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The group of automorphisms of the first Weyl algebra
in prime characteristic and the restriction map

V. V. Bavula

Abstract

Let K be a perfect field of characteristic p > 0, Ay := K(x,0| 0z —xd = 1) be the
first Weyl algebra and Z := K[X := 2P, Y := 0P| be its centre. It is proved that (7)
the restriction map res : Autg (A1) — Autg(Z), o — olz, is a monomorphism with
im(res) = I' := {7 € Autg(Z)|J(r) = 1} where J(7) is the Jacobian of 7 (note
that Autg(Z) = K* x I and if K is not perfect then im(res) # I'); (ii) the bijection
res : Autg(A;) — T is a monomorphism of infinite dimensional algebraic groups
which is not an isomorphism (even if K is algebraically closed); (i7i) an explicit
formula for res~! is found via differential operators D(Z) on Z and negative powers
of the Fronenius map F. Proofs are based on the following (non-obvious) equality
proved in the paper:
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1 Introduction

Let p > 0 be a prime number and F, := Z/Zp. Let K be a commutative [F,-algebra,
Ay = K(x,0|0x — 20 = 1) be the first Weyl algebra over K. In order to avoid awkward
expressions we use y instead of 0 sometime, i.e. y = d. The centre Z of the algebra A; is
the polynomial algebra K[X,Y] in two variables X := 2? and Y := 0P. Let Autg(A;) and



Autg(Z) be the groups of K-automorphisms of the algebras A; and Z respectively. They
contain the subgroups of affine automorphisms Aff(A;) ~ SLy(K)?? x K? and Aff(Z) ~
GLy(K)? x K? respectively. If K is a field of arbitrary characteristic then the group
Auty (K[X,Y]) of automorphisms of the polynomial algebra K[X,Y] is generated by two
of its subgroups, namely, Aff(K[X,Y]) and U(K[X,Y]) :=={¢;: X —» X, Y =Y+ f|f €
K[X]}. This was proved by H. W. E. Jung [5] in characteristic zero and by W. Van der
Kulk [7] in general.

If K is a field of characteristic zero J. Dixmier [4] proved that the group Autg(A4;) is
generated by its subgroups Aff(A;) and U(A4) :={¢f:x— 2, 0— 0+ f|f e Kz]}. If
K is a field of characteristic p > 0 L. Makar-Limanov [8] proved that the groups Autg(A;)
and I' := {7 € Autg (K[X,Y])|J(7) = 1} are isomorphic as abstract groups where J(7)
is the Jacobian of 7. In his paper he used the restriction map

res : Autg(Ay) — Autg(Z), o+ olz. (1)

In this paper, we study this map in detail. Recently, the restriction map (for the nth Weyl
algebra) appeared in papers of Y. Tsuchimoto [12], A. Belov-Kanel and M. Kontsevich [2],
K. Adjamagbo and A. van den Essen [1]. Let us describe some of the results proved in the

paper.

Theorem 1.1 Let K be a perfect field of characteristic p > 0. Then the restriction map
res is a group monomorphism with im(res) = I'.

Note that Autg(Z) = K* x I where K* ~ {7, : X — AX,Y — Y |\ € K*}.

If K is not perfect then Theorem 1.1 is not true as one can easily show that the
automorphism I' 3 5, : X — X 4 11, Y — Y, does not belong to the image of res provided
w € K\F(K) where F : a — a? is the Frobenius map. So, in the case of a perfect field
we have another proof of the result of L. Makar-Limanov (in both proofs the results of
Jung-Van der Kulk are essential).

The groups Autg(A;), Autg(Z) and I' are infinite dimensional algebraic groups over
K in the sense of I. Shafarevich [10], [11] (see also T. Kambayashi [9]).

Corollary 1.2 Let K be a perfect field of characteristic p > 0. Then the bijection res :
Autg(Ay) = T, 0 — 0|z, is a monomorphism of algebraic groups over K which is not an
isomorphism of algebraic groups.

The proofs of Theorem 1.1 and Corollary 1.2 are based on the following (non-obvious)
formula which allows us to find the inverse map res™ : I' — Autg(A;) (using differential
operators D(Z) on Z), see (14) and Proposition 2.2.

