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Abstract 

Objective: Recently, recurrent mutations within the core promoter of the human 

telomerase reverse transcriptase (TERT) gene generating consensus binding sites for 

ETS transcription factor family members were described in melanomas and other 

malignancies (e.g. bladder cancer, hepatocellular carcinoma). These mutations were 

discussed as early drivers for malignant transformation. 

In prostate cancer (PrCa) TERT expression was associated with a poor prognosis and a 

higher risk for biochemical recurrence. The underlying mechanisms for high TERT 

expression in PrCa are still not clarified in detail. To date, data on TERT promoter 

mutation analysis in PrCa are sparse. Therefore, we performed sequence analysis of 

the core promoter region of the TERT gene in an unselected cohort of prostate tumors. 

Methods: Sections from 167 formalin-fixed, paraffin-embedded and cryopreserved 

prostate tumors were used for DNA isolation. After precise microdissection the mutation 

hotspot region within the TERT core promoter (-260 to +60) was analysed by direct 

Sanger sequencing or SNaPshot analysis. 

Results: All cases could be analysed successfully. Mutations within the core promoter of 

the TERT gene could not be detected in any of the cases. All tumors showed wildtype 

sequence. 

Conclusion: TERT core promoter mutations reported from several other malignancies 

could not be detected in our unselected cohort of prostate cancers. These data indicate 

that alterations within the core promoter of the TERT gene play no important role in 

prostate carcinogenesis. 
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Introduction 

The search for recurrent mutations in single genes within tumor genomes is driven by 

the hope of uncovering important driver alterations that lead to a better understanding of 

carcinogenesis. The availability of new and sensitive high-throughput sequencing 

technologies sped up this search and led to the identification of new mutation hotspots 

in a variety of cancer entities. Although a new definition of a recurrent gene mutation 

was suggested in terms of combining recurrent alterations in the scale of a pathway 

rather than in the scale of only one single gene, discovering new recurrent gene 

mutations is still a worthwhile approach in cancer research [1]. 

Recently, mutations within the promoter of the telomerase reverse transcriptase (TERT) 

gene that encodes the catalytic subunit of the telomerase were identified in familial and 

sporadic melanoma with a high frequency [2]. The immortality of cells is still a classical 

hallmark of tumors and reactivation of telomerase leading to telomere maintenance 

remains a fundamental process in carcinogenesis. Alterations within the coding region 

of the TERT gene are a rare event in cancers. Therefore the identification of recurrent 

mutations within the core promoter of the TERT gene leading to new binding motifs for 

transcriptions factors of the ETS family attracted great interest among the cancer 

research field [3]. The consequences of these mutations are still not completely 

understood but they lead to a 2-4 fold increased transcriptional activity in vitro [4]. 

Subsequently, these mutations were found in several other malignancies, e.g. bladder 

carcinoma, thyroid cancer or cancers of the nervous system, and were discussed as 

early drivers for malignant transformation [3].  
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Expression and reactivation of the telomerase were also described as important 

features of prostate cancer (PrCa). Telomerase activity was found in up to 100% of 

analysed PrCa cases [5]. Interestingly, high expression of telomerase components not 

always results in mandatory telomerase activity [6]. In addition, significant associations 

between TERT expression and aggressive behavior of prostate tumors have been 

reported [7]. Recently promising in vitro data were published showing both telomerase 

as an important target of an anti-androgen therapy for PrCa, and the usefulness of 

boron derivatives as a telomerase inhibitor in PrCa cells [8, 9]. These data suggest 

telomerase inhibition as a reasonable approach for a PrCa therapy. The molecular and 

cellular pathways involved in telomerase reactivation in PrCa are still not clear. 

Expression of TERT and the activity of telomerase were shown to be regulated by 

androgen receptor (AR) signaling whereas exogenous expression of AR surprisingly led 

to inhibition of TERT transcription in PrCa cells [10, 11]. The genomic region of the 

TERT gene (chromosome 5p15.33) was not described as a region containing copy 

number alterations in prostate tumors making gene amplification as a reason for TERT 

expression in PrCa unlikely [12]. Less is known about TERT promoter mutations in 

PrCa. To date only three studies with a combined number of 49 prostate tumors 

reported a sequence analysis of the TERT promoter and found no evidence for 

involvement of TERT promoter mutations in PrCa [13-15]. These data already indicate 

that the cellular mechanisms of telomerase reactivation in PrCa are only poorly 

understood and further clarification is needed. As TERT promoter mutations are a 

potential mechanism for a possible telomerase reactivation we wanted to further the 

discussion of this topic for PrCa. We therefore analysed the core promoter region of the 
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TERT gene containing the reported mutation hotspots in the largest series of PrCa 

reported so far. 

