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ABSTRACT 

This paper presents the outcomes of a series of beamline-based studies, the results of which 

are combined to provide a more detailed multiscale understanding of the structure and 

chemistry of geopolymer binders. 

The range of beamline-based characterization techniques which have been applied to the 

study of geopolymer binders is increasing rapidly; although no single technique can provide a 

holistic view of binder structure across all the length scales which are of importance in 

determining strength development and durability, the synergy achievable through the 

combination of multiple beamline techniques is leading to rapid advances in knowledge in 

this area. Studies based around beamline infrared and X-ray fluorescence microscopy, in-situ  

and ex-situ neutron pair distribution function analysis, and nano- and micro-tomography, are 

combined to provide an understanding of geopolymer gel chemistry, nano- and 

microstructure in two and three dimensions, and the influences of seeded nucleation and 

precursor chemistry in these key areas. 

The application of advanced characterization methods in recent years has brought the 

understanding of geopolymer chemistry from a point, not more than a decade ago, when the 
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analysis of the detailed chemistry of the aluminosilicate binder gel was considered intractable 

due to its disordered (“X-ray amorphous”) nature, to the present day where the influence of 

key compositional parameters on nanostructure is well understood, and both gel structure and 

reaction kinetics can be manipulated through methods including seeding, temperature 

variation, and careful mix design. 

This paper therefore provides a review outlining the value of nanotechnology – and 

particularly nanostructural characterization – in the development and optimization of a new 

class of environmentally beneficial cements and concretes. Key engineering parameters, in 

particularly strength development and permeability, are determined at a nanostructural level, 

and so it is essential that gel structures can be analyzed and manipulated at this level; 

beamline-based characterization techniques are critical in providing the ability to achieve this 

goal. 

Keywords: Geopolymer, alkali-activated binder, synchrotron radiation, neutron scattering, 

nanostructure, microstructure 

 

 

1. Introduction 

The detailed characterization of all cements (traditional and non-traditional) requires the 

application of advanced experimental techniques, due to the complex and locally disordered 

nature of most of the key chemical phases responsible for strength development and retention 

[1]. This is particularly the case for alkali-activated binders, where the binder is almost 

entirely lacking in coherent long-range ordering, and thus is intractable to analysis by 

classical diffractometry [2]. These binders are obtained by the reaction between an alkali 

source and a solid aluminosilicate powder, often metakaolin, fly ash and/or blast furnace slag, 

and are increasingly being utilized as a lower-CO2 alternative to Portland cement in concrete 

production [3-5]. The increasing availability and capabilities of beamline-based 

instrumentation for the analysis of complex materials, at both synchrotron and neutron 

sources, is leading to major developments in this area at present. It is essential, in introducing 

a new class of construction materials, to be able to provide a detailed molecular-scale 

understanding of the reaction processes and chemical bonding environments which control its 

strength development (in terms of both rate and final strength) and durability, as a way to 

2 
 

http://dx.doi.org/10.1016/j.cemconcomp.2012.07.003


Preprint version of accepted article. Please cite as: 
J.L. Provis et al., “ Nanostructural characterization of geopolymers by advanced beamline techniques”, Cement 
and Concrete Composites 2013, 36(1):56-64. 
Official journal version is online at http://dx.doi.org/10.1016/j.cemconcomp.2012.07.003 
 

underpin the analysis of data obtained through (more widely available-) bulk-scale 

standardized testing procedures. As the application of common laboratory-based analytical 

techniques to alkali-activated binders does not always provide a full understanding of detailed 

chemical structures and mechanisms due to the complexity and disordered nature of the key 

binder gel phases, it is important to generate a deeper level of understanding through the 

application of more advanced techniques, including beamline-based techniques as discussed 

in this brief review. 

 

This paper will briefly summarize some advances which have been made recently in the 

understanding of alkali-activated binders based on the application of beamline-based 

characterization techniques. This is presented in the format of a review of some of the novel 

information which can be obtained by the different experimental techniques described, with 

the aim of stimulating further discussions and developments in related areas. 