Theorem 1.3 Let K be a reduced commutative F,-algebra and Ay(K) be the first Weyl

algebra over K. Then
p P ' f P
O+ f)P ="+ Jor 1 +f
fOZ Cldl { 6] Kfz]. In T[no?e detail, (0+ f)P = 9P — \y_y + f? where f = S0 \a' € K[z] =
Do K|aP)x", \; € K[2P].



Remark. We used the fact that % (p—1)!\,—1 and (p—1)! = —1 mod p. Theorem

drp—1

1.3 generalizes the following equality obtained by A. Belov-Kanel and M. Kontsevich in
13]: if K is a field of characteristic p > 0 and f = % for some polynomial g € K|z], then
(0+ f)P =0r+ fP.

The group I' is generated by its two subgroups U(Z) and

PNAF(Z) = {oaa: (£)— A(¥) +a|A€SLy(K),a € K*} ~ SLy(K)? x K.
Recall that the group Autg(A;) is generated by its two subgroups U(A;) and
Aff(A) ={oaa: (5)— A()) +a| A€ SLy(K),a € K*} ~ SLy(K)” x K*.
If K is a perfect field of characteristic p > 0 then Theorem 1.3 shows that
res(Aff(A,)) =T NAff(Z), and res(U(Ay)) =U(Z).
In more detail,
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see Lemma 3.1 and (11); and

res: U(Ay) = U(Z), o5 — docp)

where the map 0 = F + ;ﬁ?—_,ll : K[z] — K]JzP] is a bijection. An explicit formula for
the inverse map 0! is found (Proposition 2.2) via differential operators D(Z) on Z and
negative powers of the Frobenius map F'. As a consequence, a formula for the inverse map

res ' : T — Autg(4;) is given, see (14).

2 Proof of Theorem 1.3 and the inverse map 07!

In this section, a proof of Theorem 1.3 is given and an inversion formula for a map 6 is
found which is a key ingredient in the inversion formula for the restriction map.

Proof of Theorem 1.3. The Weyl algebra A,(K) ~ K ®g, A;(F,), the Frobenius
F:a— a? and df,% are well behaved under ring extensions, localizations and algebraic
closure of the coefficient field. So, without loss of generality we may assume that K is
an algebraically closed field of characteristic p > 0: the commutative [F,-algebra K is
reduced, Npespec(x)p = 0, and A, (K)/A;(K)p ~ A;(K/p), and so we may assume that
K is a domain; then A;(K) C A;(Frac(K)) C A;(Frac(K)) where Frac(K) is the field of
fractions of K and Frac(K) is its algebraic closure.

First, let us show that the map L : K[z] — K[zP], f + L(f), defined by the rule

O+ [ ="+ L(f) + f",

3



is well defined and additive, i.e. L(f + g) = L(f) + L(g). The map
Klz] — Autg(Ay), f—op 20— 2,0~ 0+ f,

is a group homomorphism, i.e. o4, = 0s0,. Since O € Z(A,) = K[2P,0P] and (0 + f)? =
(0 = o(0P) € Z(A;), the map L is well defined, i.e. L(f) € K[zP]. Comparing both
ends of the series of equalities proves the additivity of the map L:

FPHLUf+9) + [P +9" = 0544(0) = 054(0) = 040,(0) = 04(0 + L(g) + ")
O+ L(f)+ ["+ Lg) + g".

In a view of the decomposition K[z] = @~ K[2?]z’ and the additivity of the map L,
it suffices to prove the theorem for f = Az™ where m = 0,1,...,p—1 and A € K[z?]. In
addition, we may assume that A € K. This follows directly from the natural IF,-algebra
epimorphism

A(K[]) — A(K), t Nz, 90,

and the fact that the polynomial algebra K[t| is a domain (hence, reduced). Therefore, it
suffices to prove the theorem for f = Ax"™ where m =0,1,...,p—1and A € K*.

