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Abstract

Membrane permeabilization by Islet Amyloid Polypeptide (IAPP) is suggested to be the main mechanism

for IAPP-induced cytotoxicity and death of insulin-producing -cells in type 2 diabetes mellitus (T2DM).

The insoluble fibrillar IAPP deposits (amyloid) present in the pancreas of most T2DM patients are not the

primary suspects responsible for permeabilization of -cell membranes. Instead, soluble IAPP oligomers

are thought to be cytotoxic by forming membrane channels or by inducing bilayer disorder. In addition, the

elongation of IAPP fibrils at the membrane, but not the fibrils themselves, could cause membrane

disruption. Recent reports substantiate the formation of an -helical, membrane-bound IAPP monomer as

possible intermediate on the aggregation pathway. Here, the structures and membrane interactions of

various IAPP species will be reviewed, and the proposed hypotheses for IAPP-induced membrane

permeabilization and cytotoxicity will be discussed.
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Introduction

Human Islet Amyloid Polypeptide (hIAPP) is a peptide that forms insoluble fibrillar deposits (amyloid)

in the pancreas of patients with type 2 diabetes mellitus (T2DM). hIAPP is produced and secreted, together

with insulin, by the -cells in the pancreatic Islets of Langerhans. Monomeric hIAPP is suggested to be a

hormone with roles in gastric emptying and regulation of glucose homeostasis (Karlsson 1999). Although

little details are known about the precise physiological function of hIAPP, there are indications that hIAPP

binds to specific membrane-located receptors (Hay, et al. 2004). Recently, a non-amyloidogenic synthetic

hIAPP variant, called pramlintide or symlin, has been commercially introduced as an additional therapeutic

approach for diabetes patients (Riddle, et al. 2006).

More than 90% of T2DM patients have hIAPP amyloid in their Islets of Langerhans, as determined by

post-mortem analysis. The presence of islet amyloid in T2DM has been linked to death of the insulin-

producing -cells, thereby contributing to the development of this disease (Höppener, et al. 2000). T2DM

can be classified as a protein-misfolding disease, and it shares the debilitating consequences of misfolded

and aggregated peptides and proteins with more than 20 other diseases, such as Alzheimer’s disease,

Parkinson’s disease and prion diseases (Chiti, et al. 2006). The interaction of hIAPP with -cell membranes

is thought to play a crucial role in hIAPP cytotoxicity and death of the insulin-producing -cells. Amyloid-

membrane interaction is not only relevant for cytotoxicity in T2DM, but considered to be a generic

mechanism for amyloid-induced cytotoxicity in most of the amyloid-related diseases (Glabe, et al. 2006;

Lashuel, et al. 2006).

In this review, the current knowledge of hIAPP-membrane interactions will be presented and analysed,

with a focus on the role of hIAPP-membrane interaction in relation to mechanisms of cytotoxicity. Various

suggested hypotheses for hIAPP-induced membrane permeabilization will be discussed. In addition, the

current insight into the structural characteristics of hIAPP assemblies and of membrane-bound hIAPP will

be reviewed.

Different appearances of hIAPP: monomer, oligomer and amyloid fibril

The 37-residue hIAPP peptide can appear in various aggregation states, i.e. monomer, oligomer or fibril

(polymer), all with very different structures (Fig. 1). It has now become clear that oligomers and fibrils are
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not single, morphologically homogeneous species, but that each of them represents a sub-set of species of

different sizes, shapes (polymorph), and with variations in secondary, tertiary and quaternary structure.

Many different expressions are in use to indicate “oligomers”, such as prefibrillar aggregates, micelles and

ADDLs, and it has proven difficult to distinguish different populations of oligomers (Glabe 2008). For the

purpose of this review the term oligomer will be used to describe hIAPP species that are composed of 2 to

approximately 60 hIAPP monomers (~ 250 kDa). Some important questions regarding these different

species are the topic of many recent papers: What is the structure of the various hIAPP species detected?

Which hIAPP species are cytotoxic and present in vivo? A particularly important question regarding the

scope of this review is: how do these different hIAPP species interact with a membrane? These and related

questions will be addressed in the next sections. First, the structure of several aggregation states of hIAPP

will be discussed.

Of the various hIAPP species, the structure of fibrillar hIAPP is best known despite it being the most

insoluble one. The stable nature of hIAPP fibrils has likely contributed to the relative ease of handling and

studying it; hIAPP fibrils are not degraded by proteases and generally need harsh conditions for

depolymerization, like the use of concentrated formic acid or organic solvents (Clark, et al. 1987). In

contrast, the study of the structure of monomeric and oligomeric hIAPP in physiological buffers has been

hampered by their instability and fast ‘spontaneous’ aggregation. The large majority of the structural

information about hIAPP fibrils stems from in vitro assembled fibrils, the production of which mostly

requires nothing more than dissolving hIAPP monomer in a physiological buffer and keeping it for hours to

days.

