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Abstract 

Structural models for the primary strength and durability-giving reaction product in modern 

cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-

crosslinked tobermorite structures. However, recent experimental studies of laboratory-synthesized 

and alkali-activated slag (AAS) binders have indicated that the calcium-sodium aluminosilicate 

hydrate (C-(N)-A-S-H) gel formed in these systems can be significantly crosslinked. Here, we propose 

a model that describes the C-(N)-A-S-H gel as a mixture of crosslinked and non-crosslinked 

tobermorite-based structures (the Crosslinked Substituted Tobermorite Model, CSTM), which can 

more appropriately describe the spectroscopic and density information available for this material. 

Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is 

not possible to fully account for the chemistry of AAS by use of the assumption that all of the 

tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of 

the gel. Application of the CSTM can for the first time reconcile this information, indicating the 
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presence of an additional activation product that contains highly connected four-coordinated silicate 

and aluminate species. The CSTM therefore provides a more advanced description of the chemistry 

and structure of calcium-sodium aluminosilicate gel structures than that previously established in 

the literature.  

Keywords:  Alkali activated slag; Cement hydration products; Calcium-sodium aluminosilicate 

hydrate; Tobermorite-like gels; Sublattice modeling 

1. Introduction 

Historically, the most common binder gels used in the construction industry have been produced 

entirely from Portland cement (PC), which is a material that dates back nearly two hundred years.1 

The main hydration product in the binding phase in PC systems is a Ca-ƌŝĐŚ ;ϭ͘ϱ ч CĂͬSŝ ч ϮͿ ĐĂůĐŝƵŵ 

silicate hydrate (C-S-H) gel,2 which is thought to be comprised of non-crosslinked tobermorite and 

jennite-like structures.3 However, it is common for modern cements to replace a large proportion of 

PC clinker with supplementary cementitious materials for environmental and performance 

(durability and strength) reasons,4 which can greatly affect the chemistry of the binder gel because 

significant amounts of aluminum can be incorporated into the primary reaction product in these 

systems.5  

One of the most common replacement materials in modern cements, ground granulated blast 

furnace slag (GBFS), can be activated by an alkaline solution, most commonly NaOH, KOH or 

Na2O·mSiO2·xH2O, to form a hardened alkali-activated slag (AAS) binder.6 This material has been 

developed and commercialized in many parts of the world as a high-performance alternative to PC 

with a reduced environmental footprint.7 The major hydrate binding phase formed through the alkali 

activation of the GBFS precursor is an alkali charge-balanced aluminum substituted calcium silicate 

hydrate (C-(N)-A-S-H).8,9 The C-(N)-A-S-H type gel is the main strength-giving phase in modern 

Portland cement blends admixed with high-aluminum containing materials 5 and in AAS.7,10 
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The solid phase assemblage of the binding phase in modern cements varies greatly with the 

supplementary cementitious material used,5 but the nature of the C-(N)-A-S-H type gel formed in 

these systems show a broad similarity not unlike the C-S-H product in PC binders.11 Studies have 

typically limited the chemical composition to Ca-rich compositions within the CaO-SiO2-Al2O3-H2O(-

Na2OͬK2O) system 12,13 or to AAS systems, to understand the nature of the C-(N)-A-S-H gel 14 because 

the solid phase assemblage can vary significantly in modern cements. AAS is a particularly relevant 

model system because GBFS is a widely used replacement material in modern cements,4 the binder 

gel in AAS sits within the Ca-rich composition region needed to form C-(N)-A-S-H,5 and AAS chemistry 

is relatively well known.7  

A detailed chemical-level understanding of AAS is a prerequisite for enabling the development and 

increased commercial uptake of AAS technology in modern civil infrastructure, but this information 

has not yet been fully elucidated. This is due largely to the low crystallinity and complex chemical 

environments of the C-(N)-A-S-H type gel, which varies according to: i) the activator type and 

concentration;15,16 ii) the composition and reactivity of the GBFS precursor;17,18 iii) the method of 

binder synthesis;19,20 and iv) the curing conditions to which the material is subjected.15 Secondary 

phases also co-exist with C-(N)-A-S-H in hardened AAS, meaning that an understanding of the 

assemblage of solid phases present in AAS is essential for quantification of the chemistry and 

molecular structure of the binder. These secondary phases include hydrotalcite,14,17 �aluminoferrite-

mono� (AFm) type phases including strätlingite and C4AH13,
14,18,21 the �third aluminate hydrate� 

(TAH),22 members of the hydrogarnet series including katoite,15,21,23,24 and zeolites such as 

gismondine and heulandite.12,23 These difficulties have necessitated the use of idealized models to 

represent the structure and chemistry of C-(N)-A-S-H gels in the past. 

The C-(N)-A-S-H type gel in AAS has a relatively low calcium content compared to the C-S-H gels 

formed in PC (CĂͬ(Si+Al) < 1.5), and is generally described as being similar in structure to the calcium 
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silicate hydrate phase C-S-H(I),2,7 a poorly ordered form of 14Å tobermorite.25 These materials 

contain �dreierketten� units, which are repeating chain units of three silicate tetrahedra (Figure 1). 

The tobermorite mineral group contains various structures differentiated by their basal spacing 

(14Å, 11Å or 9Å),26 and 11Å tobermorites contain Si-O-Si cross-links between adjacent silicate chains 

while 14Å and 9Å tobermorites do not.25,27 Hydrated 14Å tobermorite, also known as plombierite, 

has a bound water to Si ratio (H2OͬSŝͿ ŽĨ ϳͬϲ ĂŶĚ Ϭ͘ϱ ĂƚŽŵƐ ŽĨ ŝŶƚĞƌůĂǇĞƌ ĐĂůĐŝƵŵ ƉĞƌ ĚƌĞŝĞƌŬĞƚƚĞŶ 

unit, giving an overall formula of Ca5Si6O16(OH)2ή7H2O,25 although small variations in chemical 

composition can exist.2 There are two types of 11Å tobermorite; those that shrink during 

dehydration and contain interlayer calcium ions are termed �normal�, and those that do not shrink 

during dehydration and contain no interlayer calcium are called �anomalous�.27 The bound water 

content also varies, with a reduction in bound water content associated with a decrease in the 

interlayer spacing.28 Merlino et al. 27 elucidated the structures of normal and anomalous 11Å 

tobermorites, and found that anomalous 11Å tobermorite has H2OͬSŝ = ϱͬϲ and no interlayer 

calcium (Ca4Si6O15(OH)2ή5H2O), whereas normal 11Å tobermorite also has H2OͬSŝ = ϱͬϲ but an 

interlayer calcium content of 0.25 atoms per dreierketten unit (Ca4.5Si6O16(OH)ή5H2O). In an earlier 

study, Merlino et al. 29 also analyzed 9Å tobermorite (riversideite), finding no bound water and an 

interlayer calcium content of 0.5 atoms per dreierketten, corresponding to a crystal chemical 

formula of Ca5Si6O16(OH)2.
29 
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Figure 1. Schematic sublattice representations of A) 14Å tobermorite; B) anomalous 11Å tobermorite; C) 

normal 11Å tobermorite; D) 9Å tobermorite, all with �infinite� chain length (no Si site vacancies). Paired and 

bridging tetrahedra are represented by blue and green triangles respectively, and intra-layer calcium, charge-

ďĂůĂŶĐŝŶŐ ĂůŬĂůŝ ĐĂƚŝŽŶƐ ĂŶĚ ŝŶƚĞƌůĂǇĞƌ ƉƌŽƚŽŶƐ ĂŶĚͬŽƌ ĐĂůĐŝƵŵ Đations by the red oblongs, orange circles, and 

purple squares respectively. The specific size, location and number of these species are approximate; readers 

are referred to 25,27-29 for crystallographic structures. The combined bridging site is illustrated here to clarify its 
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use in crosslinked tobermorite sublattice formulae. A dreierketten unit (three kinked repeating tetrahedra) is 

marked in A), and the interlayer spacing is also marked. 