 

2. Results and Discussion 

2.1 Synchrotron infrared microscopy 

Infrared microscopy beamlines, which are located at various synchrotron sources worldwide 

including the Australian Synchrotron [6], provide the opportunity to collect spatially-resolved 

infrared data for polished samples at a spatial resolution of approximately 10 µm. Infrared 

spectroscopy has been shown to be a particularly sensitive probe of the extent of formation 

and cross-linking of the binder gel in low-calcium alkali-activated materials [7-9], and these 

gels have been believed to form with a chemically heterogeneous structure depending on the 

relative rates and sites at which gel nucleation and growth processes can take place [10, 11]. 

It therefore appears logical that analysis of gel structures by spatially-resolved infrared 

microscopy should prove instructive in understanding the influence of different synthesis 

parameters on the extent of gel heterogeneity. This has been proven to be the case in 

developing an understanding of the effect of differences in the availability of the binder-

forming species silica [12] and alumina [13], where the combination of time-resolved (in situ 

attenuated total reflectance) and spatially resolved (synchrotron) infrared spectroscopy has 

provided powerful new insight. Figure 1 shows an example of the results obtained by 

application of synchrotron infrared microscopy to a geopolymer derived by the reaction of 
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geothermal silica and sodium aluminate, after 28 days of curing, with and without 0.5 wt.% 

of Al2O3 nanoparticles (565 m2/g surface area) [14]. The data presented in Figure 1 are the 

results of hierarchical clustering analysis of the infrared microscopy data; Figure 1(a) and (b) 

show the clustered spectra representing each of the points on the sample, for the unseeded (a) 

and seeded (b) cases, and (c) and (d) show the distribution of the regions with each type of 

gel structure within a 100 µm × 125 µm region. 

 

Figure 1. Synchrotron infrared microscopy data for geothermal silica-sodium aluminate geopolymer 
binders, without (a,c) and with (b,d) 0.5 wt.% nano-Al 2O3 seeding. Hierarchical clustering of the 
spectra obtained at each point results in the cluster spectra shown in (a) and (b), and the distributions 
of the spectra on the samples are shown in (c) and (d). Data from [14], collected using the Infrared 
beamline of the Australian Synchrotron, Clayton, Victoria, Australia, in attenuated total reflectance 
geometry using a diamond crystal probe. 

 

Figure 1 demonstrates that synchrotron radiation-based infrared microscopy can aid in 

elucidating the effects of nucleation on the heterogeneous structure of geopolymer gels. 
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While spatially averaged (i.e. laboratory-based) infrared results show similar spectra for 

seeded and unseeded samples which have been cured for more than three weeks [14], infrared 

microscopy shows marked differences in gel structure as a result of seeding. 

 

In the dominant spectra (yellow and orange) in the unseeded sample (Figure 1a), there is a 

shoulder at about 1090 cm-1 which is assigned to unreacted geothermal silica [14], and which 

is much less prominent in the seeded sample. The maximum of the Si-O-T asymmetric 

stretch ‘geopolymer’ peak [8] also appears in two very distinct positions in the unseeded 

sample, either 945 cm-1 (in the black and brown spectra) or 975 cm-1 (yellow and orange 

spectra) – this separation is not visible in laboratory infrared analysis [7, 14], which provides 

a spatially averaged view of the sample (either averaged throughout the bulk, when using the 

KBr pellet technique, or averaged over the surface layer when using attenuated total 

reflectance geometry), thus providing spectra which are a weighted average of the 

components visible in synchrotron infrared microscopy. In the seeded sample, this band is 

always observed at about 960 cm-1 in all spectra, showing a greater degree of homogeneity in 

the geopolymer gel in the seeded sample. This is an important result with consequences in 

geopolymer mix design for optimal gel structure and stability, and was not evident from the 

analysis of laboratory infrared spectroscopy data [14], highlighting the unique capabilities of 

the beamline-based technique in this instance. 