Advanced methods, in particular electron microscopy (EM), electron paramagnetic resonance

spectroscopy (EPR), X-ray diffraction, and nuclear magnetic resonance spectroscopy (NMR) have

significantly improved our understanding of hIAPP fibril structure (Goldsbury, et al. 2000; Jayasinghe, et

al. 2004; Sumner Makin, et al. 2004; Luca, et al. 2007). In vitro produced fibrils of hIAPP or hIAPP

fragments, even from the same sample, display various cross- structures (Madine, et al. 2008) and

morphologies (Goldsbury, et al. 1997; Sumner Makin, et al. 2004; Radovan, et al. 2008), for example

coiled fibrils and ribbon-like fibrils (Fig. 1b). The parallel, in register structure of hIAPP fibrils was first

demonstrated by EPR spectroscopy (Jayasinghe, et al. 2004). The most recent and most detailed model for
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the structure of an hIAPP fibril suggests that it is composed of stacked layers of two symmetric hIAPP

molecules that form a parallel -sheet structure running perpendicular to the length axis of the fibril (Fig.

1c) (Luca, et al. 2007). Residues 8 to 17 and 28 to 37 form the -sheet structure, whereas residues 1 to 7 are

largely unstructured. Importantly, this model is based on experimental data of a morphologically

homogeneous sample of hIAPP fibrils, so called striated ribbons.

Another model of the hIAPP fibril suggests that the fibril is composed of three protofilaments, each

based on stacking of single hIAPP molecules in which residues 9 to 37 participate in a planar S-shaped fold

forming the -sheet structure (Kajava, et al. 2005). Most proposed models, combined with aggregation

studies on hIAPP fragments, place residues 9 to 37 in the amyloidogenic core (Nilsson, et al. 1999;

Jaikaran, et al. 2001; Scrocchi, et al. 2003; Gilead, et al. 2008; Wiltzius, et al. 2008), which adjusts the

historic view that only residues 20 to 29 would be important for amyloid formation (Westermark, et al.

1990). Different models are likely required to account for the various hIAPP fibril morphologies that are

commonly observed. Studies of hIAPP fibrils in pancreatic islets show that their morphological character is

grossly the same as that of in vitro produced fibrils (Westermark 1973; de Koning, et al. 1994; Jaikaran and

Clark, 2001), but even large-scale features of in vivo fibrils, like the number of protofibrils, are unknown.

Consequently, an important question that remains to be answered is which fibril morphology is present in

or near the -cell? Additionally, which fibril morphology is related to cytotoxicity, or results from

cytotoxic oligomers?

Compared to the detailed structural information available for hIAPP fibrils, the information about the

structure of hIAPP oligomers is much sparser and considerably less detailed. All our knowledge of the

hIAPP oligomer structure comes from in vitro produced oligomers. A protocol for the in vitro production of

hIAPP oligomers entails stirring freshly dissolved, supposedly monomeric hIAPP at 500 rpm in an

eppendorf tube, at pH ~ 3, for 24 to 48 hrs at 22°C (Kayed, et al. 2004). This process results in a

homogeneous sample of spherical hIAPP oligomers, 3-5 nm in diameter, as observed by EM (Fig. 1d).

Others have detected, either directly or indirectly, the presence of hIAPP oligomers as transient species in

samples of fibril forming hIAPP, with large variations in shape and size, ranging from a cluster of a 10-20

hIAPP monomers to more than 500 (Janson, et al. 1999; Anguiano, et al. 2002; Porat, et al. 2003; Green, et

al. 2004). An example of a ring-shaped hIAPP oligomer is shown in figure 1e (Porat, et al. 2003).
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It is uncertain whether hIAPP oligomers are consumed in the process of fibril growth. There are

suggestions that hIAPP oligomers are off-pathway, meaning that they are not on a productive route towards

hIAPP fibrils (Meier, et al. 2006; Haataja, et al. 2008). Others suggest that hIAPP oligomers are consumed

during hIAPP fibril growth, suggesting that the oligomers are on-pathway (Anguiano, et al. 2002; Porat, et

al. 2003; Green, et al. 2004; Knight, et al. 2006). This is a crucial issue since toxic off-pathway oligomers

could become increasingly populated when a therapeutic strategy based on inhibition of on-pathway hIAPP

oligomers and/or fibrils would be used. Considering the observed variation in size and character of

oligomers, it is not unthinkable that both on- and off pathway hIAPP oligomers co-exist.

A significant finding that has helped in detecting and characterizing hIAPP oligomers has been the

realization of an oligomer-specific antibody (Kayed, et al. 2003). The observation that this anti-oligomer

antibody, named A-11, recognizes hIAPP oligomers but not hIAPP monomers or hIAPP fibrils suggests

that these oligomers are structurally unique, and different from hIAPP fibrils. Moreover, the A-11 antibody

also binds specifically to oligomers of other amyloid-related peptides and proteins, suggesting a common

structural motive and possibly a key to a generic mechanism of cytotoxicity in misfolding diseases. Two

other antibody/antisera have been produced against hIAPP oligomers: the I-11 antibody reacts to the same

hIAPP oligomers as A-11 (Meier, et al. 2006), whereas the antiserum APF specifically recognizes the

bigger, annular hIAPP oligomers (Kayed, et al. 2009). The use of aggregation-state specific antibodies is

expected to reveal more structural characteristics of hIAPP species on the aggregation pathway in future

studies.

The structural information about the hIAPP monomer is very limited. Monomeric hIAPP, in the

majority of studies produced synthetically, is characterized as a natively unfolded peptide, showing

typically unstructured circular dichroism (CD) spectra (Goldsbury, et al. 2000; Higham, et al. 2000).