 

 

Materials and methods 

Patients and Tissue Samples 

Overall, 167 unselected, archival prostate tumors (formalin-fixed and paraffin-embedded 

tissue samples: n=119; snap-frozen tissue samples: n=48) were investigated. All 

patients were Caucasians. The tumors were diagnosed according to the WHO 

classification of prostate tumors and staged according the TNM system [16, 17]. 

Characteristics of the study participants are shown in Table 1. Prior institutional review 

board (University Hospital Erlangen) approval was obtained for molecular analysis on 

archival material. 

 

Tissue microdissection and DNA isolation 

DNA was extracted from prostate tumors after precise manual microdissection (purity of 

tumor cells >85%) of serial sections (5µm) using the High Pure PCR Template 

Preparation Kit (Roche GmbH, Mannheim, Germany) according to manufacturer’s 

instructions. DNA quality and quantity was determined using the Synergy2 Multi-

Detection Reader (BioTek, Bad Friedrichshall, Germany) according to the 

manufacturer’s instructions. 

 

TERT promoter analysis using Sanger sequencing 
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One part of the core promoter (-260 to +60) of the TERT gene containing the described 

mutation hotspots was amplified by PCR using primers (sense: 5’- att cgc ggg cac aga 

cgc -3’; antisense: 5’- tcg cgg tag tgg ctg cgc -3’) obtained from Metabion (Martinsried, 

Germany) in a total volume of 25 ȝl containing approx. 150 ng DNA, 0.2 mM dNTP 

(Promega), 0.18 ȝM primers, 5% DMSO and 0.0025 U/ȝl GoTaq (Promega, Mannheim, 

Germany). The thermal cycling conditions were as follows: initial denaturation for 3 min 

at 95°C, 45 cycles of denaturation at 94°C for 1 min, annealing at 69.3°C for 1 min, 

elongation at 72°C for 1 min and final primer extension at 72°C for 10 min. Gradient 

PCR was used for optimization of cycling conditions. After amplification, PCR-products 

(size: 335 bp) were purified using the Qiagen Dye Ex 2.0 TM Spin Kit according to the 

manufacturer’s conditions. Sequence analysis was performed with PCR primers using 

Applied Biosystems Big Dye Terminator v1.1 Cycle Sequencing Kit and an Applied 

Biosystems ABI 3500 Genetic Analyzer.  

 

TERT promoter analysis using SNaPshot analysis 

A previously reported SNaPshot assay (Life Technologies Corp., Carlsbad, CA, USA) 

was used for detection of hotspot mutation at positions -57, -124 and -146. Capillary 

electrophoresis and detection of fluorescence-labeled products were performed using 

an Applied Biosystems ABI 3500 Genetic Analyzer. A detailed description of the method 

can be found elsewhere [18]. 
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Results 

The analysis of the most frequent mutation hotspots within the core promoter of the 

TERT gene was successful in all available cases. Mutation analysis using Sanger 

sequencing could be performed in 108/167 cases. (Figure 1) In 59/167 cases the core 

promoter region could not be amplified in one part due to insufficient DNA quality (e.g. 

DNA degradation, low DNA concentration). In these cases SNaPshot analysis of 

mutation sites at -57, -124 and -146 could be performed (Figure 1). In none of the 

analysed cases a promoter mutation could be found, all cases showed a wildtype 

sequence. 
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Discussion  

In the presented study we performed sequence analysis of the core promoter region of 

the TERT gene in a comprehensive and representative cohort of PrCa samples. The 

results of our study suggest that TERT promoter mutations are not involved in the 

development of PrCa as no mutation was detected in any of the investigated cases. 

These data are in line with previously published studies on only very small cohorts and 

corroborate the minor importance of TERT promoter alterations in PrCa [13-15]. 

Meanwhile a study investigating the whole genomes of 57 PrCa cases was published 

[19]. Apart from already known data from exome analyses this study displayed the 

spectrum of whole-genome alterations in prostate tumors. Here only one TERT 

missense mutation was detected (p.R819C) but no promoter mutations were reported. 