A simplified representation of these tobermorites, shown in terms of sublattice sites, is provided in 

Figure 1; the reader is referred to the contributions of Bonaccorsi et al. and Merlino et al.25,27-29 for 

more comprehensive descriptions. Representation of these structures in terms of �sublattice sites� is 

clearer from a modeling perspective, and has been used to construct structurally relevant formulae 

for these tobermorite phases, which are used to model the C-(N)-A-S-H type gel in this work. 

The ŵĞĂŶ ĐŚĂŝŶ ůĞŶŐƚŚ ;MCLͿ ĂŶĚ CĂͬSŝ ƌĂƚŝŽ are known to have a significant effect on the 

mechanical properties of 14Å tobermorite,30 and Oh et al. 31 found that while the model structure of 

14Å tobermorite could replicate the mechanical properties of C-S-H(I) in the a-b plane (parallel to 

the Ca-O sheets), the response to compression in the c direction (perpendicular to the Ca-O sheet) 

was significantly different. This led to the suggestion that the molecular species present in the 

interlayer spacing between the silicate chains of 14Å tobermorite and C-S-H(I) differ, and that more 

work is needed to fully understand the interlayer region. A structural model that can describe the C-

(N)-A-S-H type gel using a flexible definition of the MCL, CĂͬSŝ ƌĂƚŝŽ and interlayer spacing would 

enable a greater understanding of the mechanical behavior of the cements of the 21st century. 

The purpose of this paper is therefore to develop rigorous analytical methods for the calculation of 

the composition and MCL of more aluminum-rich binders which are not well-described by the 

existing models based on the 14Å tobermorite structure.  

2. Structural models for C-(N)-A-S-H 

2.1. The current state of the art 

The key value of a structural model is that the chemical composition and the MCL of the C-(N)-A-S-H 

product can be directly calculated from experimental data such as 29Si magic angle spinning nuclear 

magnetic resonance (MAS NMR) spectral deconvolutions, and that the conceptual model can be 
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validated by relating its predictions to independent experimental results. The �Substituted General 

Model� (SGM) of Richardson and Groves is widely used in cement chemistry,32 describing a mixture 

of 14Å tobermorite, jennite and Ca(OH)2 structures, and is shown in eq.(1): 

 ( ) ( )( )
( ) ( ) ( ) ( )000 26 2 9 21 23 13 1

· · ·a
c

c
X an X na nn

Ca H Si R O I zCa OH mH O+
− −− −−

  (1) 

Here, R is a trivalent cation in tetrahedral coordination (usually Al3+ or Fe3+), I is a charge-balancing 

interlayer cation (such as Ca2+ or an alkali metal) with a positive charge of c, m defines the amount of 

bound interlayer water, n is the number of dreierketten units per 14Å tobermorite chain, and a0 is 

the extent of substitution of I into the structure. The parameters X, z, a0 and n are defined in terms 

of w (the degree of protonation of the chain units) and y (the content of Ca(OH)2 in the C-(N)-A-S-H 

solid solution), according to eq.(2):32 

 

( )

( )

( )0

0.5 6

0.5 2

1
0

3 1

X n w

z w n y

n
a

n

= −

= + −  













−
≤ ≤

−

  (2) 

Eq.(1) can then be rewritten in terms of sublattice sites, which is useful for thermodynamic modeling 

purposes.33 This is achieved by limiting substitution to bridging sites, and selection of aluminum as 

the tetrahedrally coordinated trivalent cation (R) and sodium as the charge-balancing interlayer 

cation (I): 

 ( )( ) ( ) ( )( )
( ) ( )( )

2

2 3.5 2 21 12 2 1 1  4 22

· · · · ·u y a ua a uCa OH CaSiO Si Al O Na Ca H mH Oνν

+

− +
+ −  − −  −  −    

                  

  (3) 

where a is the extent of substitution in bridging sites; 
1

n
ν =  (0 ≤ Ȟ ≤ 1), the ratio of chains to 

dreierketten units (a measure of chain site vacancies); and 
w

u
n

= , the amount of hydroxyl water (or 
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equivalently the number of protons) per dreierketten unit. The MCL and AůͬSŝ ratio can then be 

calculated, using the assumption that the gel nanostructure resembles the structure of 14Å 

tobermorite, and the CĂͬSŝ ƌatio can be determined from eq.(3), leading to eqs.(4-6):14 

 
( ) ( )

[ ]

1 2 23
2

1

2 1
NC

Q Q Q Al
MCL

Q

 + + =   (4) 

 ( ) ( ) 21
2

1 2 2[ ]

(1 )
/

(1 )NC

Q Al
Al Si

Q Q Q Al
=

+ +
  (5) 

 ( ) ( )( )[ ]

4
/

4 2 1 1NC

y
Ca Si

aν
+

=
+ − −

  (6) 

where [NC] denotes non-crosslinked C-(N)-A-S-H structures. In this work, the MCL is defined as the 

number of aluminosilicate tetrahedra per tobermorite chain. This model has replicated experimental 

(electron microscopic) observations of the chemical composition of the main hydrate phase in 

hydroxide-activated AAS paste.19,34 There exist several other models based on tobermorite, jennite 

and Ca(OH)2 type structures that can describe C-S-H type gels (and an excellent summary of these 

was given by Richardson 3), but none are as flexible as the SGM for describing substitution within C-

(N)-A-S-H gels.3,11 

2.2. The need for an alternative structural representation of the C-(N)-A-S-H phase 

While the SGM has generally been able to give a good description of the local structure and chemical 

composition of C-(N)-A-S-H gels,11,19,34 recent experimental results have identified characteristics of 

AAS that support the formation of an alternative gel structure over the same range of chemical 

compositions.8,16,35  

Thomas et al. 36 calculated the H2OͬSi ratio and density of a hypothetical calcium aluminum silicate 

hydrate (C-A-S-H) type gel ǁŝƚŚ CĂͬSŝ с Ϭ͘ϵϵ ĂŶĚ AůͬSŝ с Ϭ͘Ϭϲ ƚŽ be H2OͬSi = 0.97 ± 0.03, ȡC-A-S-H = 2.73 

± Ϭ͘ϬϮ ŐͬĐŵ3 and V = 50.8 ± 0.6 cm3ͬŵŽů.36 Those authors related their results to both 14Å and 11Å 

tobermorite structures, and found that the 11Å tobermorite representation predicted a molar 
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volume 12% less than a C-A-S-H gel of similar composition, consistent with the significantly lower 

densities found in tobermorite structures than in C-S-H type gels. The opposite was found for the 

14Å tobermorite; this model structure predicted a molar volume that was 4% greater than a C-S-H of 

similar composition. The calculated H2OͬSŝ value of the C-A-S-H was also more consistent with the 

lower H2OͬSŝ ƌĂƚŝŽƐ ĨŽƵŶĚ ŝŶ 11Å tobermorites.27 The proposed hypothetical chemical composition 

(CaO)0.99(Al2O3)0.06(SiO2)(H2O)0.97 suggested by Thomas et al. can be represented either by 11Å 

tobermorite or a mixture of 14Å, 11Å and 9Å tobermorites. 