 

2.2 In situ neutron pair distribution function analysis of geopolymer formation 

Pair distribution function (PDF) analysis, which involves the generation of real-space 

structural information by the calculation of the Fourier transform of high-momentum transfer 

neutron or X-ray scattering data [15, 16], is a powerful technique for the analysis of 

disordered materials. The disordered nature of the geopolymer binder phase is highly 

amenable to analysis by this technique, as has been discussed in recent reviews [1, 17], and 

significant advances in the understanding of geopolymer nanostructure have been obtained by 

both X-ray [18, 19] and neutron [20, 21] pair distribution function analysis. In situ analysis of 

geopolymer formation has previously been undertaken by a variety of laboratory and 

beamline techniques, including in particular the use of in situ energy-dispersive X-ray 

diffractometry to provide direct kinetic information regarding gel structure formation using 
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high-energy synchrotron radiation [22, 23]. However, it is only recently that developments in 

instrumentation and data processing capabilities have enabled this process to be studied in 

situ while generating data sets of sufficient range and resolution to be amenable to PDF 

analysis. Both X-rays and neutrons have been used to study the formation of alkali-activated 

binder during in situ experiments; the X-ray results are reported elsewhere [24], while the 

neutron data were described in [21] and are summarized briefly here. Figure 2 shows the 

evolution of geopolymer nanostructure as a function of reaction time (times as marked in 

Figure 2(a)), where time zero was the time of mixing of a ‘pure’ metakaolin source (obtained 

by calcination of the reference kaolin clay KGa-1b) with a sodium silicate solution with 

molar ratio SiO2/Na2O = 2.0.  

 

Figure 2a shows that the geopolymer gel structure is highly disordered; atomic correlations 

beyond 3Å are weak in the sample analyzed here. The most critical information obtained 

from Figure 2 relates to the development of the gel structure, as seen in the (Si,Al)-O peak in 

Figure 2(b). The (Si,Al)-O bond length is seen to be shorter in the early-age geopolymer 

PDFs than in the precursor metakaolin, or in the ‘final’ (90-day) geopolymer gel. Residual 

metakaolin accounts for the shoulder at ~1.9Å in the first 14 hours [25, 26]; the aluminum 

environment in this time period remains mostly in a metakaolin-like configuration, indicating 

that the bulk of the solid precursor is yet to dissolve. However, after 90 days this sample no 

longer contains a significant amount of undissolved metakaolin, which is visible in Figure 

2(b) as most of the aluminum has become IV-coordinated with Al-O correlations between 

~1.75 to 1.8Å. 
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Figure 2. In situ neutron pair distribution functions of a deuterated sodium silicate-activated 
metakaolin geopolymer, obtained after reaction times as marked, at ambient temperature (25°C). Parts 
(b) and (c) are expansions of key peaks in (a), and (b) shows a comparison to the pair distribution 
function of the raw metakaolin used in geopolymer synthesis. Data from [21], collected using the 
HIPD instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory, New 
Mexico, USA. 

 

Although the distinct Al-O shoulder in Figure 2(b) changes minimally during the first 14 

hours, there is a variation in the distance at which the (Si,Al)-O correlation is a maximum. 

This is attributed to some of the aluminum being released from the metakaolin, then taking on 

IV-coordination in solution and in the newly-formed geopolymer. Between 14 hours and 90 

days there is a very notable change in the Al-O correlation, and the changes in the (Si,Al)-O 

correlation during this time are attributed to changes in both silicon and aluminum local 

environments during metakaolin dissolution and geopolymer gelation. By 90 days the sample 

has evolved to form a hardened binder material due to polymerization of the silicate and 

aluminate monomeric species from the solution, and the majority of the aluminum is bound 

in the geopolymer matrix and in IV-fold coordination [27, 28]. 
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Figure 2(c) shows the O-D peak, which is considered equivalent to the O-H peak in non-