The result is obvious for m = 0. So, we fix the natural number m such that 1 < m <
p— 1. Then

Ln(\) == L(Az™) = i Lk (N)2*P

is a sum of additive polynomials I,,x(\) in A of degree < p — 1 (by the very definition of
L(Ax™) and its additivity). Recall that a polynomial [(t) € K[t] is additive if I(\ + p) =
I(A) + (p) for all \,u € K. By Lemma 20.3.A [6], each additive polynomial [(t) is a
p-polynomial, i.e. a linear combination of the monomials ", r > 0. Hence, [,,(\) = an\
for some polynomial a,, = Z;n:_ol k™ where a,,, € K, i.e.

m—1

(O+ Ax™)P =0 + A Z A" + (Az™)P.

k=0
Applying the K-automorphism 7 : x +— pz, 0 — p~ 10, u € K*, of the Weyl algebra A; to
the equality above, we have
LHS = (p'0+ M \ma™)P = pu P (0 + A a™)P
= p PO+ M"Y gt + (A" ™))
m—1

RHS = p PP+ \ Z A WP TP (A ™)P
k=0



Equating the coefficients of 2*7 gives Aappu™ P = Aappp*?. If @y # 0 then ™17 =
pkP for all p € K*,i.e. m+1—p = kp. The maximum of m +1—pis 0 at m = p — 1, the
minimum of kp is 0 at k = 0. Therefore, a,,x = 0 for all (m, k) # (p — 1,0).

For (m,k) = (p—1,0), let a :== a,_19. Then

(0 + Aa? 1Y = 9P + Xa + (AzP~ )P
In order to find the coefficient a € K, consider the left A;-module
V= A /(Aja? + A1) ~ K[z]/K[2"] = &', KT
where 7° := 2° + A;2P + A;0. An easy induction on i gives the equalities:
@+ A )T =(p—D(p—2)---(p—i)zT ' i=1,2,...,p—1.
Now,
O+ AP 1 PzPt = (0 4+ AP ) (O + AP P12 = 0+ AP ) (p—D)IT = (p— D)zt

On the other hand,
(O + Xa + (AP P zP 1 = Naz?

and so a = (p — 1)! = —1 mod p. This finishes the proof of Theorem 1.3. [

The map ¢ and its inverse. Let K be a commutative F-algebra. The polynomial
algebra K[z] = @K' is a positively graded algebra and a positively filtered algebra
K[z] = Ui»oK[z]<; where Kz]<; := @_oKa/ = {f € K[z]| deg(f) < 4}. Similarly, the
polynomial algebra K [zF] in the variable z* is a positively graded algebra K[z?] = @Kz
and a positively filtered algebra K[2?] = UK [2P]<; where K[2¥]<; := @' K2 = {f €
K[zP]| deg,»(f) < i}. The associated graded algebras gr K[z| and gr K[z?] are canonically
isomorphic to K[z] and K[2P] respectively. For a polynomial f = ch‘l:o \ixt € K[z] (resp.
g = Z?:o pixPt € KlaP]) of degree d, Mgz (resp. pugrP?) is called the leading term of f
(resp. g) denoted I(f) (resp. I(g)). Consider the F,-linear map (see Theorem 1.3)

ar-1 a1y

9:F+d:cP*1 . K[z —>K[xp],f'—>fp+dxp71,

(2)

where F': f +— f? is the Frobenius (F,-algebra monomorphism). In more detail,

p—1 p—1
0: Kla] = &/ K[o")a' — K[a?] = @5 K[o”']a”, 3 a' Y ala? — a1,
=0 =0

where a; € K[zP]. This means that the map 6 respects the filtrations of the algebras
K[z] and K[z?], 0(K[z]<;) C K[2P]<; for all j > 0, and so the associated graded map
gr(0) : K[z] — K[aP] coincides with the Frobenius F,

gr() = F. (3)



Lemma 2.1 Let K be a perfect field of characteristic p > 0. Then
1. gr(f) = F : K[z] — K[2?] is an isomorphism of F,-algebras.

2. 0 : K[x] — K|[zP] is an isomorphism of vector spaces over F,, such that 0(K|x]<;) =
Kl[aP|<;, i > 0.

3. For each f € K[x], [(0(f)) = I(f)P.

Proof. Statement 1 is obvious since K is a perfect field of characteristic p > 0 (F(K) =
K). Statements 2 and 3 follow from statement 1. [J

Remark. The problem of finding the inverse map res™ of the group isomorphism
res : Autg(A;) — T, 0 — o]z, is essentially equivalent to the problem of finding 67!, see
(14).