Further support for the development of an alternative model describing the tobermorite structure of 

C-(N)-A-S-H type gels forming in AAS pastes can also be found in recent high resolution 29Si MAS 

NMR results of silicate-activated slag systems, where the formation of cross-linked Si sites (Q3 and 

Q3(1Al)) is identified.19,24,37,38 Q3 type silica bonding environments can only be explained in 

tobermorite structural models by cross-linking between bridging sites in the silicate chains (as 

displayed in Figure 1). The small but non-zero concentration of Q3 silicate species found in C-(N)-A-S-

H 24,37 thus supports the description of the gel as a mixture of crosslinked (11Å tobermorite) and 

non-crosslinked (14Å andͬŽƌ 9Å tobermorite) chains.  

Thus, it is both appropriate and necessary to conceptualize and model the C-(N)-A-S-H phase in AAS 

in an alternative way, generalizing from the SGM of Richardson and Groves.32 Here, we derive 

formulae representing 9Å, 11Å and 14Å ƚŽďĞƌŵŽƌŝƚĞ ƐƚƌƵĐƚƵƌĞƐ ĂŶĚ ƚŚĞ ĂƐƐŽĐŝĂƚĞĚ CĂͬSŝ͕ AůͬSŝ ĂŶĚ 

MCL relationships, and validate the model by comparison with experimental data.  

3. Derivation of a generalized model 

3.1. Derivation of crosslinked tobermorite models 

The derivation of an 11Å tobermorite model begins by defining a crosslinked tobermorite unit, as 

shown in Figure 1. The structural model described in this study excludes Al-O-Al bonding in bridging 
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sites, considering the Al-avoidance principle of Loewenstein,39,40 and leads to the same relationships 

for the AůͬSŝ ƌĂƚŝŽ ĂŶĚ MCL for anomalous and normal 11Å tobermorites. This is expected because 

only the bound water and interlayer charge-balancing cation content differ between the normal and 

anomalous forms of these minerals.27 These relationships can be solved directly using spectral 

deconvolutions of 29Si MAS NMR data, and are shown in eqs.(7-8): 

 
( ) ( )( )1 2 2 3 3

[ ] 1

4 1 2 1
C

Q Q Q Al Q Q Al
MCL

Q

+ + + +
=   (7) 

 ( ) ( ) ( )
3

1 2 2 3 3[ ]

(1 )
/

1 1C

Q Al
Al Si

Q Q Q Al Q Q Al
=

+ + + +
  (8) 

where [C] denotes crosslinked C-(N)-A-S-H structures. An application of eqs.(7-8) to a crosslinked 

tobermorite species is provided in Appendix A. 

A more detailed analysis is necessary to determine the calcium content ĂŶĚ CĂͬSŝ ƌĂƚŝŽ of crosslinked 

tobermorite. By grouping the crosslinked bridging tetrahedra together to form a �combined bridging 

site� (see Figure 1) and using sodium as the alkali charge-balancing species, the chemical formula of a 

crosslinked tobermorite unit can be expressed (equivalent to eq.(3) for the non-crosslinked case) 

according to eq.(9): 

 

( )( ) ( )

( )
( )( ) ( )( ) ( )

2 3.52 44 4

2 1
1

1.5 1.5 21 2 1
(1 ) 1

· ·

· · · ·

u yCa OH CaSiO

SiO Si Al O Na Ca H mH O
δα α

α α ωα δ ω
δ

−
+ − 

 
 

+ +− ++ +
− + −

−

       

           

  (9) 

where α is the fraction of aluminum substitution in crosslinked tobermorite, 1

1
δ

σ
=

+
 is the fraction 

of combined bridging site vacancies per crosslinked tobermorite unit, σ  is the number of 
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crosslinked tobermorite units per chain, 1
2

uω = −  is the interlayer calcium content per crosslinked 

tobermorite unit, and all other parameters have the same definitions as in eqs.(1-3).  

The extent of protonation is specified to maintain charge balance in eq.(9); the parameter describing 

the extent of protonation of (Al-substituted) silicate chains, u, has been replaced by a measure of the 

concentration of calcium cations in the interlayer region, Ȧ. This is consistent with the results of 

Merlino et al.,29 who concluded that reductions in the basal spacing of crosslinked tobermorite 

species could be appropriately described by varying interlayer calcium contents. The introduction of 

Ȧ into the model thus clarifies the importance of the interlayer calcium content in 11Å and 9Å 

tobermorites. It must also be noted that this substitution is possible because tobermorite solid-

solutions contain no discrete Ca(OH)2, i.e. 2u y+ = ,11,32 thus u is not an independent parameter in 

eq.(9) for tobermorite-based structures. 

The interlayer calcium content, and therefore the extent of protonation, is thus determined by the 

degree of aluminum substitution, the fraction of bridging site vacancies (or equivalently the chain 

length), and the type of crosslinked tobermorite structure. Eq.(9) can be rewritten using 2u y+ = , 

leading to eq.(10) as a charge-balanced formula in terms of one dreierketten unit:  

 ( ) ( )
( )( ) ( )( ) ( )2 1
1

3.5 1.5 1.5 21 2 1
2 (1 ) 0.5

· · · · ·CaSiO SiO Si Al O Na Ca H mH O
δα α

α α ωα δ ω
δ

+ +− − ++ +
− + −

−

               
  (10) 

Giving: 

 ( ) ( )[ ]

4
/

4 1 (2 )C
Ca Si

ω
δ α
+

=
+ − −

  (11) 

 [ ]

4
/ ( )

2(3 )CCa Al Si
ω
δ

+
+ =

−
  (12) 

 0 1ω δ≤ ≤ +   (13) 
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Eq.(10) reduces to the chemical formula for non-substituted infinite chain length normal 11Å 

tobermorite, Ca4.5Si6O16(OH)ή5H2O,27 when Ȧ, Į, į and H2OͬSŝ ĂƌĞ Ϭ͘ϱ͕ Ϭ͕ Ϭ, ĂŶĚ ϱͬϲ ƌĞƐƉĞĐƚŝǀĞůǇ͘  TŚĞ 

formula for non-substituted infinite chain length anomalous 11Å tobermorite, Ca4Si6O15(OH)2ή5H2O,27 

is similarly obtained from eq.(10) when Ȧ, Į, į and H2OͬSŝ ĂƌĞ Ϭ͕ Ϭ͕ Ϭ, ĂŶĚ ϱͬϲ ƌĞƐƉĞĐƚŝǀĞůǇ͘  

While non-substituted normal 11Å tobermorite was identified by Merlino et al. (2001) as containing 

0.25 interlayer calcium atoms per dreierketten unit,27 it is reasonable to suggest that the interlayer 

calcium content will vary as a function of aluminum substitution. This has therefore been left 

variable in eq.(10). The parameters į and Į can then be determined from eqs.(14-15) using the 

ƌĞůĂƚŝŽŶƐŚŝƉƐ ĨŽƌ ƚŚĞ AůͬSŝ ƌĂƚŝŽ ĂŶĚ MCL ĨŽƌ ĐƌŽƐƐůŝŶŬĞĚ ƚŽďĞƌŵŽƌŝƚĞ ƐƉĞĐŝĞƐ͕ ĂƐ ŐŝǀĞŶ ŝŶ ĞƋƐ͘;ϳ-8): 

 
[ ]

6

2CMCL
δ =

+
  (14) 

 
[ ][ ]

[ ]

( / ) 4+2(1- )

( / ) +1 (1- )
C

C

Al Si

Al Si

δ
α

δ
×

=
 × 

  (15) 