deuterated samples, although possibly showing some subtle differences due to kinetic isotope 

effects and the additional mass of the D atom compared to H. The datasets up to 14 hours are 

very similar, with a maximum at 0.955Å, showing that the local structure of water in the 

geopolymer in the first 14 hours of reaction is relatively unchanged, with a very small shift 

and slight sharpening observed at 90 days. This geopolymer has been seen to contain mobile 

water loosely held in large pores, with only < 5% either physically bound in small pores or 

chemically bound as hydroxyl groups attached to the Si-Al framework structure [20]. This 

appears to be the case throughout the reaction process, with the slight changes observed 

between 14 hours and 90 days attributed to the release of some of the initially bound 

hydroxyl (or in this case deuteroxyl) groups as additional molecular water during 

condensation reactions in the gel binder.  

 

This information related to both framework and extra-framework species is difficult to 

directly access by standard laboratory experimental techniques, particularly related to 

disordered or ‘X-ray amorphous’ phases. The ability to collect such data in situ during 

reaction, or ex situ for sets of samples treated under different processing conditions, is 

particularly appealing in characterizing geopolymer binders, and is made available only 

through the development of highly specialized beamline facilities at advanced X-ray and 

neutron sources. 

 

2.3 X-ray fluorescence microscopy 

X-ray spectroscopy is often used in conjunction with electron microscopy to provide 

localized compositional information for heterogeneous samples such as alkali-activated 

binder materials [11, 29-31], but the spatial resolution of this technique in application to 

geopolymers is limited to some extent by the relatively large interaction volumes observed 

when high-energy electron beams interact with low-elemental number solids [32]. Lower 

electron energies can also be used to minimize this, but at the cost of requiring very careful 

surface preparation, and reducing the availability of information regarding heavier elements. 

X-rays are also much more sensitive to the presence of trace elements; the sensitivity of X-
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ray fluorescence microscopy to the distribution of components present at levels below 0.1 

wt.% is valuable in the study of key elements such as Cr in fly ashes [33].  

 

The use of a highly focused X-ray beam enables extremely high-resolution analysis of 

elemental compositions in the binder structure, as demonstrated in Figure 3. These images 

display the Ca and Si concentrations, and the Ca/Si ratios, in a binder region containing two 

slag particles (Ca-rich regions) embedded in the binder gel.  

 

 

  

 

Figure 3. X-ray fluorescence micrographs of a sodium metasilicate-activated binder (75% slag/25% 
metakaolin, activator SiO2/Na2O ratio 1.0). The maps were obtained with a focused 12 keV X-ray 
beam with a spot size of 50 nm, and a step size of 10 nm. The same region is shown in all parts of the 
Figure; the gel and slag regions are identified in the Ca map only. Data were collected using beamline 
26-ID (Hard X-ray Nanoprobe), operated by the Center for Nanoscale Materials at the Advanced 
Photon Source, Argonne National Laboratory, Illinois, USA. 
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The data in Figure 3 provide insight into the chemistry of the binder gel and its interaction 

with the slag particles. It is seen that the Ca/Si ratio of the outer product gel (which forms in 

the spaces initially filled by liquid) is notably lower than that of the slag particles, rarely 

exceeding 1.0 (approximately dark brown on the color scale used here) in the regions of the 

scan identifiable as being gel, compared to an average value closer to 1.3 (orange on the color 

scale) in the unreacted slag particles, and much higher than this in some parts of the remnant 

slag particles in Figure 3. The gel Ca/Si ratio is relatively homogeneous in the outer product 

region, while the residual slag particles vary significantly in Ca/Si ratio; the reasons for this 

apparently incongruent dissolution of the slag particles are unknown. The inner product gel 

(the gel which fills the spaces initially occupied by particles) is only slightly lower in Ca/Si 

ratio than the bulk of the slag particles, although has a lower density (due to the presence of 

porosity and water) and thus has lower concentrations of both Ca and Si than the slag, 

although the ratio between these two elements is not changed much. The inner and outer 

product gels have previously been identified to differ in Ca/Si ratio and morphology in alkali-

activated binders [30, 34], and these data are consistent with those observations. 

