 

the temperature range 7-80°C, which will provide new insight into the performance of these 

materials in service. 

 

 

5. Supporting information 

 

Additional material is provided as Electronic Supporting Information: details of the 

deconvolution method for the 29Si MAS NMR spectra is provided in Appendix S1; additional 

details of the differential mass loss peak assignments are shown in Appendix S2 (Figures S1-

S2); tabulated data relevant to the thermodynamic modelling calculations, including aqueous 

phase compositions, are presented in Appendix S3 (Tables S1-S2); and detailed 29Si MAS 

NMR spectral deconvolution results are provided in Appendix S4 (Figure S3-S4 and Table 

S3). This material can be accessed via the journal website 

(http://www.journals.elsevier.com/cement-and-concrete-research/). 
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Appendix A. Relevant thermodynamic data 

 

Thermodynamic properties of the aqueous species and solid phases used in GEM-Selektor to 

calculate SI*  and log10(Kso) values are shown in Tables A1-A3.  

 

Table A1. Standard partial molal thermodynamic properties of the aqueous species used in the 
thermodynamic modelling calculations. The reference state is unit activity in a hypothetical 

one molal solution referenced to infinite dilution. 
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Species V° 
(cm3/mol) 

ǻfH° 
(kJ/mol) 

ǻfG° 
(kJ/mol) 

S° 
(J/mol.K) 

Cp° 
(J/mol.K) Reference 

Al 3+ -45.2 -530.6 -483.7 -325.1 -128.7 [59] 
AlO+ (+ H2O = Al(OH)2

+) 0.3 -713.6 -660.4 -113.0 -125.1 [59] 
AlO2

- (+ 2H2O = Al(OH)4
-) 9.5 -925.6 -827.5 -30.2 -49.0 [59] 

AlOOHo (+ 2H2O = Al(OH)3
o) 13.0 -947.1 -864.3 20.9 -209.2 [59] 

AlOH2+ -2.7 -767.3 -692.6 -184.9 56.0 [59] 
AlHSiO3

2+ (+ H2O = AlSiO(OH)3
2+) 0 -1634.3 -1540.5 -25.0 -215.9 [28, 29] 

AlSiO5
3- (+ 2H2O = AlSiO3(OH)4

3-) 0  -2014.2 -1769.0 -66.3 -292.2 [28, 29] 
Ca2+ -18.4 -543.1 -552.8 -56.5 -30.9 [59] 

CaOH+ 5.8 -751.6 -717.0 28.0 6.0 [59] 
Ca(HSiO3)

+ (+ H2O = CaSiO(OH)3
+) -6.7 -1686.5 -1574.2 -8.3 137.8 [60] 

CaSiO3
o (+ H2O = CaSiO2(OH)2

o) 15.7 -1668.1 -1517.6 -136.7 88.9 [9] 
K+ 9.0 -252.1 -282.5 101.0 8.4 [59] 

KOHo 15.0 -474.1 -437.1 108.4 -85.0 [59] 
Na+ -1.2 -240.3 -261.9 58.4 38.1 [59] 

NaOHo 3.5 -470.1 -418.1 44.8 -13.4 [59] 
HSiO3

- (+ H2O = SiO(OH)3
-) 4.5 -1144.7 -1014.6 20.9 -87.2 [60] 

SiO2
o 16.1 -887.9 -833.4 41.3 44.5 [30, 61] 

SiO4O10
4- (+ 2H2O = Si4O8(OH)4

4-) 0 -4082.7 -3600.8 -253.9 -1123.2 [28, 29]  
SiO3

2- (+ H2O = SiO2(OH)2
2-) 34.1 -1098.7 -938.5 -80.2 119.8 [9] 

OH- -4.7 -230.0 -157.3 -10.7 -136.3 [59] 
H+ 0 0 0 0 0 [59] 

H2O
o 18.1 -285.9 -237.2 69.9 75.4 [62] 

N2
o 33.4 -10.4 18.2 95.8 234.2 [61] 

O2
o 30.5 -12.2 16.4 109.0 234.1 [61] 
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Table A2. Standard partial molar thermodynamic properties of the solid phases used in the 
thermodynamic modelling calculations. The reference state is 298.15 K and 1 bar. 

Phase V ° 
(cm3/mol) 

ǻfH° 
(kJ/mol) 

ǻfG° 
(kJ/mol) 

S° 
(J/mol.K) 

Cp° 
(J/mol.K) Reference 

Al(OH)3 
(microcrystalline) 

32.0 -1265.3 -1148.4 140.0 93.1 [24] 

Gibbsite 32.0 -1288.7 -1151.0 70.1 93.1 [63] 
Portlandite 33.1 -984.7 -897.0 83.4 87.5 [64] 

SiO2 (amorphous) 29.0 -903.3 -848.9 41.3 44.5 [11] 
Katoite, C3AH6 149.7 -5537.3 -5008.2 421.7 445.6 [24] 
Si-hydrogarnet, 
C3AS0.84H4.32 

142.5 -5847.5 -5365.2 375.2 412.6 [36] 

Strätlingite, C2ASH8 216.1 -6360.0 -5705.1 546.2 602.7 [9] 
C-S-H solid solution, the ‘downscaled CSH3T’ model 

TobH - 
(CaO)1(SiO2)1.5(H2O)2.5 

85.0 -2833.0 -2562.0 152.8 231.2 [11] 

T5C - 
(CaO)1.25(SiO2)1.25(H2O)2.5 

79.3 -2782.0 -2519.0 159.9 234.1 [11] 

T2C - 
(CaO)1.5(SiO2)1(H2O)2.5 

80.6 -2722.0 -2467.0 167.0 237.0 [11] 

 

 

Table A3. Dissociation constant reactions for the solid phases used in the thermodynamic 
modelling calculations. 

Phase Reaction log10(K so) Reference 
Al(OH)3 

(microcrystalline) Al(OH)3 + OH- →←  AlO2
- + 2H2O -0.67 [24] 

Gibbsite Al(OH)3 + OH- →←  AlO2
- + 2H2O -1.12 [28, 29] 

Portlandite Ca(OH)2 →←  Ca2+ + 2OH- -5.20 [28, 29] 

SiO2 (amorphous) SiO2 (am) →←  SiO(OH)3
- - OH- - H2O 1.476 [31] 

Katoite, C3AH6 
(CaO)3(Al2O3)(H2O)6 →←  3Ca2+ + 2AlO2

- 
+ 4H2O + 4OH- 

-20.50 [24] 

Si-hydrogarnet, 
C3AS0.84H4.32 

(CaO)3(Al2O3)(SiO2)0.84(H2O)4.32 →←  
3Ca2+ + 2AlO2

- + 2.32H2O + 3.16OH- + 
0.84HSiO3

- 

-26.70 [36] 

Strätlingite, C2ASH8 
(CaO)2(Al2O3)(SiO2)(H2O)8 →←  2Ca2+ + 

2AlO2
- + HSiO3

- + 7H2O + OH- 
-19.70 [9] 

C-S-H, 
(CaO)1.25(SiO2)1.25(H2O)2.5 

(CaO)1.25(SiO2)1.25(H2O)2.5 →←  
1.25SiO(OH)3

- + 1.25Ca2+ + 1.25OH-  
-11.625 [11] 
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