3.2. Derivation of a non-crosslinked tobermorite model 

A 9Å tobermorite consists of non-crosslinked silicate chains, and therefore can be represented 

according to the same basic formulation (eqs.(3-6)) used to describe the non-crosslinked 14Å 

tobermorite.14 In this case eqs.(3,6) are rewritten in terms of ĳ, the interlayer calcium content per 

non-crosslinked tobermorite unit, setting 2u y+ =  for consistency with the relationships derived 

for crosslinked tobermorites. TŚĞ MCL ĂŶĚ AůͬSŝ ƌĞůĂƚŝŽŶƐŚŝƉƐ ĂƌĞ ƚŚĞ ƐĂŵĞ ĨŽƌ non-crosslinked 9Å 

and 14Å tobermorites. Eq.(3) can then be reformulated in terms of one dreierketten unit, leading to 

eqs.(16-18): 

 ( ) ( )( )
( ) ( )( )2

3.5 2 21 2 12 1
· · · ·a aaCaSiO Si Al O Na Ca H mH Oϕ ϕ

ν

+− +
− −

−

            
  (16) 

 ( ) ( )( )[ ]

2
/

2 1 1NC
Ca Si

a

ϕ
ν
+

=
+ − −

  (17) 
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 0 1ϕ≤ ≤   (18) 

TŚĞ CĂͬ;SŝнAůͿ ƌĂƚŝŽ ŝƐ ƚŚĞŶ: 

 ( )[ ]

2
/ ( )

2 1NCCa Si Al
ϕ
ν

+
+ =

+ −
  (19) 

Eq.(16) reduces to the chemical formula for non-substituted infinite chain length 9Å tobermorite, 

Ca5Si6O16(OH)2,
29 when ĳ, a, Ȟ and H2OͬSŝ ĂƌĞ Ϭ͘ϱ͕ Ϭ͕ Ϭ, and 0 respectively. The formula for non-

substituted infinite chain length 14Å tobermorite, Ca5Si6O16(OH)2ή7H2O,25 is similarly recovered from 

eq.(16) when ĳ, a, Ȟ and H2OͬSŝ ĂƌĞ Ϭ͘ϱ͕ Ϭ͕ Ϭ, ĂŶĚ ϳͬϲ ƌĞƐƉĞĐƚŝǀĞůǇ͘ 

The parameters Ȟ and a can be determined from eqs.(20-21Ϳ ƵƐŝŶŐ ƚŚĞ ƌĞůĂƚŝŽŶƐŚŝƉƐ ĨŽƌ ƚŚĞ AůͬSŝ 

ratio and MCL of non-crosslinked tobermorite species, as given in eqs.(4-5): 

 
[ ]

3

1NCMCL
ν =

+
  (20) 

 
[ ] [ ]

[ ]

2+(1- ) ( / )

(1- ) ( / ) +1
NC

NC

Al Si
a

Al Si

ν
ν

×
=

 ×  
  (21) 

These formulae, eqs.(10-21), are suitable for modeling the C-(N)-A-S-H phase in the general case, 

and can be solved using structural parameters obtained from 29Si MAS NMR spectral deconvolutions, 

as will be demonstrated in detail in section 4.  

3.3. The �Crosslinked Substituted Tobermorite Model� 

It is reasonable to represent the C-(N)-A-S-H phase in AAS binders as a mixture of 14Å, 11Å and 9Å 

tobermorite structures,8,19,36-38 as discussed in section 2.2. Here we propose a simple and flexible 

model, the �Crosslinked Substituted Tobermorite Model� (CSTM), which can be used to determine 

the relative contributions of non-crosslinked and crosslinked tobermorites, and the chemical 

compositions and MCL of a particular C-(N)-A-S-H type gel. The CSTM only allows for aluminum 
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substitution in bridging sites,41 and does not include Al-O-Al bonding,39 single tetrahedron vacancies 

in the combined bridging site, or incorporation of Q0 or Q1(1Al) species into the C-(N)-A-S-H phase.41  

The fact that the CSTM does not allow single vacancies in the combined bridging site is worthy of 

further explanation. This is done to circumvent an explicit description of the two-coordinated 

bridging silicon (Q2
B) sites that would arise if these species were allowed, and is possible because the 

C-(N)-A-S-H type gel is represented as a mixture of single chain and crosslinked structures. This is 

illustrated in Figure 2, which shows that a realistic section of crosslinked structure with a single 

bridging site vacancy is conceptually equivalent to a mixture of non-crosslinked and crosslinked 

tobermorites in the CSTM formulation. 

 

 

Figure 2. An illustration of how the CSTM represents single bridging site vacancies in AAS 

 

The CSTM is derived using the following structural constraints: i) there are twice as many 

(Q2+Q2(1Al)) silicate species as there are (Q3+Q3(1Al)+Al[4]) silicate species in crosslinked tobermorite; 

ii) the fraction of aluminum substitution into Q3 type sites is equivalent to the ratio of Q2(1Al) to Q2 

sites in crosslinked tobermorite, because aluminum is only substituted into bridging sites; and iii) the 

substitution of one Al[4] species into crosslinked tobermorite introduces one Q3(1Al) and two Q2(1Al) 

Si species. These assumptions and structural constraints are shown in Figure 3. 
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Figure 3. An illustration of the structural constraints and assumptions included in the CSTM 

 

These structural constraints lead to eqs.(22-24):  

 ( ) [ ]( ) ( )( )[ ] [ ]
43 3 2 2

[ ][ ] [ ]
2 1 1C C CC C

Q Q Al Al Q Q Al+ + = +   (22) 

 
( )

( )
( )3 2

3

[ ] [ ]

[ ]
3

[ ][

2

]

1 1

1
C C

C CC

Q Al Q Al

Q Q Al Q
=

+
  (23) 

 [ ] ( )4
[ ] [ ]

3 1C C
Al Q Al=   (24) 

where [C] denotes that the coordinated silicate species is present in crosslinked C-(N)-A-S-H. 

Eqs.(22-24) are solved to obtain eq.(25): 

 ( ) ( )]

2 3

[ [ ]
1 2 1

C C
Q Al Q Al=   (25) 

Eq.(25) is then used together with eqs.(26-29) to calculate the MCL ĂŶĚ AůͬSŝ molar ratios for non-

crosslinked and crosslinked C-(N)-A-S-H products: 

 3 3
[ ]C totalQ Q=   (26) 

 ( )3
[ ]

3(1 1) C total
Q Q AlAl =   (27) 

 1 1
[ ] totalCQ Qη=   (28) 

 [ ] [ ]
i i i

C total CNQ Q Q= −   (29) 
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where [NC] denotes that the silicate species is present in non-crosslinked C-(N)-A-S-H species, Ș (0 < 

Ș < 1) is a parameter describing the partitioning of Q1 species into non-crosslinked and crosslinked 

C-(N)-A-S-H type gel, adjusted to satisfy the structural constraints of the gel for the calculated Al-

substitution extents (eqs.(15, 21)) and match experimentally observed chemical compositions 

(reported in section 4), and i (0 ≤ i ≤ 4) denotes the speciation environment of silica species in the C-

(N)-A-S-H phase. TŚĞ AůͬSŝ ĂŶĚ MCL ǀĂůƵĞƐ ĨŽƌ non-crosslinked and crosslinked tobermorites can be 

calculated from eqs.(4-5) and eqs.(7-8) respectively, leading to eqs.(30-33), the relationships that 

describe the total amount of aluminum and silicon present, and ĂǀĞƌĂŐĞ AůͬSŝ ĂŶĚ MCL ǀĂůƵĞƐ ĨŽƌ ƚŚĞ 

entirety of the C-(N)-A-S-H phase: 