 

In obtaining these data, the full X-ray fluorescence spectra for elements Al and heavier on the 

periodic table are collected, and then the intensities in desired spectral regions integrated to 

provide the concentrations of each element (see Supporting Information of [33] for a full 

description of this procedure). Several other elements of interest were identified, in addition 

to the dominant Ca and Si, in the binder region depicted in Figure 3, there are several Ti-rich 

points localized within remnant slag particles, and the elemental maps of S and Mn also 

correlate closely with the Ca map, indicating the presence of these elements predominantly 

within the unreacted slag rather than being extensively distributed through the binder. There 

is not strong evidence of the presence of any metakaolin particles within the region depicted 

here in Figure 3, as the Al map corresponding to this region is rather featureless.  

 

However, Figure 4 does clearly show the presence of a partially-reacted metakaolin particle 

(identified by high Si, very high Al; moderate Ca) and a partially-reacted slag grain 

(identified by high Si, moderate Al, also relatively high S and some Mn (data not shown)), in 

a different sample with similar mix design (different slag source, slightly lower metakaolin 
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content and modulus (activator SiO2/Na2O ratio)). This region happens not to contain any 

unreacted slag particles, although these are visible elsewhere in the same sample [35]. 

 

  

 

Figure 4. X-ray fluorescence micrographs of a sodium silicate-activated binder (80% slag/20% 
metakaolin, activator SiO2/Na2O ratio 0.9). The maps were obtained with a focused 10.5 keV X-ray 
beam with a spot size of 50 nm, and a step size of 50 nm. The same region is shown in all parts of the 
Figure. Data were collected using beamline 26-ID (Hard X-ray Nanoprobe), operated by the Center 
for Nanoscale Materials at the Advanced Photon Source, Argonne National Laboratory, Illinois, USA. 
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Al supplied by the metakaolin throughout the remainder of the binder region. The region at 

the top of the images shown in Figure 4 is rich in Ca but relatively poor in Si, with moderate 

Al content. This is identified as corresponding to inner product gel; the proximity of this gel 

region to the metakaolin particle has provided additional Al, and the gel formed is thus able 

to be stabilized at a higher Ca/Si ratio than would be the case further from the metakaolin 

particle. 

 

This highlights the importance of obtaining data from multiple regions on a sample when 

using techniques operating on such fine length scales to study highly heterogeneous 

materials. As the resolution of the technique increases, so does the importance of ensuring 

that the regions scanned are in some way representative of the sample as a whole; for 

example, almost any alkali-activated binder will contain regions larger than the scan areas in 

Figures 3 and 4 which fall entirely within unreacted particles of raw material, and so it is 

important to scan a sufficiently large area (and with a sufficiently detailed understanding of 

the chemistry of both reacted and unreacted phases) to enable accurate analysis of complex 

samples. Further examples of this requirement will be demonstrated in the following section, 

which discusses X-ray tomography as applied on different length scales to the analysis of 

geopolymers. 

 

2.4 X-ray tomography 

Figure 5a shows a region of interest selected from an X-ray microtomographic reconstruction 

of an alkali-activated slag/metakaolin sample of the same composition as the sample depicted 

in Figure 4 [35]; the image shows a region 150×150 µm in size, which has been extracted 

from a reconstructed 3-dimensional dataset computed from a set of X-ray transmission 

images. A grayscale histogram of the volume of interest is presented in Figure 5b, with 

distinct peaks due to the reaction products (the peak at a grayscale value of around 70) and 

unreacted slag (at 170). Figure 5a shows a clear distinction between inner and outer product 

regions, with the outer product showing lower X-ray absorption (corresponding to lower 