Recent NMR experiments suggest that the hIAPP peptide chain is unfolded, although part of the chain,

approximately residues 8 to 19, can dynamically adopt -helical structure (Williamson, et al. 2007;

Yonemoto, et al. 2008; Wei, et al. 2009). The spontaneous and fast aggregation of monomeric hIAPP in an

aqueous environment – insoluble fibrils are formed within a few hours – forms a major obstacle for

studying the structural characteristics of monomeric hIAPP in solution. Addition of SDS or binding to a

membrane (as will be discussed later) results in stabilized, mostly -helical, monomeric hIAPP states
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(Mascioni, et al. 2003; Apostolidou, et al. 2008). The interaction of monomeric hIAPP with insulin is also

suggested to increase the helical tendency of hIAPP (Wei, et al. 2009), although this interaction seems to be

very dependent on the physical forms of hIAPP and insulin, i.e. soluble or fibrillar hIAPP and soluble or

crystalline insulin (Knight, et al. 2008). Both insulin and lipids thus seem to induce helical structure, but

surprisingly their effect on hIAPP aggregation is opposite. Lipids have a tendency to promote hIAPP

aggregation (Knight, et al. 2004) whereas insulin is well known as an inhibitor of hIAPP fibril formation

(Westermark, et al. 1996). The effect of lipids and insulin on the secondary structure of hIAPP monomers

in vitro could suggest that hIAPP might be structured under in vivo conditions through interaction with

physiological binding partners (insulin and lipids are both present in secretory vesicles, the cellular storage

of hIAPP and insulin).

Islet amyloid fibrils at the -cell membrane

Just after the discovery of hIAPP as the major component of islet amyloid in 1987 (Cooper, et al. 1987;

Westermark, et al. 1987), it was generally thought that hIAPP fibrils were cytotoxic to -cells, thereby

contributing to T2DM (Clark, et al. 1987; Lorenzo, et al. 1994). Interestingly, already in the early seventies

a peculiar interaction between extracellular islet amyloid fibrils and -cell membranes had been noticed

(Fig. 2) (Westermark 1973). It was observed then, and confirmed in later studies, that the islet amyloid

fibrils were often orientated perpendicular to the membrane, and co-localized with distinct changes in the

morphology of the -cell membrane (Westermark 1973; Clark, et al. 1987; Jaikaran and Clark, 2001). In

contrast, in the vicinity of other types of Islet cells (e.g. -cells), this characteristic orientation of fibrils

near membranes was rarely seen, and fibrils were mostly randomly orientated. Whereas these studies

involved endogenous hIAPP, also externally added, freshly dissolved, synthetic hIAPP added to cultured -

cells induced typical membrane deformations, for example membrane invaginations, budding and vesicle

formation (Lorenzo, et al. 1994; Janson, et al. 1999; Saafi, et al. 2001; Casas, et al. 2008).

It appeared that the amount of amyloid in the Islets of Langerhans did not correlate well with the

decrease in the number of healthy -cells, pointing to species other than fibrils being the culprit. Currently,

the prevailing and well-documented view is that soluble hIAPP oligomers are the toxic species and that

hIAPP fibrils are biologically inert (Haataja, et al. 2008). With the increase in knowledge of the
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characteristics of soluble hIAPP oligomers (see previous section), also advances have been made into the

understanding of their interaction with membranes. The mechanism of hIAPP oligomer cytotoxicity is

thought to involve permeabilization of cellular membranes, possibly through formation of membrane pores.

Several variations of this hypothesis have been proposed and will be discussed in the next section.

Membrane permeabilization by hIAPP oligomers

The first observation that soluble amyloid oligomers could affect the integrity of a lipid bilayer by

forming an ion-channel, was made in 1993 (Arispe, et al. 1993). It was shown that A, the Alzheimer

related amyloidogenic protein, could form cation-selective channels in planar lipid bilayers. Soon after that,

the group of Kagan showed that also hIAPP could form cation-selective channels (Mirzabekov, et al.

1996). In contrast, the non-amyloidogenic rIAPP did not form channels. Currently, a substantial amount of

experimental data suggests that hIAPP, as well as many other amyloid-related peptides and proteins, can

form cation-selective channels. (Kawahara, et al. 2000; Kourie, et al. 2002; Kagan, et al. 2004).

Visualization by atomic force microscopy (AFM) suggests that a hIAPP ion-channel, assembled in a

bilayer, is composed of approximately 5 subunits in a circular arrangement (Fig. 1f) (Quist, et al. 2005).

Various sizes of the hIAPP-induced membrane pores or openings have been suggested, ranging from

Ca2+-permeable to permeable for fluorescent dyes with a size larger than 1 kDa (Anguiano, et al. 2002;

Demuro, et al. 2005; Kagan 2005). Soluble hIAPP oligomers, and amyloid oligomers in general, could

have characteristics of pore-forming protein toxins, like -hemolysin, and might have a similar mechanism

of action (Lashuel, et al. 2002; Lashuel, et al. 2006; Kayed, et al. 2009). Several groups have reported that

membrane permeabilization is caused by hIAPP oligomer-induced distortions of the phospholipid bilayer

packing and membrane instability, in contrast to the formation of discrete pores (Janson, et al. 1999;

Kayed, et al. 2004). Another possibility of oligomer-induced membrane permeabilization is the interaction

of amyloid oligomers with specific membrane receptors, which has been shown for HypF-N aggregates

(Pellistri, et al. 2008), but not (yet) for hIAPP.