 ( )1 2 23
[ ] [ ] [ ] [ ]2( ) (1 )C C CN N NCNAl Si Q Q Al Q+ = + +   (30) 

 1 2 2 3 3
[ ] [ ] [ ] [ ] [ ] [ ]( ) (1 ) 2 (1 )C C C C C CAl Si Q Q Al Q Q Al Q+ = + + + +   (31) 

 ( ) ( )

( )
( )( )

( )
( )( )

( )( ) ( )( )

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

(
/ /

1 / 1 /
/

1 1

1 /

) ( )

1
(

/
( ) )

C C
C C

C C

C N A S H

C C

C

N

N C

N
N

N

Al Si Al Si

Al Si Al Si
Al Si

Al Si

Al Si Al Si

Al S
Al S

i Al Si
i

− − − −

   
   +
   + +   =
   
   +
   + +

+

+ +



+

 

  (32) 

 ( )
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

( ) ( )

( ) ( )
C C C C

C N A S H
C

N N

CNC C N

Al Si Al SiMCL MC

Al Si

L
MC

A
L

MCL l iL SMC− − − −

 + + 
+ + +

+
=   (33) 

Eqs.(32-33) are derived from the fractional concentrations of silicon and aluminum in 9Å, 11Å and 

14Å tobermorite chains, i.e. / (1 ) /Al Si Si Si= − . TŚĞ CĂͬSŝ ĂŶĚ CĂͬ;AůнSŝͿ ratios are calculated 

similarly, but vary depending on the level of interlayer calcium, the extent of protonation of the C-

(N)-A-S-H chains and the specific type of crosslinked C-(N)-A-S-H modeled: 
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 ( ) ( )

( )
( )( )

( )
( )( )

( )( ) ( )( )

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

(
/ /

1 / 1 /
/

1 1

1 /

) ( )

1
(

/
( ) )

C C
C C

C C

C N A S H

C C

C

N

N C

N
N

N

Ca Si Ca Si

Al Si Al Si
Ca Si

Al Si

Al Si Al Si

Al S
Al S

i Al Si
i

− − − −

   
   +
   + +   =
   
   +
   + +

+

+ +



+

 

  (34) 

 ( )

( )
( )( )

( )
( )( )

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]

( ) ( )

( ) ( )

/ /

1 / 1 /
/ ( )

NC C
C C

C C

C N A S
CN

H

N

C

N

Al
Ca Si Ca Si

A
Si Al Si

Al S

l Si Al Si
Ca A

i
l Si

Al Si− − − −

   
   ++
 

+

+ +

 + +   + =
+

  (35) 

where ( )[ ]
/

NC
Ca Si  is given by eq.(17) and ( )[ ]

/
C

Ca Si  can be calculated from eq.(11). Eqs.(34-35) 

give the overall CĂͬSŝ ĂŶĚ AůͬSŝ ƌĂƚŝŽƐ for the assemblage of crosslinked and non-crosslinked 

tobermorite species. The CSTM is also capable of accounting for the more general case where the 

chemical compositions can be specified separately for 9Å, anomalous 11Å, normal 11Å and 14Å 

tobermorites, but because the corresponding CĂͬSŝ ĂŶĚ CĂͬ;AůнSŝͿ relationships are considerably 

more complicated than eqs.(34-35), these formulae are presented in Appendix B. 

The following sections of the manuscript present the application of the CSTM to a series of sodium 

silicate-activated slag binders, as well as a discussion of the implications of the model results. 

4. Application of the CSTM 

A complete description of the experimental details for this investigation is given in Appendix C. The 

CSTM calculations are compared with experimental 27Al and 29Si MAS NMR and environmental 

scanning electron microscopy � energy dispersive X-ray spectroscopy (ESEM-EDS) results obtained 

for silicate-activated slag binders synthesized from a GBFS supplied by Zeobond Pty Ltd (Australia). 

The chemical composition and physical properties of the GBFS used are reported in Appendix C. 
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The ESEM-EDS results for the AAS pastes assessed are shown in Figures 4-5; 29Si MAS NMR spectra 

are shown in Figure 6 and the results of the associated spectral deconvolutions are presented in 

Table 1. 27Al MAS NMR spectra are shown in Figure 7 with corresponding spectral deconvolutions 

presented in Table 2. Discussion of the deconvolution procedures are given along with the 

experimental details in Appendix C.  
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Figure 4. Molar ratios of alkali silicate-activated slag binder measured through ESEM-EDS, as a function of the 

time of curing 

 

The binder composition data in Figure 5 show that the C-(N)-A-S-H phase is always present with at 

least one additional solid phase. Hydrotalcite has been identified through X-ray diffraction in silicate-

activated slag pastes produced using similar raw materials to those used here,24 consistent with 

Figures 4 and 5. HŽǁĞǀĞƌ͕ ƚŚĞ ĞǆŝƐƚĞŶĐĞ ŽĨ ĂĚĚŝƚŝŽŶĂů ĐĂůĐŝƵŵ͕ ĂůƵŵŝŶƵŵ ĂŶĚͬŽƌ ƐŝůŝĐŽŶ-containing 

phases cannot be discounted purely on the basis of a good correlation between the observed 

chemistry of the AAS binder and a mixture of C-(N)-A-S-H type gel and hydrotalcite, as phases such 

as hydrogarnet and AFm are sometimes observable by X-ray diffraction in aged alkali-activated slag 

binders.42  
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Figure 5. Projection of AAS chemistry onto the ternary CaO-SiO2-Al2O3 system, showing elemental 

compositions of sodium silicate-activated slag binders measured by ESEM-EDS at different times of curing, 

along with the compositions of some model phases. The average composition of the binders is marked, 

assuming congruent dissolution of the reacted component of the slag, complete incorporation of the silica 

supplied by the activator into the binder, and without distinction between product phases 
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Figure 6. 29Si MAS NMR spectra of sodium silicate-activated slag pastes as a function of the time of curing: (A) 

as a function of the time of curing; (B) deconvoluted spectrum for the 56 day cured sample. 

Table 1. Summary of Qn environments identified in 29Si MAS NMR spectra of alkali-activated slag pastes as a 

function of the time of curing. Estimated uncertainty in site percentages is ± 1%, based on the influence of the 

ƐŝŐŶĂůͬŶŽŝƐĞ ƌĂƚŝŽ ŽĨ ƚŚĞ ƐƉĞĐƚƌĂ ŽŶ ƚŚĞ ĚĞĐŽŶǀŽůƵƚŝŽŶ ƉƌŽĐĞĚƵƌĞƐ͘ 

age 
unreacted 

slag 

reaction products 

Q
0
 Q

1
(I) Q

1
(II) Q

2
(1Al) Q

2
 Q

3
(1Al) Q

4
(4Al) Q

4
(3Al) 

-74 ppm -78 ppm -80 ppm -83 ppm -86 ppm -89 ppm* -89 ppm* -93 ppm 

unreacted 100 - - - - - - - - 

7 days 39 4 14 11 18 11 4 - - 

28 days 24 7 18 13 22 12 5 - - 

56 days 21 10 18 11 19 13 5 2 1 

* A single peak at -89 ppm is used to describe both Q3(1Al) and Q4(4Al) components as discussed in the text 
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Figure 7. 27Al MAS NMR spectra of the sodium silicate-activated slag pastes: (A) as a function of the time of 

curing; (B) deconvoluted spectrum for the 56 day cured sample. 