Ca/Si ratio) at the solution modulus of 0.9 used here, which is consistent with the discussion 

presented in section 2.3. However, these two types of reaction products do not show distinct 
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peaks in the histogram in Figure 5b. Remnant metakaolin particles are not immediately 

evident in Figure 5a, which is consistent with observations elsewhere that these particles are 

difficult to distinguish from the gel regions of mixed slag-metakaolin binders by X-ray 

microtomography [36]. It is likely that the metakaolin particles (which are dense but low in 

elemental number) and the gel (which contains some Ca, the heaviest element present in 

significant concentrations in the samples, but which is also nanoporous) have a similar X-ray 

absorption cross-section, and thus they appear similar in the grayscale images obtained from 

the tomography experiment.  

 

      

Figure 5. (a) One slice from an X-ray microtomography scan of a sodium silicate-activated binder 
(80% slag/20% metakaolin, activator SiO2/Na2O ratio 0.9), field of view 150×150 µm, and (b) a 
grayscale histogram of the volume of interest. Data were collected on beamline 2-BM-B at the 
Advanced Photon Source, Argonne National Laboratory, Illinois, USA, using 22.5 keV radiation. 

 

It is also evident that there was some degree of agglomeration of the slag particles prior to 

reaction, as multiple slag grains (bright, smooth, angular regions in Figure 5a) are seen to be 

embedded in the inner product regions. However, some of the larger slag particles are 

apparently not surrounded by inner product regions, which may indicate differences in 

reactivity between different grains of the slag. This is to some extent unexpected, as the slag 

used here is predominantly glassy [37, 38], and thus suggests either that there is some degree 

of differential reactivity between slag particles, or alternatively that the larger non-

agglomerated slag particles react more gradually than the agglomerates of finer particles, and 

slag 

inner 

product 

outer 

product 

(a) (b) 
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thus do not display such marked distinction between inner and outer product regions. 

Electron microscopy has previously shown Mg-rich, Ca-depleted rims surrounding residual 

slag grains in alkali-activated slag binders [11]; this is not observed here, possibly due to the 

low Mg content of the slag used here [37, 38]. There are some large pores present in the 

sample due to air entrainment during molding of the paste specimen studied, while the 

porosity of the gel itself is too fine to be observed directly by this technique. 

 

The data presented here were collected in absorption contrast mode; phase contrast 

tomography is also possible, and offers potentially higher sensitivity in systems where 

absorption contrast is low [39], which means that it is particularly useful in nanotomography 

experiments [40]. The voxel size of the data shown in Figure 5 is 750 nm; this is considered 

to be a relatively high resolution for absorption contrast X-ray tomographic studies of 

complex materials, as complexities related to both the physics of the experiment and the 

handling of very large data sets enforce a compromise between voxel size and sample size 

[41]. The sample size of a cement or alkali-activated binder which is able to be most 

effectively analyzed using the 750 nm voxel size applied here, using bending magnet 

radiation from a high-energy synchrotron ring (in the energy range approximately 20-30 

keV), is no more than a few millimeters. Neutron tomography is particularly well suited to 

the analysis of larger specimens, and of the distribution of water within specimens [42], but 

offers much lower spatial resolution than can be achieved using X-ray tomography due to the 

difficulties inherent in spatially-resolved detection of neutrons. However, the most important 

limitations in high-resolution tomography of large samples are currently related to data 

handling, as a 2048 voxel3 dataset (i.e. approximately a 1.5 mm cube at 750nm resolution, 

corresponding to the size of many detectors used in tomographic instruments at present), 

where each voxel contains 8-bit grayscale information, occupies tens of gigabytes. These 

datasets can be handled with modern computational infrastructure, and the capabilities of this 

technique will be expected to continue to grow in line with advances in computational 

capacity. 