Recently, it was shown that an A-11 positive hIAPP oligomer can be converted into a larger and more

stable annular hIAPP oligomer (also known as “annular protofibril”) catalysed by the presence of

hydrophobic/hydrophilic interfaces, in particular lipid bilayers (Kayed, et al. 2009). Interestingly, these two
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distinct hIAPP oligomeric species interact differently with membranes, the smaller oligomer having a

higher membrane permeabilizing activity and being more toxic compared to the bigger annular oligomer.

Although the conclusions of this work still seem preliminary, it shows the direction of future research:

solving the heterogeneity in oligomer types and determining which type of oligomer is cytotoxic and

physiologically relevant. One of the most challenging tasks in this route is to obtain samples of oligomers

with a single morphology and high purity.

Many aspects of the structure and formation of hIAPP oligomers are unknown. The secondary structure

of hIAPP oligomers is not well described, and both -sheet rich hIAPP oligomers (Kayed, et al. 2009) and

-helix rich hIAPP oligomers have been observed (Knight, et al. 2006). An -helical structure of hIAPP

oligomers is plausible as helical structure is observed upon binding of monomeric hIAPP to membranes, as

will be discussed later. In addition, hIAPP monomers in solution are observed to sample the helical state.

However, conversion of on-pathway, -sheet rich oligomers to cross- structured fibrils seems

energetically more favorable than conversion of -helical oligomers. Contradicting reports have appeared

suggesting that hIAPP oligomer assembly occurs either at the membrane (Quist, et al. 2005; Knight, et al.

2006) or in solution, after which the pre-formed oligomers interact with the membrane (Kagan, et al. 2004;

Kayed, et al. 2004). Figure 3 schematically shows the proposed variety in oligomer secondary structure,

membrane permeabilization events, and the various suggested routes for the assembly of soluble hIAPP

monomers into larger structures, oligomers and fibrils at or near the membrane.

Concerns about the toxic oligomers hypothesis

The “toxic-oligomer hypothesis” described above is well-documented and supported, not only for

hIAPP but also for other amyloid forming peptides and proteins related to misfolding diseases. However,

recent reports suggesting alternative hypotheses have emerged, indicating that the mechanism of hIAPP-

membrane interaction as an explanation for cytotoxicity is far from understood. Several notions justify

concerns about the hypothesis that hIAPP oligomers are involved in membrane permeabilization and

cytotoxicity.

First, whereas hIAPP fibrils have been unambiguously isolated and identified from in vivo sources, the

evidence for the existence of toxic hIAPP oligomers in vivo is extremely scarce, if not absent. The only
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indication is the detection of A-11-positive hIAPP oligomers in Islets of hIAPP-transgenic mice (Lin, et al.

2007). It has not yet been shown that these hIAPP oligomers are actually cytotoxic in vivo. Moreover, A-

11-positive oligomers have not (yet) been identified in diabetic patients, although there is evidence for

A11-positive oligomers in vivo in relation to other diseases like Alzheimer’s disease (Koffie, et al. 2009).

Difficulties in detecting hIAPP oligomers in vivo could arise due to instability of hIAPP oligomers,

specifically in tissue sections. In addition, the A-11 antibody is reported to be ineffective in paraffin-

embedded tissue (Haataja, et al. 2008).

Second, one should be cautious in interpreting results of cytotoxicity assays in which “toxic” hIAPP

oligomers are incubated with cells for prolonged periods. Unless it is established that these oligomers

remain unaltered during the entire period of incubation, the oligomers could convert into other species,

which might be the actual toxic species. It has been suggested that inhibition of hIAPP fibril formation by

rifampicin does not prevent -cell death, and instead hIAPP oligomers are cytotoxic (Meier, et al. 2006).

However, it was recently reported that rifampicin interferes with Thioflavin T measurements, thereby

negatively affecting tests for the toxicity of hIAPP fibrils (Meng, et al. 2008).

A third reason that questions the toxic oligomer hypothesis regarding hIAPP is the emergence of studies

that report difficulties in detecting hIAPP oligomers under in vitro conditions. Analytical ultra

centrifugation experiments could not detect hIAPP oligomers smaller than 100 monomers (Vaiana, et al.

2008), which is much bigger than has been suggested before (Kayed, et al. 2004). In some studies it has

been proposed that events or species other than hIAPP oligomers could induce membrane disruption or

permeabilization (Green, et al. 2004; Sparr, et al. 2004).

Finally, reports have emerged suggesting that amyloid fibrils composed of various peptides and

proteins, for example A (Okada, et al. 2007), prion protein (Novitskaya, et al. 2006), lysozyme

(Gharibyan, et al. 2006), and ure2p (Pieri, et al. 2006) might be toxic after all. An interesting case is that of

ure2p, whose native like fibrils are shown to be cytotoxic, possibly via interaction of certain structural

features with the membrane. A heat treatment of these fibrils however renders them unable to interact with

the membrane and abolishes cytotoxicity (Pieri, et al. 2006). These observations indicate that cytotoxicity

of fibrils could depend on fibril structure and/or fibril morphology. Fibrils could also be a source for the

formation of potentially cytotoxic, fibril-derived species, although this has not (yet) been reported for
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hIAPP. Amyloid fibrils can break, as shown for insulin fibrils (Smith, et al. 2006), and monomers or

oligomers could dissociate from fibrils, as shown for fibrils formed from an SH3 domain (Carulla, et al.

2005). Importantly, lipids are able to promote fibril dissociation into cytotoxic oligomers (Martins, et al.

2008).