Table 2. Summary of Al coordination environments identified in 27Al MAS NMR spectra of the alkali-activated 

slag pastes as a function of the time of curing. Estimated uncertainty in site percentages is ± 1%, based on the 

ŝŶĨůƵĞŶĐĞ ŽĨ ƚŚĞ ƐŝŐŶĂůͬŶŽŝƐĞ ƌĂƚŝŽ ŽĨ ƚŚĞ Ɛpectra on the deconvolution procedures. HT represents hydrotalcite. 

age 

tetrahedral 

Al in  

unreacted 

slag 

q
2
(I) q

2
(II) q

3
 Al

[5]
 AFm HT 

HT/ 

TAH 
TAH 

66 ppm 73 ppm 67 ppm 
62  

ppm 
35 ppm 12 ppm 

8.7 

ppm 

3.9 

ppm 

3.1 

ppm 

unreacted 100 - - - - - - - - 

7 days 44 10 22 6 0 1 7 10 чϬ͘ϭ 

28 days 26 10 26 14 3 1 6 14 ч0.1 

56 days 23 10 28 17 2 1 6 13 чϬ͘ϭ 

 

The 27Al MAS NMR spectra in Figure 7 corroborate the formation of secondary phases in addition to 

C-(N)-A-S-H in the AAS, as identified by ESEM-EDS in this study and by X-ray diffraction 

elsewhere,16,17,24,42 as there are significant contributions from six-coordinated aluminum (Al[6]). The 

presence of Al[6] in the interlayer and structural incorporation of these species into C-(N)-A-S-H gel 

has been hypothesized by some authors,20,43-45 but Al[6] species are not considered in the CSTM. In a 

recent study,43 associations in solid-state 2D 27Al{1H} HETCOR NMR spectra were only observed for 

bands of narrow line width (which were ĂƐƐŝŐŶĞĚ ƚŽ AFƚͬAFŵ ƚǇƉĞ ƉƌŽĚƵĐƚƐ ĂŶĚ TAHͿ ŝŶ ƚŚĞ Aů[6] 
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region of 27Al MAS NMR spectra. From these data, and from the discussion presented by Andersen et 

al.,22 it may be concluded that there is not a significant degree of substitution of six-coordinated Al3+ 

for Ca2+ in the interlayer.  

The secondary products containing Al[6] are primarily hydrotalcite, and minor amounts of AFm 24,46,47 

and TAH phases 22 are observed. The spectral deconvolutions (Appendix C) also show significant 

contributions from q3 Al (where the qn notation for Al sites is equivalent to the Qn notation for Si 

sites 48), suggesting a high degree of crosslinking. Broad contributions from q2 Al species indicate 

significant local disorder in these sites, as Al in C-(N)-A-S-H can coordinate with various cationic 

species in the interlayer region.  

The 29Si MAS NMR spectra (Figure 6 and deconvolutions in Appendix C) show small but distinct 

contributions from Q3(1Al) sites, in addition to Q1, Q2 and Q2(1Al) silicate species, indicating high 

levels of aluminum substitution in the C-(N)-A-S-H type gel. The intensity band at -74 ppm is 

tentatively assigned to Q0 species, without precluding the possibility of some of the intensity in this 

peak also representing Q1(1Al) or Q1 species (due to the various charge-balancing cations present in 

the system). This peak has previously been identified in deconvoluted 29Si MAS NMR spectra of 

sodium silicate-activated GBFS pastes when the anhydrous slag components were scaled to match 

the reaction extent of the slag calculated from scanning electron microscopy image analysis,49 but no 

definitive assignment for this band has been established to date. Although the absolute 

concentrations of Q3(1Al) sites are low, the structural constraints of crosslinked C-(N)-A-S-H (Figure 3 

and eqs.(22-25)) lead to the calculation of high levels of crosslinking between aluminosilicate chains 

in C-(N)-A-S-H, as will be discussed in detail below. The 29Si MAS NMR spectra also show non-zero 

levels of intensity at chemical shifts of approximately -93 ppm, indicating the presence of Q4(3Al) 

units in the binder gel. This assignment necessitates contributions from at least one additional four-

connected silicate unit (Q4 type) in the experimental spectra.50 It was therefore assumed that Q4(4Al) 
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species were present the 29Si MAS NMR spectra, which is consistent with the significant levels of 

intensity in the low-ppm range (52-62 ppm) for four-coordinated Al species as observed by 27Al MAS 

NMR, statistical thermodynamic model predictions 50 and experimental NMR data 51 for Al-rich 

metakaolin-based geopolymers. Full details regarding this assignment are provided in Appendix C.  

TŚĞ AůͬSŝ molar ratios of the C-(N)-A-S-H gel, which can be viewed as the trendline intercepts in 

Figure 4 for the AAS pastes studied here because the amounts of Mg-free secondary products are 

ŵŝŶŽƌ ;чϭй ŽĨ ƚŚĞ ƚŽƚĂů Aů ŝŶƚĞŶƐŝƚǇ ĨŽƌ ĞĂĐŚ ƐĂŵƉůĞͿ, are in the range 0.19 ч AůͬSŝ ч 0.26; CĂͬSŝ molar 

ratios vary from approximately 0.8 ч CĂͬSŝ ч 1.2 with the exception of the 7 day samƉůĞ ǁŚĞƌĞ CĂͬSŝ 

ratios up to 1.4 are observed. The trendlines drawn in Figure 4 do not preclude very low levels of 

Mg-Ca substitution in the C-(N)-A-S-H gel. These measured chemical compositions correlate well 

with previous studies of AAS where chemical coŵƉŽƐŝƚŝŽŶƐ ŽĨ Ϭ͘ϮϬ ф AůͬSŝ ф Ϭ͘Ϯϱ ĂŶĚ Ϭ͘ϴ ф CĂͬSŝ ф ϭ͘Ϯ 

are consistently reported for AAS binders produced from GBFS with moderate aluminum (12-14 

wt.%) and magnesium (7-9 wt.%) content.13,14,16-19,46  

The CSTM, when applied to the 29Si MAS NMR spectral deconvolution data presented in Table 1, 

yields the results shown in Table 3. 
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Table 3. The calculated output of the CSTM from the 29Si MAS NMR spectra given in Table 2. A constant interlayer calcium content of ĳ = ߱ = 0.25 and the maximum 1 

partitioning of Q1 sites into the crosslinked tobermorite phase (i.e. maximizing Ș) is specified for all pastes. 2 

curing  

time 

species ɻ Q
1
 Q

2
(1Al) Q

2
 Q

3
(1Al) Q

3
 MCL  

Al

Si
 ( )C N ASHMCL  

( )C N ASH

Al

Si
 
 
 

 Ca

Si
 Ca

Al Si+
 

( )C N ASH

Ca

Si
 
 
 

 

( )C N ASH

Ca

Al Si
 
 + 

 

7 days 
non-crosslinked 

0.60 
0.098 0.10 0.033 0.000 0.000 5.8 0.22 

7.6 0.15 
1.1 0.88 

1.0 0.86 
crosslinked 0.15 0.074 0.074 0.037 0.000 10 0.11 0.94 0.85 

28 days 
non-crosslinked 

0.72 
0.085 0.11 0.016 0.000 0.000 6.2 0.26 

8.3 0.16 
1.1 0.87 

0.99 0.86 
crosslinked 0.22 0.11 0.11 0.054 0.000 10 0.11 0.94 0.85 

56 days 
non-crosslinked 

0.68 
0.092 0.086 0.035 0.000 0.000 5.6 0.20 

7.9 0.14 
1.1 0.88 

0.98 0.86 
crosslinked 0.20 0.099 0.099 0.049 0.000 10 0.11 0.94 0.85 

 3 

 4 

25 

http://dx.doi.org/%2010.1021/la4000473


Preprint version of accepted article. Please cite as: 

R.J. Myers, S.A. Bernal, R. San Nicolas, J.L. Provis, �Generalized Structural Description of Calcium-

Sodium Aluminosilicate Hydrate gels: The Crosslinked Substituted Tobermorite Model�, Langmuir 

2013, 29(17):5294-5306. 