The inversion formula for ~! (Proposition 2.2) is given via certain differential operators.
We recall some facts on differential operators that are needed in the proof of Proposition
2.2.

Let K be a field of characteristic p > 0 and D(K|z]|) = @izoK[x]a[ﬂ be the ring of
differential operators on the polynomial algebra K[z] where 9! := % . The algebra K [z]
is a left D(K|z]|)-module (in the usual sense):

1

ol (27) = (‘7):173_2 for all 4,7 > 0.
i

In particular,

APl (zP7) = <p].>xl”(j—i) = <‘7)pr ) forall 4,5 > 0.

pi i
The subalgebra K[z?] = @'_)K[z"’]z? of K[z] is 2P0P-invariant and, for each i =
0,1,....p—1, K [xpz]xi”i is the eigenspace of the element 2P0 that corresponds to the

eigenvalue i. Let J(i) :== {0,1,...,p — 1}\{é}. Then

H]EJ (.’L‘ ap] - j)
[l —J)
Hje.](i)(ffpa[p] —J)
Hjej(i)(i_j)
the summand K[zP’]2?" in the decomposition K[z] = &'_) K [27" ]z and 9P (q;z"") = a;).

Let K be a perfect field of characteristic p > 0. Consider the [F,-linear map

m = ol cK[2P) - K ;Ep Z a;z" s aj, (4)

where all a; € K[z""] (since the map : K[zP] — K[xP] is the projection onto

olP=Drl p=1 K[xp — K :vp Za 2P Zap mep ‘ (5)

i>0 i>0

where a; € K. By induction on a natural number n, we have

— —1\n 24 - (
(8[(p DL Y (Z az’") = Zai(;pfl)(1+p+---+l7"71)er”ixp , >l (6)

i>0 i>0



This shows that the map 9lP~VPI F~1ig a locally nilpotent map. This means that K [:z:”Q] =
Upsiker(AlP—DPI =1 je  for each element a € K[zP"], (OlP~YPIF-1)"(q) = 0 for all
n > 0. Hence, the map 1 — 9lP=DPIF=1 is invertible and its inverse is given by the rule

(1 —plr=Drl p=1y=1 — Z(a[(p—l)p}p—l)j. (7)
Jj=20
The following proposition gives an explicit formula for =1,

Proposition 2.2 Let K be a perfect field of chamcteristic P > 0. Then the mverse map
01 Kla] = &1 Koo — Klal = 60 Kolal, Y050 pa? = Y00 A, p; €
K[zP"], \; € K[aP], is given by the rule

1 .
1. fori=0,1,....p—2, \; = p? + F'm;F! ijo(a[(pfl)p]Ffl)](Mp—1>>

2. N1 = (ZP o aPim F! ijo(a[(p—l)p]F—l)j+xp(p—1) 2321(a[(p_l)p]F_l)j)(Mpfl) where
m; s defined in (4).

Proof. Let g = S0 pa? € K[a?], ui € K[2¥']; f = S0 ir' € K[ ], A € K[zF)];
and A\, 1 = > aa”, a; € K[z?"]. Then ~Y(g) = f iff g = e(f) iff F~1(g) = F0(f) iff

p—1 p—1
S PN p)at = FTUE(f) = Apot) = f = F ' (Npe1) = > (A = F ()2
i=0 1=0
iff
Ni=F Yui+a), i=0,1,....,p—1. (8)

For i = p — 1, the equality (8) can be rewritten as follows

p—2

> @ + ap g2’ = F7 (g + apy). (9)
=0

For each i = 0,1,...,p — 2, applying the map m; (see (4)) to (9) gives the equality a; =
7 F 1 (pp—1 + ap_1), and so the equalities (8) can be rewritten as follows
)\i = Fﬁl(ui + 7T'Z'F’il(:upfl + apfl))7 i = 07 17 SRRy 2 2. (10)

Applying OlP=VP) to (9) yields a, ; = P~V F~Y(y, | +a, 1), and so (1 — A)a, | =
A(pp-1) where A := 9lP=DPI =1 By (7), a1 = 3,5y A (p,1). Putting this expression
in (10) yields,

>\i = F_l(/J,Z) + F_lﬂ'iF_l ZAj(lup—1>7 1= O, 1, N 2.