This study also strengthens our findings and should together with our data finalize the 

actual discussion on TERT mutations in PrCa. 

There are several lines of evidence that genomic variations but not mutation might 

influence TERT expression and disease risk in PrCa. In a large case-control study an 

intronic single nucleotide polymorphism in the TERT gene (rs2242652, C  T) was 

found that was strongly associated with increased PrCa risk. Because of this strong 

correlation it was suggested that the SNP might have a functional relevance. Indeed, 

further evaluation showed an increased TERT expression in bengin prostate tissue from 

patients who underwent radical prostatectomy depending on the SNP variants [20, 21]. 

This constant evaluated expression of TERT might provide a possible predisposition for 

PrCa. Another influence on TERT expression might be length polymorphisms in variable 

number tandem repeats (VNTR). Recently, it could be shown that the TERT gene 
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contains five VNTRs that are located within introns 2 and 6. A large case-control study 

found a significant higher prostate cancer risk for individuals carrying rare VNTR2-2nd 

alleles than for individuals with common alleles. These VNTRs were also discussed 

having an enhancer function for gene transcription. In vitro studies on PrCa cell lines 

analyzing the activity of the TERT promoter in combination with different VNTR variants 

clearly showed an increased luciferase activity for the VNTR2-2nd variants [22, 23]. 

These effects might also be expected for TERT expression and could also increase the 

individual risk for PrCa.  

Beside these genomic influences TERT expression is also regulated by several cellular 

processes in PrCa. Matsamura and colleagues analysed the impact the phosphorylation 

status of Fas-associated death domain-containing protein (FADD) on TERT expression 

in PrCra [24]. FADD has a crucial role in the formation of the death-inducing signaling 

complex and is also involved in cell cycle regulation. The phosphorylated form of FADD 

was highly expressed in PrCa with lower Gleason score and was inversely associated 

with a shorter recurrence-free survival after prostatectomy. In parallel cases with high 

levels of phosphorylated FADD also showed only low TERT expression suggesting a 

direct influence of FADD-phosphorylation on TERT expression. Shimada and 

colleagues found significant differences between FADD phosphorylation levels and 

clinicopathological outcomes for Gleason score 3 + 4 and 4 + 3 [25]. These data 

indicate that Gleason 4 + 3 tumors should be considered as high-risk tumors and 

transition from non-phosphorylated to phosphorylated FADD stimulating agents (e.g. 

paclitaxel) might be added to different therapy options. As high TERT expression 

correlates with aggressive PrCa levels of TERT and non-phosphorylated FADD might 
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be potent biomarkers for the biological behavior of PrCa. Furthermore, different factors 

can regulate TERT expression positively or negatively. Several transcription factors 

(e.g. SP1), hormones (e.g. androgen) and the P13K/Akt and MAP kinase pathways can 

up- regulate TERT transcription (reviewed in [26]). In addition recently the down-

regulation of TERT by six microRNAs (let-7g*, miR-133a, miR-138-5p, miR-342-5p, 

miR-491-5p, and miR-541-3p) has been reported [27]. 

Summing up high expression of TERT is unlikely caused by promoter mutations or other 

genomic alterations in PrCa. TERT expression is more likely caused by the influence of 

diverse cellular pathways and might display cell cycle activity and increased 

proliferation. 
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Table 1: Characteristics of study patients  

 

 PrCa-Cases  

Number: n =167  

Age (years): Median: 66 Range: 46-87 

 Mean: 64,9 (± 6,7)  

Stage: Organ-confined disease n = 76 

 Non-organ-confined disease n = 89 

 No data available n = 2 

Gleason Score: Median: 7 Range: 3-10 

Gleason Sum: <7 n = 52 

 =7 n = 54 

 >7 n = 54 

 No data available n = 7 
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Figure legends 

Figure 1: Representative examples for Sanger sequencing and SNaPshot analysis of 

the promoter mutation hotspots at -57 and -124. Upper lane: Sanger sequencing of 

DNA from prostate tumor showing wildtype sequence for TERT promoter position -57 

(A) and position -124 (G). DNA from the melanoma cell line SK-MEL-28 showing “A => 

C” mutation at position -57. DNA from the bladder cancer cell line RT112 showing “G => 

A” mutation at position -124. Lower lane: corresponding SNaPshot analyses. Arrows 

indicate mutations in the promoter sequence.  
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