Official journal version is online at http://dx.doi.org/ 10.1021/la4000473 

 
The calculated chemical compositions of the C-(N)-A-S-H phase (Table 3) agree well with the 5 

chemistry of laboratory-synthesized C-(N)-A-S-H ƉƌŽĚƵĐƚƐ͕ ǁŚĞƌĞ ƚŚĞ ŵŽůĂƌ AůͬSŝ ƌĂƚŝŽ ŽĨ ƉŚĂƐĞ-pure 6 

C-(N)-A-S-H ŚĂƐ ŐĞŶĞƌĂůůǇ ďĞĞŶ ĨŽƵŶĚ ƚŽ ďĞ ůĞƐƐ ƚŚĂŶ Žƌ ĞƋƵĂů ƚŽ Ϭ͘ϮϬ ĨŽƌ CĂͬ(Al+Si) molar ratios 7 

relevant in AAS systems (0.7 ч CĂͬ(Al+Si) ч 1.3).12,13,20,38 The formation of strätlingite (an AFm phase) 8 

is typically observed in activated slag binders if the AůͬSŝ ŵŽůĂƌ ƌĂƚŝŽ ŝs higher than this.12 This must 9 

then be contrasted with the results presented in Table 3, which show that the CSTM can reproduce 10 

the experimentally observed CĂͬSŝ ratios, but does not agree with ƚŚĞ AůͬSŝ molar ratios for the 11 

magnesium-free C-(N)-A-S-H phases and the real AAS binder gels as identified by ESEM-EDS (Figure 12 

4). In all cases the aluminum content of the C-(N)-A-S-H phase is significantly underestimated by the 13 

assumption that all of the tetrahedral Al is contained within tobermorite-type phases.  14 

This disagreement is also corroborated by calculation of the average compositions of the binder gels 15 

using the experimentally determined extents of reaction of the GBFS precursors in these samples (as 16 

determined from the 29Si MAS NMR spectral deconvolutions (Table 1)), which give overall AůͬSŝ ŵŽůĂƌ 17 

ratios of 0.396, 0.413 and 0.415 for the binder gels in the 7, 28 and 56 day samples respectively 18 

(Figure 5). These ratios are calculated from the elemental compositions of the mix formulations, 19 

assuming congruent dissolution of the fraction of the slag which has reacted, and full incorporation 20 

of the silica supplied by the activator into the binder, but without distinction between Al in C-(N)-A-21 

S-H or secondary phases. 22 

However, the contributions of secondary phases to the AAS binder are evident in the 27Al MAS NMR 23 

spectra (Figure 7), which show that aluminum present in secondary products corresponds to 24 

between 18% and 20% of the total Al in these systems. The 27Al MAS NMR spectral deconvolutions 25 

also show that hydrotalcite is always the dominant secondary phase in these systems, contributing 26 

ш92% of the Al[6] present in the samples (Table 2). The hydrotalcite product can therefore be 27 

expected to account for up to 24-29% of the aluminum in the binder gel (i.e. excluding contributions 28 

26 
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from remnant GBFS particles). Using this information to correct the AůͬSŝ ŵŽůĂƌ ƌĂƚŝŽƐ predicted by 29 

the CSTM to account for the presence of hydrotalcite gives AůͬSŝ ŵŽůĂƌ ƌĂƚŝŽƐ ŽĨ Ϭ͘22, 0.22 and 0.18 30 

for the sum of the C-(N)-A-S-H and hydrotalcite components of the binder, after 7, 28 and 56 days 31 

respectively. Incorporation of AFm, five-coordinated aluminum (Al[5]) and TAH phases (assuming that 32 

the TAH phase is not silicon-bearing), which are ŵŝŶŽƌ ;ч4% of total Al intensity for each sample), 33 

would give a slight further increase in ƚŚĞ ĐĂůĐƵůĂƚĞĚ AůͬSŝ ŵŽůĂƌ ƌĂƚŝŽƐ ĨŽƌ ƚŚĞ AAS ďŝŶĚĞƌ, but the 34 

variable or unknown chemistry of each of these phases prevents their use in direct calculations at 35 

this time.  36 

In any case, it is unlikely that inclusion of these phases in the calculations would be sufficient to 37 

increase the AůͬSŝ ŵŽůĂƌ ƌĂƚŝŽ ŽĨ ƚŚĞ ďŝŶĚĞƌ͕ compared to the predictions based on the combination 38 

of C-(N)-A-S-H and hydrotalcite phases, to a large enough extent to reconcile the difference between 39 

the average composition of the binder as determined by ESEM-EDS and the calculated composition 40 

from the CSTM (see Figure 4 and Table 3). It is therefore evident that the bulk composition of the 41 

AAS binder, as identified by ESEM-EDS, cannot be adequately explained solely as a C-(N)-A-S-H 42 

product. 43 

Possible explanations for this discrepancy, given that recent developments in the literature strongly 44 

support the presence of crosslinked aluminosilicate chains in the C-(N)-A-S-H product in AAS 45 

systems, include:  46 

i) significant, non-zero amounts of four-coordinated aluminum (Al[4]) species substituting 47 

into paired sites in C-(N)-A-S-H;  48 

ii) the interlayer region containing significant amounts of aluminum; or 49 

27 
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iii) the presence of an aluminum-rich gel that is more crosslinked than C-(N)-A-S-H, but is 50 

poorly ordered and is present in sufficiently low quantities so as to be not readily 51 

identifiable through XRD, ESEM-EDS, 27Al MAS NMR or 29Si MAS NMR experiments. 52 

The possibility that Al[4] species can be substituted into paired sites in C-(N)-A-S-H chains has been 53 

previously explored in the literature;52 inclusion of these species in the CSTM model would lead to an 54 

ŝŶĐƌĞĂƐĞ ŝŶ ƚŚĞ ĐĂůĐƵůĂƚĞĚ AůͬSŝ ŵŽůĂƌ ƌĂƚŝŽ ĨŽƌ ƚŚĞ C-(N)-A-S-H phase because crosslinked structures 55 

that include Al substitution in paired sites can accommodate a much higher concentration of Al. 56 

However, the presence of Al[4] in paired sites is believed to be strongly disfavored in C-(N)-A-S-H 57 

chains.41 Using atomistic simulations, Manzano et al.52 concluded that Al[4] substitution in paired 58 

sites in C-(N)-A-S-H gel was possible, depending on the Al content of the gel, but only reaching 59 

significant concentrations at Al contents notably higher than those which are generally observed in 60 

C-(N)-A-S-H gels in experimental studies. Other atomistic simulations of aluminum substitution into 61 

silicate chains have identified a thermodynamic preference for the bridging site over the paired site 62 

in isolated pentameric chains,53 and also in pentameric chains confined within an environment 63 

representative of 14Å tobermorite,44 indicating that it is unlikely that Al in paired sites will be a 64 

major contributor to the chemistry of AAS gels. Substitution of a small amount of Al into a fraction of 65 

the paired sites cannot be entirely discounted, but it is unlikely that these species could solely 66 

account for the significant differences between calculated and experimental AůͬSŝ ratios found here. 67 