 

It is possible to use tomography to access finer length scales than the 750 nm voxel size 

depicted in Figure 5, although at the cost of requiring a very small sample size; data at a 
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spatial resolution below 100 nm have been obtained and published for an alkali-activated fly 

ash sample [43] using the ‘Hard X-ray Nanoprobe’ (beamline 26-ID) instrument at the 

Advanced Photon Source synchrotron, operating in Zernike phase contrast mode. The field of 

view in that experiment was around 12 µm × 12 µm, meaning that the accessible sample size 

is less than this. In a tomographic scan, it is important that the whole sample remains within 

the field of view and depth of focus throughout the experiment, because if part of the sample 

moves out of the field of view, the reconstruction algorithm is prone to failure for at least a 

pie-slice shaped region of the sample. This is particularly important for samples (such as 

cements, and particularly alkali-activated binders with low Ca content) which show relatively 

low X-ray contrast between regions, because tomographic reconstruction of such samples is 

always difficult, and may become entirely impossible if some part of the data set is missing. 

It is a very challenging mechanical engineering problem to achieve the degree of stability 

required to rotate a sample several microns in size through 180°, in step sizes of around 0.1°, 

all the time remaining within the field of view of the detector, and while subject to ambient 

vibrations and/or thermally induced expansion/contraction [44, 45]. Nonetheless, both 

synchrotron and laboratory instruments offering tomography with sub-200 nm spatial 

resolution are currently available, and the application of high-resolution tomographic 

methods to the study of cement materials is becoming increasingly widespread and 

increasingly powerful with advances in computing and beamline technology [46-50]. The 

coupling of X-ray diffraction and tomographic techniques has also proven valuable in the 

analysis of key crystal phases within hydrated Portland cements [51]. Alkali-activated binders 

are in general insufficiently crystalline for such an approach to give immediately 

comprehensible data, but it may be that developments in the technique and in the 

understanding of alkali-activated binder chemistry could provide advances in this area in 

future. 

 

While the qualitative analysis of tomographic data does provide important insight, 

particularly in the development of an understanding of pore structures and the geometry of 

the solid phases on a range of length scales, it is also important to be able to obtain 

quantitative information from the data sets. This necessitates segmentation of the data into 

regions defined as ‘pore’ and as ‘solid’, and the methodologies by which this may be 

achieved remain the subject of much discussion in the literature. Figure 6 illustrates part of 
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the difficulty in accurately achieving pore segmentation for samples with a fundamental pore 

size smaller than the voxel resolution of the data – which will certainly be the case for all 

microtomographic studies of alkali-activated binders, as the dominant pore size present in 

these materials (as determined through nitrogen sorption and visible in electron microscopy) 

is usually in the nanometer range [43, 52-56]. 

 

SOLID

PORE

SOLIDPORE

PORE??

PORE

increasing voxel size, decreasing resolution

(a) (b) (c)

Figure 6. The distinction between pore space and binder phase becomes more difficult as voxel size is 
increased above the fundamental pore size, for an arbitrary pore geometry. As the voxel size 
increases, the likelihood of error associated with segmentation increases; in (a) it is clear what is pore 
and what is solid, whereas in (b) and (c) it becomes increasingly more difficult to distinguish the pore 
and solid phases. 

 

The additional difficulty related to the analysis of alkali-activated binders by 

microtomography is that there is often limited X-ray absorption contrast between the 

unreacted or partially-reacted raw materials and the newly-formed binder phases [49]. 

Greyscale histograms of tomographic reconstructions of hydrated Portland cement usually 

show three distinct peaks, which are assigned to the pores, the hydration products, and the 

anhydrous cement [47, 50]. However, the greyscale histogram of an alkali-activated binder is 

often unimodal [49, 57], which means that it is more difficult to select a threshold value for 

the binary thresholding into ‘pore’ and ‘solid’ regions. This is represented schematically in 

Figure 6b by the upper left-hand region, which is 50% solid and 50% pore volume (as seen 

by comparison with the same sector of Figure 6a), and is thus not straightforwardly classified 

as either ‘solid’ or ‘pore’ if the threshold is set at a greyscale value halfway between the solid 
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and pore regions. More advanced thresholding algorithms, potentially including the use of 

edge detection to identify unreacted particles, will be needed to resolve this difficulty, which 

is inherent in the physics and chemistry of low-Ca aluminosilicate binders, and will also be 

observed in other cement-type systems where the atomic number densities of some or all of 

the unreacted phases (fly ash being the particularly problematic case in alkali-activated 

binders) and of the reaction products are comparable. 