Membrane permeabilization by the process of hIAPP aggregation, rather than by hIAPP species

A recent study suggests that it is not a specific (oligomeric) hIAPP species, but the process of hIAPP

fibril growth at the membrane that causes membrane permeabilization (Engel, et al. 2008). It was found

that the assembly of hIAPP fibrils at the membrane causes membrane disruption, possibly by forcing the

curvature of the bilayer to unfavorable angles (Fig. 4), or by the uptake of lipids by hIAPP fibrils during

fibril elongation at the membrane. Importantly, this study shows that pre-formed hIAPP fibrils and the non-

amyloidogenic rIAPP do not permeabilize membranes, whereas allowing hIAPP to aggregate at the

membrane, starting from a monomeric hIAPP population, leads to fibril growth at the membrane and

concomitant membrane permeabilization. The uptake of lipids into forming amyloid has been observed

before under in vitro conditions (Sparr, et al. 2004; Zhao, et al. 2004; Domanov, et al. 2008), and also in

various types of amyloid that was isolated from patients (Gellermann, et al. 2005; Gellermann, et al. 2006).

The tendency of amyloidogenic peptides to fibrillate on the surface of lipid vesicles, and simultaneously

damage the lipid bilayer, has also been observed using molecular dynamics simulations (Friedman, et al.

2009). Remarkably, it was found in this simulation that bilayer permeabilization is caused by growing

aggregates, but not by mature fibrils, in agreement with the hypothesis that hIAPP fibril growth at the

membrane causes membrane damage (Engel, et al. 2008).

The hypothesis that cytotoxicity is related to fibril growth at the membrane requires more investigation

and importantly, validation in a cellular environment. However, it is important to keep in mind the early

observation of in vivo interactions of Islet amyloid fibrils with -cells and the resulting significant changes

in membrane morphology, including changes in the curvature (see Fig. 2 and the earlier section “Islet

amyloid fibrils at the -cell membrane”). These hIAPP-induced effects on membrane morphology were

also observed in model membrane studies (Domanov, et al. 2008), and are straightforward to explain using

the hypothesis of fibril growth at the membrane (Engel, et al. 2008). The possibility that amyloid fibrils are
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able to physically ‘break’ cell membranes was recently suggested in a study that showed that fibrillar

polyglutamine can be taken up by cells (Ren, et al. 2009).

Fibril growth at the membrane as a membrane-permeabilizing action has not only been suggested for

hIAPP, but also for other amyloidogenic proteins, such as the Alzheimer’s disease related Abeta (Yip, et al.

2001; Wogulis, et al. 2005). Interestingly, the suggestion that not an hIAPP oligomer, but the membrane-

located conversion of small spherical oligomers into annular oligomers might be responsible for membrane

permeabilization (Kayed, et al. 2009) also supports the notion that a process occurring at the membrane

could lead to membrane permeabilization. Interestingly, most pore-forming toxins, which have been

hypothesized to have a similar mechanism of action as hIAPP oligomers (Glabe, et al. 2006; Lashuel, et al.

2006), are formed from their monomeric units at the membrane interface and not in solution (Gonzalez, et

al. 2008). This includes the bacterial pore-forming toxin -hemolysin which also reacts with the annular

oligomer antiserum (Kayed, et al. 2009). This again suggests that toxicity might be related to a process or a

conversion occurring at the membrane, and not to a certain species. These new ideas might lead to a focus

on mechanisms of membrane permeabilization that are governed by conversions of species along the fibril

formation pathway. In such mechanisms, membranes could have an important function as mediator or

accelerator of the conversion of one hIAPP species to the other, possibly representing a cytotoxic event.

The role of interfaces in hIAPP aggregation

Membranes have the ability to catalyse hIAPP fibril formation. More precisely, the presence of

phospholipid bilayers can reduce the lag-phase of hIAPP fibril formation, an effect that is most pronounced

with negatively charged lipids (Knight, et al. 2004; Jayasinghe, et al. 2005; Knight, et al. 2006). Other

negatively charged surfaces, like heparin molecules, are also able to catalyse hIAPP aggregation (Konno, et

al. 2007). The observation that a dichloromethane/water interface accelerates hIAPP fibril formation seems

to indicate that next to charge, also hydrophobicity at the interface plays an important role in the

acceleration of hIAPP aggregation (Ruschak, et al. 2007). Even hIAPP fibrils themselves can accelerate

subsequent hIAPP fibril formation, a process that is known as secondary nucleation (Padrick, et al. 2002).

The effects of these interfaces on hIAPP aggregation and fibril formation add another complicating

dimension to amyloid-membrane interactions, and indicate that hIAPP-induced membrane permeabilization
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is closely intertwined with interface-mediated hIAPP aggregation. In addition, it has been suggested that

other factors can significantly affect the interaction between hIAPP and membranes, for example calcium

ions (Sciacca, et al. 2008) and crystalline insulin (Knight, et al. 2008).