>0



This proves statement 1. Finally,

p—1 p—2
Ap-1 = Z a;r’ = Z a;xP + apflxp(pfl)
i i=0
- z s + ap) + 277D Y ATy )
j>1
SO SRR S
J=0 j>1
- Zw’”mF D (@Rt gD S (@R (). O
=0 j>1

3 The restriction map and its inverse

In this section, Theorem 1.1, 3.4 and Corollary 1.2 are proved. An inversion formula for
the restriction map res : Autg(A;) — T is found, see (14).

The group of affine automorphisms. Let K be a perfect field of characteristic
p > 0. Each element a of the Weyl algebra A; = @, jenKz'y’ is a unique sum a =
> Aijz'y? where all but finitely many scalars \;; € K are equal to zero. The number
deg(a) = max{i + j|\;; # 0} is called the degree of a, deg(0) := —oo. Note that
deg(ab) = deg(a) + deg(b), deg(a + b) < max{deg(a),deg(b)}, and deg(Aa) = deg(a) for
all A € K*. For each o € Autg(A;),

deg(0) := max{deg(c(z)), deg(o(y))}

is called the degree of o. The set (which is obviously a subgroup of Autg(A;)) Aff(A4;) =
{0 € Autg(A;)]| deg(o) = 1} is called the group of affine automorphisms of the Weyl
algebra A;. Clearly,

Aff(Ay) = {oaa: (y) = A(y) +a| A€ SLy(K),a € K2}7 O0A,a0Bp = OBA,Ba+b-

For each group G, let G? be its opposite group (G = G as sets but the product ab
in G is equal to ba in G). The map G — G, g — g~ ! is a group automorphism.
The group Aff(A;) is the semi-direct product SLy(K)% x K2 of its subgroups SLy(K)% =
{oa0| A €SLy(K)} and K? ~ {01, |a € K?} where K? is the normal subgroup of Aff(A;)
since 0A70017a02710 = 01,4-14. It is obvious that the group Aff(A;) is generated by the
automorphisms:

SITI Y, Yo =T by T i, Yo Y g sk X, Y =y + A

where A € K, p € K* and ¢ =0, 1.



Recall that the centre Z of the Weyl algebra A; is the polynomial algebra K[X,Y] in
X := 2P and Y := y? variables. Let deg(z) be the total degree in X and Y of a polynomial
z € Z. For each automorphism o € Autg(Z2),

deg(o) := max{deg(c(X)),deg(c(Y))}
is called the degree of o.
Aff(Z) = {0 € Autg(Z) | deg(o) =1} = {040 : ()= A(F) +a|A € GLy(K),a € K?}

is the group of affine automorphisms of Z, 04,054 = 0pa pa+s- The group Aff(A;) is the
semi-direct product GLo(K)?% x K? of its subgroups GLa(K)? = {o40| A € GLa2(K)} and
K? ~ {0y ,|a € K*} where K? is a normal subgroup of Aff(Z) since 0A7001,a02710 =01 414
A group G is called an ezact product of its subgroups G7 and G5 denoted G = G X, Go
if each element g € (G is a unique product g = g9, for some elements g, € G and gy € Gs.
Then GLy(K)® = K* X¢y SLo(K)? where K* ~ {7, : X — puX, Y — Y |p € K*},
YV = Y- Clearly, Aff(Z) = (K* X¢ SLa(K)?) x K2, and so the group Aff(Z) is
generated by the following automorphisms (where A € K, p € K* and i =0, 1):

s X =Y, Vi —X; t,: X uX, Yo Yioax 0 X = X, Vs Y4HAXY and 7,
The automorphisms ¢, and 7, commute.

Lemma 3.1 Let K be a perfect field of characteristic p > 0. Then the restriction map
resqrp @ Aff(A;) — Af(Z), 0 — olz, is a group monomorphism with im(res,sr) =

SLy(K) x K2.

Proof. Since resqfr(s) = s; resasp(t,) = tue; for i = 0,1, reserr(Pagi) = Parxi if p > 2
and resqff(Pari) = Oazxiys, ,x if p= 2 where d;;1 is the Kronecker delta (Theorem 1.3), i.e.