 

2.5 Discussion and perspectives for future work 

The combination of X-ray fluorescence microscopy with other analytical techniques, 

particularly nanoscale [43] and microscale [49] tomographic analysis of the three-

dimensional structure of the binder gel, as well as infrared microscopic analysis (on a longer 

length scale) and pair distribution function analysis (on a finer length scale) for chemical 

bonding information, provides immense power in understanding the development and 

distribution of gel phases within geopolymer binders. These techniques are almost 

exclusively available at beamline facilities, although laboratory-scale tomography and pair 

distribution function facilities are now commercially available, with capabilities approaching 

those of some lower-end synchrotron sources. Neutron scattering and high-resolution X-ray 

fluorescence microscopy are likely to remain limited to major beamline facilities, but such 

facilities are increasing in availability and capabilities worldwide, and provide a good deal of 

scope for developments in the science of construction materials in coming years. Techniques 

such as scanning transmission X-ray microscopy (including the capability for spatially 

resolved X-ray absorption spectroscopy), which has been applied with success to the study of 

Portland cement and its component phases [58, 59], but which have not yet produced 

publications related to geopolymer materials, will undoubtedly provide additional insight as 

advances in both instrumentation and scientific understanding of alkali-activated binders 

enable developments in this area. Cement and geopolymer materials are generally much less 

susceptible to beam damage effects than is the case for biological materials, and the absorbed 

doses in all experiments reviewed in this paper were multiple orders of magnitude below the 

thresholds for degradation quoted for Portland cement-based materials in [60]. However, it 

may become necessary to be cautious in this regard with future developments in high-

intensity radiation sources, or in cases when very long experiment durations are required. 
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3. Conclusions 

The combination of a variety of beamline-based techniques has been shown to provide 

detailed nanoscale information regarding the chemistry of alkali-activated binders, which has 

not been accessible through laboratory-based analysis. Synchrotron infrared microscopy has 

shown the detail of the effects of nanoparticle seeding on geopolymer gel homogeneity at a 

chemical and microstructural level. In situ neutron pair distribution function analysis shows 

the evolution of both bonding environments in framework and non-framework species during 

the formation of the geopolymer binder. X-ray fluorescence microscopy provides an 

understanding of elemental distributions on a length scale as fine as tens of nanometers, while 

tomography provides the opportunity for three-dimensional reconstruction of the distribution 

of pore and solid phases. Each of these techniques in isolation is powerful, but by combining 

the data available through in situ and ex situ analysis and across a wide range of length scales, 

a more holistic understanding of the binder structure can be obtained.  

 

In developing future work in this area, it is likely that the most important information will be 

gained by the combination of various techniques to provide simultaneous multi-technique 

characterization of samples. Approaches involving combinations of complementary 

techniques, such as tomography with elemental specificity, or spatially-resolved spectroscopy 

(as in the infrared microscopy presented here), are likely to provide the key advances in this 

area. The ongoing developments in data acquisition [61, 62] and handling [63, 64] which are 

beginning to make available in situ analysis of reaction processes by advanced techniques (as 

in the PDF work discussed here) will provide powerful analytical capabilities, and these data 

will then require detailed conceptual and/or kinetic modeling to provide a detailed 

understanding of the key features of the data sets. It is becoming increasingly uncommon for 

a single technique, used in isolation, to provide important new insight into the structure or 

chemistry of a complex material system such as an alkali-activated binder; complementary 

studies provide unparalleled power and depth of analysis which cannot often be achieved 

from a single technique. 
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