Interfaces can affect the aggregation of peptides and proteins in different ways. Interfaces can serve as a

template that helps put molecules in a preferential orientation such that aggregation is favored, as has been

suggested for hIAPP (Knight, et al. 2004). Membrane fluidity is suggested to be an important factor that

enables a specific orientation of fibrils on membranes (Zhang, et al. 2008). Secondly, adsorption of the

peptide at the interface can locally increase the peptide concentration, resulting in two-dimensional

crowding (Aisenbrey, et al. 2008). Consequently, a high local concentration of membrane-bound hIAPP

monomers will greatly accelerate aggregation. In addition, interaction or aggregation of membrane-bound

hIAPP monomers could result in cooperative binding (Knight, et al. 2004). Thirdly, interfaces have the

ability to change the conformation of a protein (Norde, et al. 1991; Engel, et al. 2004) and consequently

might also induce structure in a protein or peptide that is unstructured in solution, like hIAPP. Indeed, it has

been shown that adsorption of hIAPP at membranes induces helical structure, as will be discussed in detail

in the next section. Interfaces also have a significant effect on the conformation and nucleation of

amyloidogenic proteins (Giacomelli, et al. 2005; Linse, et al. 2007). Possibly, membranes could induce

different fibril morphologies, an observation that was made for apolipoprotein fibrils (Griffin, et al. 2008).

Recent reviews address the interaction of amyloidogenic peptides and proteins with various interfaces and

in particular membranes (Gorbenko, et al. 2006; Stefani 2007; Aisenbrey, et al. 2008; Relini, et al. 2009).

The effect of interface-mediated catalysis of aggregation might be a very important factor in the

mechanism of amyloid-induced cytotoxicity. With membranes acting as a ‘template’ for amyloid

aggregation, it is not surprising that amyloid species, through their conversion, also affect the barrier

properties of the bilayer.

Residue-level details of hIAPP interacting with lipid bilayers

hIAPP has several positively-charged residues, all of which are located on the N-terminal side of the

peptide (Fig. 1a). These N-terminal residues are suggested to be involved in the initial interaction of hIAPP

with lipids, in particular negatively charged lipids (Knight, et al. 2004; Engel, et al. 2006; Lopes, et al.
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2007). Indeed it has been shown that membrane binding of hIAPP is most efficient when bilayer lipids are

negatively charged (Knight, et al. 2006; Apostolidou, et al. 2008; Brender, et al. 2008). Still, electrostatic

interactions are certainly not the only interactions involved. As discussed in the previous section,

hydrophobic interactions also most likely play an important role. Remarkably, the 7 N-terminal residues,

including the disulfide, are not required for hIAPP cytotoxicity (Zhang, et al. 2003).

The residues important for hIAPP-membrane interaction could include those residues that are different

compared to the non-amyloidogenic rIAPP. These six residues (marked red in figure 1a) are all suggested

to be part of the amyloidogenic core of hIAPP and thus important for the formation of fibrils. The only

charged residue of these six is histidine 18, which is important for both fibril formation (Abedini, et al.

2005) and membrane interaction (Nanga, et al. 2008). Deprotonation of H18 favors an orientation of the

hIAPP1-19 fragment parallel to the membrane, while in the protonated state hIAPP1-19 is suggested to be

transmembrane (Nanga, et al. 2008). Importantly, the first 17 N-terminal residues are identical in hIAPP

and rIAPP, and seem surprisingly well conserved in IAPP from several species (Nishi, et al. 1989). The N-

terminal region has been suggested to be involved in binding to receptors (Bhogal, et al. 1993) and binding

to insulin (Gilead, et al. 2006; Wei, et al. 2009).

Recent reports suggest that hIAPP fiber formation and hIAPP-induced membrane disruption are

separate processes localized in two distinct regions of the peptide (Brender, et al. 2008; Brender, et al.

2008). It was suggested that membrane disruption is caused by the N-terminal section of hIAPP (residues

1-19), and that amyloidogenicity is not required for this. This is unexpected since many reports have shown

a clear link between amyloidogenicity and membrane permeabilization, not only for hIAPP but for many

other amyloidogenic proteins as well (see previous sections). In particular, it has been unambiguously

shown that the cytotoxicity of hIAPP is linked to its amyloidogenicity, in contrast to non-amyloidogenic

rIAPP that is not cytotoxic and not linked to T2DM (Lorenzo, et al. 1994; Höppener, et al. 2000). A

possible explanation for the membrane disrupting ability of non-amyloidogenic hIAPP fragments, as

observed in the studies by the group of Ramamoorthy (Brender, et al. 2008; Brender, et al. 2008), as well as

of rIAPP (Green, et al. 2004; Knight, et al. 2006), is the ‘carpet mechanism’, in which -helical peptides

disrupt membranes without the need to aggregate into -sheet–rich structures (Shai 1999). Indeed, hIAPP

and rIAPP both insert in lipid monolayers as monomer (Engel, et al. 2006; Lopes, et al. 2007), and their
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similar membrane interaction has been ascribed to the carpet mechanism (Green, et al. 2004). Membrane

damage by rIAPP and non-amyloidogenic hIAPP fragments seems to occur only in membranes solely

composed of negatively charged lipids, conditions that are very different from those found in cells

(approximately 20 to 30% negatively charged lipids). Moroever, experimental conditions, for instance

different membrane permeability assays, or the presence or absence of an amidated C-terminus, can lead to

discrepancies between studies. In conclusion, since membrane damage under certain conditions can be

induced by the T2DM-unrelated and non-amyloidogenic rIAPP, it is unlikely that the mechanism for this

membrane damage relates to a physiologically relevant event that can explain membrane damage and

cytotoxicity in T2DM.

Apart from the N-terminus, it has been shown that other residues are in contact with the membrane

when hIAPP binds to a phospholipid bilayer. Important information comes from a recent residue-level

study using site-directed spin labeling and EPR spectroscopy. This study shows details of the -helical

structure of monomeric hIAPP bound to large unilamellar vesicles (LUVs) composed of 80% POPS and

20% POPC (Apostolidou, et al. 2008). It was found that residues 9 to 22 form an -helix oriented parallel

to the membrane surface, embedded in the bilayer at the level of the phospholipid headgroups (Fig. 5).