The possibility that aluminum can act as a charge-balancing species in the interlayer region has been 68 

discussed in the literature,12,20,22 but is not included in the CSTM. Interlayer aluminum has been 69 

hypothesized to exist as  Al[5],12,22 because Al[4] is anionic and thus cannot act as a charge-balancer for 70 

anionic chain sites, while six-coordinated Al has been proposed to be present in the interlayer,43,44 71 

but is not considered in the CSTM as discussed above. The potential contributions of these species in 72 

the composition of the gel binder can thus be determined from the 27Al MAS NMR spectral 73 

28 
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deconvolutions, particularly in the Al[5] region of the spectra. However, it is evident that inclusion of 74 

interlayer aluminum species will not resolve the significant discrepancies between the modeled and 75 

experimentally measured compositions of these AAS binders, as this difference is founded in the Al[4] 76 

concentrations alone. 77 

Having eliminated the other possible Al-containing phases from consideration, it is therefore 78 

proposed that an additional aluminum-containing activation product must be present as a reaction 79 

product in the AAS binder gel. This phase must be long-range disordered, and probably has a 80 

characteristic size on the order of nanometers so as to not be observable in ESEM-EDS, TEM-EDS or 81 

XRD experimental results. This product is also not readily detectable in 27Al or 29Si MAS NMR spectra, 82 

most likely due to its presence at a low concentration with peaks overlapping those assigned to the 83 

established silicate and aluminate species in C-(N)-A-S-H type gels. The most likely answer is that 84 

some part of the intensity in the 29Si bands at -89 ppm and -93 ppm is actually representing Q4(4Al) 85 

or Q4(3Al) silicate species in this additional phase, and that a fraction of the 27Al peak assigned to the 86 

q3 aluminate species is also related to this product. An obvious candidate for such an assignment 87 

would be a disordered nanoparticulate zeolite-ůŝŬĞ ƉƌŽĚƵĐƚ ǁŝƚŚ SŝͬAů ƌĂƚŝŽ ĐůŽƐĞ ƚŽ ϭ͕ ƐŝŵŝůĂƌ ƚŽ ƚŚĞ 88 

conceptual structural model which has been proposed for gels formed through alkali-activation of 89 

low-calcium aluminosilicate precursors.54 Such an assignment would be consistent with the fact that 90 

crystalline zeolites are sometimes observed in AAS binders, particularly in systems where there is 91 

insufficient Mg to form hydrotalcite.23,55 This strongly supports the inclusion of Q4(3Al) and Q4(4Al) 92 

species in the deconvolution results for the 56 days sample (Table 1 and Appendix C). 93 

However, the assignment of some of the Q3(1Al) (or Q3) intensity in the 29Si MAS NMR spectra to a 94 

phase other than C-(N)-A-S-H would indicate that crosslinking between aluminosilicate chains in the 95 

C-(N)-A-S-H product may occur to a lower extent than would be predicted based on complete 96 

assignment of Q3, Q3(1Al) and q3 silicate and aluminate species to C-(N)-A-S-H. This is actually to 97 
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some extent consistent with the observations of low or zero concentrations of Q3 and Q3(1Al) silicate 98 

species in some hydroxide-activated slag cements,41 because the chemistry of the binder gels in 99 

these systems can be well explained by existing non-crosslinked tobermorite structural models.32 100 

Contributions assigned to q3, Q3 and Q3(1Al) species are typically observed in 27Al MAS NMR and 29Si 101 

MAS NMR spectra of AAS cement pastes activated by alkali silicate solutions,15,21,56,57 but non-zero 102 

intensities for silicate and aluminate species in crosslinked sites have also been observed in 103 

laboratory-synthesized and hydroxide-activated slag pastes.12,38,56,58 The increased intensity of the 104 

bands in the regions traditionally assigned to crosslinked C-(N)-A-S-H species suggest that this 105 

additional Al-rich, potentially zeolite-like phase will be more prevalent in silicate-activated AAS 106 

systems.  107 

Therefore, the application of the CSTM to the analysis of experimental NMR data does provide a 108 

strong indication of the presence of an Al-rich phase distinct from the C-(N)-A-S-H in silicate-109 

activated slag binders, because the structure of tobermorite-like chains is unable to accommodate as 110 

much Al as is supplied by the slag precursor in this system. This means that the model predictions of 111 

the degree of crosslinking between chains in AAS should be viewed as an upper bound, rather than 112 

as an exact value. However, it is clear that a mixture of crosslinked and non-crosslinked tobermorite-113 

like structures provides a more readily generalized view of the chemistry of C-(N)-A-S-H gels than the 114 

previous models based solely on the non-crosslinked silicate chain structure. This is likely to be 115 

useful in application to blends of Portland cement with siliceous supplementary cementitious 116 

materials, in addition to the alkali-activated slag systems discussed here. 117 

5. Conclusions 118 

This paper has presented a generalized model for the chemistry of tobermorite-like calcium (sodium) 119 

aluminosilicate hydrate gels, incorporating the possibility of crosslinking between tobermorite chains 120 
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to better describe the chemistry of high-Al binder systems. The model is named the �Crosslinked 121 

Substituted Tobermorite Model�, CSTM. The structures modeled in the CSTM are consistent with 122 

Loewenstein�s rule of Al-O-Al avoidance, and exclude aluminum substitution into paired tetrahedra. 123 

The partitioning of Al into secondary phases such as hydrotalcite is considered through the use of 124 

27Al MAS NMR spectra to identify the concentrations of Al in different coordination states. 125 

The CSTM differs from previous models for the C-(N)-A-S-H phase, which are primarily based on non-126 

crosslinked tobermorite structures, and so is more consistent with recent developments regarding 127 

the density and structure of the C-(N)-A-S-H product in alkali-activated slag. The CSTM model 128 

represents the first time that a mixture of non-crosslinked and crosslinked C-(N)-A-S-H structures has 129 

ever been studied over the full range of compositions observed in AAS systems. The CSTM provides 130 

support for aluminosilicate chain crosslinking in the C-(N)-A-S-H phase found in AAS cement, but also 131 

provides strong indications of the presence of an additional aluminum-containing activation product 132 

in alkali silicate-activated slag binders. This study therefore provides a profoundly deeper and more 133 

detailed description of the binder gel chemistry in alkali-activated slag when compared with the 134 

existing literature in this area, and is more readily reconciled with the recent developments in the 135 

literature.   136 

6. Supporting information 137 

Additional material is provided in the supporting information document: application of the CSTM to 138 

a crosslinked tobermorite species (Figure S1) ŝƐ ƉƌĞƐĞŶƚĞĚ ŝŶ AƉƉĞŶĚŝǆ A͖ ĚĞƌŝǀĂƚŝŽŶ ŽĨ ƚŚĞ CĂͬSŝ ĂŶĚ 139 

CĂͬ;AůнSŝͿ ƌĞůĂƚŝŽŶƐŚŝƉƐ ĨŽƌ Ă ŵŝǆƚƵƌĞ ŽĨ ϵÅ, anomalous 11Å, normal 11Å and 14Å tobermorites 140 

(eqs.(S1-S13)) is provided in Appendix B; and details related to the experimental procedure and 141 

materials (Table S1), the alternative site assignments specified in this study (Table S2 and eq.(S14)), 142 

quadrupolar coupling parameters used in this work (Table S3), and spectral deconvolutions of 29Si 143 
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MAS NMR spectra (Figure S2) and 27Al MAS NMR spectra (Figure S3) are given in Appendix C. A 144 

Microsoft Excel spreadsheet containing an implementation of the CSTM, with some of the data from 145 

this paper inserted to provide an example of its application, is also available to enable the reader to 146 

utilize the model directly. This material is available free of charge via the Internet at 147 

ŚƚƚƉ͗ͬͬƉƵďƐ͘ĂĐƐ͘ŽƌŐ. 148 
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