0(ap bp)y(;;z;), 1fp>27

P dP

a a e - . 11

res ff(“(cg),(f)> O/ 2 s D=2, (11)
(02 d2)7(f2+cd)

the result is obvious. UJ

Lemma 3.2 The automorphisms of the algebra Z: s, t,, ¢rxi and v, satisfy the following
relations:

1. st, =t,-1s and sy, = Yut,—15.

2. ¢/\Xitu = tMQb)\#—i—le' and Qb)\Xi’}/u = ’Y;Ab)\;riXi-

3. 82=t, s =t 15: X— Y, Y — X.



Proof. Straightforward. [J
The map
KX|—=Auw(2), f—9¢;p: X—X, Y=Y+

do(X) 9o(X)

is a group monomorphism (¢sry = ¢roy). For o € Aut(Z), J(o) = det( 2%, ,25, ) is
0X oY

the Jacobian of 0. It follows from the equality (which is a direct consequence of the chain

rule) J(o7) = J(0)o(J (7)) that J(o) € K* (since 1 = J(oo™ ') = J(0)o(T(c71)) in
K[X,Y]), and so the kernel I := {0 € Autg(Z)|J(0) = 1} of the group epimorphism
J Aut(Z) — K*, 0 — J(0), is a normal subgroup of Autg(Z). Hence,

Autg(Z)=K*"x T (12)
is the semi-direct product of its subgroups I' and K* =~ {~, | p € K*}.
Corollary 3.3 Let K be a field of characteristic p > 0. Then

1. Each automorphism o € Autg(Z) is a product ¢ = v,t,¢5505,5... ¢, by, for
some p,v € K* and f; € K|x].

2. Fach automorphism o € I is a product o = t,¢5, 504,5... ¢y, 5¢5, for somev € K*
and f; € K|z].

Proof. 1. Statement 1 follows at one from Lemma 3.2 and the fact that the group

Autg(Z) is generated by Aff(Z) and ¢yxi, A € K, i € N,
2. Statement 2 follows from statement 1: o = v,t, 05 50p,5... ¢, 505, €' iff

1=J(0) =T Vutvdn5058 .. 05, ,505,) = T (u)ru(1) = p

iff o = ty¢f15¢f28 . ¢fn71$¢fn. ]
Proof of Theorem 1.1. Step 1: res is a monomorphism. It is obvious that

deg res(0) = deg 0, o € Autg(A;). (13)

The map res is a group homomorphism, so we have to show that res(oc) = idy implies
o = ida, where idz and idy, are the identity maps on Z and A; respectively. By (13),
res(o) = idz implies deg(o) = 1. Then, by (11), 0 = id4,.

Step 2: I' C im(res). By Corollary 3.3.(2), each automorphism ¢ € I' is a product
o =1,0p5...05 50, Since res(tV%) = t,, res(dg-1(s,)) = ¢y, and res(s) = s, we have

o =res(t 1Qg-1(s,)S ... Po-1(f,_)SPo-1(4,)), and so I C im(res).
Step 3: T' = im(res). Let o € im(res). By Corollary 3.3.(1),

res<0-) = Vﬂty(bfls s (bfnflsgbfn = le—LreS(T)

for some 7 € Autg(A;) such that res(7) € T, by Step 2. Then res(o7™!) = 7,. By (13),
deg(o7!) = deg res(o771) = deg 7, = 1, and so o7~ ! € Aff(A4;). By Lemma 3.1, v, = 1,
and so 0 = 7, hence res(c) = res(7) € I'. This means that I' = im(res). O

If K is a perfect field of characteristic p > 0 we obtain the result of L. Makar-Limanov.

10



Theorem 3.4 Let K be a perfect field of characteristic p > 0. Then the group Autg(Ay) is
generated by Aff(A;) ~ SLy(K)? x K? and the automorphisms ¢ygi, N\ € K*, 1 =2,3,.. ..