Importantly, most of these residues are also thought to be involved in the formation of cross- structure in

the hIAPP fibril (Fig. 1c). This might explain the success of the study since the high amount of negatively

charged lipids trapped this helical state, possibly by preventing key residues from conversion to -sheet

structure. It was also suggested that residues Thr9, Leu12, Leu16 and Ser20 face the hydrophobic core of

the membrane, while the charged residues Arg11 and His18 are located at the level of the phospholipid

headgroups (Fig. 5). Residues 23-37 of the membrane-bound hIAPP are largely unstructured, and it is

implied that this exposure will promote conversion to -sheet structure (Apostolidou, et al. 2008). It should

be noted that the presence of 80% negatively charge lipids is very different from the in vivo situation

(~25% negatively charged lipids), consequently this helical state is likely to be less stable in a cellular

environment. Still, the observation that physiological levels of negatively charged lipids (~25%) are

sufficient to accelerate hIAPP fibril formation (Jayasinghe, et al. 2005) supports the notion that transient

helical structure might play a role in hIAPP fibrillation in vivo. In this context it is important to note that

negatively charged lipids are preferentially located at the cytosolic side of the cellular membrane, where
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they are only available to intracellular hIAPP species. Consequently, membrane permeabilization by the

process of fibril growth at the membrane (Engel, et al. 2008), which occurs independent of the presence of

negatively charged lipids, could affect biological membranes from both sides. The previously mentioned

EPR study confirms earlier work, which had shown using CD and FTIR spectroscopy that hIAPP adopts

helical structure when sufficient negatively charged lipids are present (Jayasinghe, et al. 2005; Knight, et al.

2006; Lopes, et al. 2007).

Considering that residues 9-22, except for residue 18, are identical for hIAPP and rIAPP, it is not

surprising that the non-amyloidogenic rIAPP also forms similar helical structure when bound to membranes

(Knight, et al. 2006). The hIAPP1-19 and rIAPP1-19 fragments reconstitued in DPC micelles have also been

shown to adopt -helical structure (Nanga, et al. 2008). In addition, it was found that in solution, rIAPP has

a tendency to sample -helical structures (Williamson, et al. 2007). The acceleration of hIAPP fibril

formation in the presence of helix-promoting organic solvents like TFE and HFIP support the importance

of helical structure in the process of fibril formation (Padrick, et al. 2002). The observation of -helical

structure in membrane-bound hIAPP seems an ordinary observation, since it is known that many peptides

adopt -helical structure when interacting with a lipid bilayer (Shai 1999). However, this helical structure

might turn out to be extra-ordinary, in view of the observation that the hIAPP monomer converts from a

mostly unstructured peptide in solution to a -sheet rich fibrillar assembly. Particularly interesting is the

suggestion that this -helical state could be an intermediate that promotes fibril formation of hIAPP

(Knight, et al. 2006). This suggestion deserves consideration and needs more research, in particular because

it would suggest alternative, -helix based ways to inhibit cytotoxicity, next to the “established” design of

disrupters of -sheet structure as a means to prevent aggregation and cytotoxicity.

Future directions

There has been considerable progress in the field of hIAPP-membrane interaction during the past five

years, however it is still far from clear how these interactions relate to cytotoxicity in T2DM. Various

hypotheses have been put forward, and all of them are logical starting points for further research.

Discrepancies in studies of cytotoxicity and membrane interaction of hIAPP species most likely result

from ill-defined or impure hIAPP samples, for example those containing traces of pre-existing aggregates
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(Konarkowska, et al. 2006), or synthesis-related residues of mercury (Cobb, et al. 1992; Golpon, et al.

2003). Due to the often rapid and uncontrollable aggregation of amyloidogenic proteins and peptides, the

possibility of dissociation of species from fibril ends (Carulla, et al. 2005), or the recently proposed lipid-

induced fibril dissociation into oligomers (Martins, et al. 2008), it is difficult to obtain a pure, structurally

uniform sample of either monomers, oligomers or fibrils. Efforts are likely to be directed towards

dissecting the structural heterogeneity in hIAPP amyloid formation, specifically considering polymorphism

observed in oligomeric species and fibrils. One way of obtaining pure samples with a single morphology

would be the use of novel purification strategies, and specific antibodies can be of great help in identifying

unique (oligomeric) hIAPP species, for example the oligomer-specific antibodies pioneered by the Glabe

group (Glabe 2004). The ability to isolate such hIAPP species is crucial for future studies that attempt to

link structure to cytotoxicity. Another way of tackling the large variety of intermediate species is using

techniques that can resolve several different species in one sample, for example single-molecule

techniques. Recent examples have shown the strength of these techniques for solving heterogeneity in

populations of amyloidogenic peptides and proteins (Collins, et al. 2004; Mukhopadhyay, et al. 2007;

Kostka, et al. 2008; Orte, et al. 2008).

As mentioned before, various studies have shown that it is not necessarily a particular species that can

be cytotoxic, but that the conversion from one species to another could also be cytotoxic. Future studies

into these ‘amyloid conversions’, in particular membrane-mediated conversions, could reveal new insights

into cytotoxic mechanisms. One particularly helpful tool is the use of molecular modeling, which has

recently been successfully adapted for amyloidogenic proteins interacting with membranes (Friedman, et

al. 2009). It is clear from many recent studies that the effects of membranes and other interfaces on amyloid

aggregation can be huge, and warrant future investigations.

Many of the membrane permeability assays are distant from the membrane conditions found in vivo.

Efforts to extrapolate results and hypotheses from model-membrane systems towards physiological -cell

membranes are likely to increase. Morphology and structure from in vivo produced hIAPP oligomers and

fibrils would provide valuable insight in the physiological relevance of the species and processes that have

now mostly been obtained using synthetic peptides and test-tube conditions. Only this, physiologically
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relevant information will bring us closer to the development of inhibitors for hIAPP-induced cytotoxic

processes in the Islets of Langerhans.

Studies on hIAPP cytotoxicity can increasingly benefit from the growing knowledge obtained from

other amyloidogenic systems. Still, there are convincing reasons to assume that cytotoxic mechanisms and

aggregation pathways are not necessarily the same for the different amyloid-related peptides and proteins.

Consequently, one might have to consider stepping away from the hypothesis that a generic mechanism

exists that describes amyloid-induced cytotoxicity for all misfolding diseases.
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Figure legends

Fig. 1. IAPP structure and morphology. (a) Amino acid sequence of hIAPP and non-amyloidogenic rodent

IAPP (rIAPP). Both peptides are C-terminally amidated and have a disulfide bond between residues 2 and

7. Residues in red mark the differences between hIAPP and rIAPP. The blue line indicates residues

involved in the fibril core while the green line marks residues which are thought to be involved in

membrane interactions (b) Negatively stained electron microscopy image of in vitro assembled hIAPP

fibrils showing different fibril morphologies: ribbon-like fibrils and coiled fibrils. Image kindly provided

by U. Aebi and C. Goldsbury. (c) Model of an hIAPP fibril based on NMR data of a morphologically

homogeneous fibril sample. The picture shows a cross-sectional view of the fibril, with 2 hIAPP monomers

back to back. The long-axis of the fibril is perpendicular to the plane of the paper. Reprinted with

permission from (Luca, et al. 2007). Copyright 2007 American Chemical Society. (d) Example of the

morphology and size-distribution of in vitro assembled spherical hIAPP oligomers. Reprinted with

permission from (Kayed, et al. 2004). Copyright 2004 by the American Society for Biochemistry and

Molecular Biology. (e) Example of the morphology of an in vitro assembled annular hIAPP oligomer.
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Reprinted with permission from (Porat, et al. 2003). Copyright 2003 American Chemical Society. (f)

Atomic force microscopy (AFM) image of two membrane-incorporated hIAPP oligomers that display a

pore-like structure. Reprinted with permission from (Quist, et al. 2005). Copyright 2005 National Academy

of Sciences, U.S.A.

Fig. 2. Electron micrograph showing a mat of islet amyloid fibrils (A) next to a -cell (B) in human Islets

of Langerhans. Bundles of fibrils penetrate the -cell membrane (arrows). The characteristic secretory

vesicles that store insulin and hIAPP are clearly visible as circular structures with an electron dense black

spot inside (arrowheads). Magnification 19500X. Reprinted with kind permission from the author and

Springer Science and Business Media (Westermark 1973).

Fig. 3. Scheme showing various suggested membrane-permeabilizing hIAPP species and processes in

relation to cytotoxic hIAPP-membrane interaction. Predominantly unstructured (grey circle), -helix rich

(blue triangle) and -sheet rich (green rectangles) hIAPP monomers or oligomers are participating in and/or

converted during aggregation at or near membranes. Stars show the membrane permeabilization events,

with yellow stars suggesting membrane permeabilization by toxic species and red stars suggesting

membrane permeabilization by toxic processes. Route 1 symbolizes membrane permeabilization by

preformed -sheet rich oligomers (Kayed, et al. 2004) or by the bigger -sheet rich annular oligomers that

insert in the membrane (1a)(Kayed, et al. 2009). Alternatively, such oligomers could assemble in the

membrane from hIAPP monomers (1b)(Quist, et al. 2005). Route 2 describes the binding of initially

random-coil hIAPP monomers to lipids, followed by folding into helical structure and the formation of -

helix-rich on-pathway oligomers that permeabilize the membrane (Knight, et al. 2006). Route 3 starts by

binding of monomer to the membrane followed by the participation of monomers and/or oligomers in fibril

growth at the membrane. The process of fibril elongation at the membrane results in membrane

permeabilization (Engel, et al. 2008).

Fig. 4. Cryo EM image of hIAPP fibrils (arrows) that are associated with disrupted large unilamellar

vesicles (LUVs) composed of phospholipids (asterisks) after initially monomeric hIAPP was allowed to
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aggregate in the presence of LUVs. Pre-formed hIAPP fibrils did not cause membrane disruption.

Reprinted with permission from (Engel, et al. 2008). Copyright 2008 National Academy of Sciences,

U.S.A.

Fig. 5. Model for the structure of monomeric membrane-bound hIAPP from EPR data. The red ribbon

indicates the -helical part of the peptide (residues 9-20). The N-terminal and C-terminal part are

unstructured. The scheme shows the position of the peptide relative to the bilayer lipids. Reprinted with

permission from (Apostolidou, et al. 2008). Copyright 2008 by the American Society for Biochemistry and

Molecular Biology.
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