Proof. By Theorem 1.1, the map res : Autg(A;) — I'is the isomorphism of groups.
By Corollary 3.3.(2), each element v € I" is a product

V= tPps . Oy 5Os, = TeS(E 1 Po1(£)S - - Do (£,1) P01 (£,))-

Now, it is obvious that the group Aut g (A;) is generated by Aff(A;) and the automorphisms
brais NEK* i=2,3,....0

The inverse map res ! : ' — Autg(A;). By Corollary 3.3.(2), each element v € T is
a product v = t,¢p5... @5, ,5¢y,. By Proposition 2.2, the inverse map for res is given by
the rule

resfl ' — AutK(A1>, Y= ty¢f18 . ¢fn—ls¢fn — ty%(b@_l(fl)s c. ¢9—1(fn_1)8¢9—1(fn).
(14)
Proof of Corollary 1.2. The group Autg(A;) (resp. Autg(Z)) are infinite-dimensional
algebraic groups over K (and over F,) where the coeflicients of the polynomials o(x) and
o(y) where 0 € Autg(A;) (resp. of 7(X) and 7(Y) where 7 € Autg(Z)) are coordinate
functions (see [10] and [11]). The group I is a closed subgroup of Autg(Z). By the very
definition, the map res : Autx(A;) — I' is a polynomial map (i.e. a morphism of algebraic
varieties). By (14) and Proposition 2.2, res™! is not a polynomial map over K (and over
F, as well). O

4 The image of the restriction map res,

Let K be a field of characteristic p > 0 and A,, = K(x1,...,x9,) be the nth Weyl algebra
over K: fori,5=1,...,n,

[xiaxj] = 07 [xn+i7xn+j] = 07 [xn+i7xj] = 5’L'j7

where §;; is the Kronecker delta. The centre Z, of the algebra A, is the polynomial
algebra K[X7,..., Xy,] in 2n variables where X; := 2. The groups of K-automorphisms
Autg(A,) and Autg(Z,) contain the affine subgroups Aff(A,) = Sp,,(K)? x K" and
Aff(Z,) = GL,(K) x K™ respectively. Clearly, Aff(A,) = {0 € Autk(A,)| deg(o) =
1} and Aff(Z,) = {7 € Autg(Z,)| deg(r) = 1} where deg(c) (resp. deg(7)) is the
(total) degree of o (resp. 7) defined in the obvious way. The kernel I'), of the group
epimorphism J : Autg(Z,) — K*, 7 — J(1) := det(%;ii)) is the normal subgroup
T, :={r € Autg(Z,) | J(7) = 1}, and Autg(Z,) = K* x T, is the semi-direct product of
K* >~ {y, | 7(X1) = uX1,7,(X;) = X;,5=2,...,2n;p € K*} and T,,.

By considering leading terms of the polynomials o(X;), it follows as in the case n = 1
that the restriction map

res, : Autg(A,) — Autg(Z,), o+ 0lz,,
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is a group monomorphism. If K is a perfect field then
res, (Aff(A,)) = Spy, (K)? x K** C Aff(Z,) = GLg,(K)” x K*".

This follows from the fact that for any element of Aff(A,), 04, : © — Ax + a where
A = (a;j) € Spy,(K) and a = (a;) € K*",

res, (0,) = 4 e p =2, (15)
T(a2)),(a2 47— aijtiny;) it p=2,

which can be proved in the same fashion as (11). Since Sp,,,(K) C SLy,(K) (any symplectic
matrix S € Sp,, (K) has the from S = TJT~! for some matrix T € GLs,(K) where
J=diag(( % 8),..., (%)), n times, hence det(S) = 1),

res, (Aff(4,)) C SLy,(K)? x K*" C T,,.

Question 1. For an algebraically closed field K of characteristicp > 0, isim(res,) C T, ?
Question 2. For an algebraically closed field K of characteristic p > 0, is the injection

Aft(Z,) /res, (Aff(A,)) ~ GLon(K)?/Spy,,(K)? — Autg(Z,)/im(res,)

a bijection?
The next corollary follows from Theorem 1.3.

Corollary 4.1 Let K be a reduced commutative F,-algebra, A, (K) be the Weyl algebra,
and 0; := x,y;. Then

oPLf
(O + f)F =07 + g1t fr
for all polynomials f € Klzy,...,x,].
Proof. Without loss of generality we may assume that i = 1. Since K[xg,...,z,] is a

reduced commutative F,-algebra and 0y + f € A;(K|[za,...,x,]), the result follows from
Theorem 1.3. I
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