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Abstract

Computational theories of decision making in the brain usually assume that sensory 'evi-
dence' is accumulated supporting a number of hypotheses, and that the first accumulator to
reach threshold triggers a decision in favour of its associated hypothesis. However, the evi-
dence is often assumed to occur as a continuous process whose origins are somewhat ab-
stract, with no direct link to the neural signals - action potentials or 'spikes' - that must
ultimately form the substrate for decision making in the brain. Here we introduce a new vari-
ant of the well-known multi-hypothesis sequential probability ratio test (MSPRT) for decision
making whose evidence observations consist of the basic unit of neural signalling - the
inter-spike interval (1SI) - and which is based on a new form of the likelihood function. We
dub this mechanism s-MSPRT and show its precise form for a range of realistic I1SI distribu-
tions with positive support. In this way we show that, at the level of spikes, the refractory pe-
riod may actually facilitate shorter decision times, and that the mechanism is robust against
poor choice of the hypothesized data distribution. We show that s-MSPRT performance is
related to the Kullback-Leibler divergence (KLD) or information gain between ISI distribu-
tions, through which we are able to link neural signalling to psychophysical observation at
the behavioural level. Thus, we find the mean information needed for a decision is constant,
thereby offering an account of Hick's law (relating decision time to the number of choices).
Further, the mean decision time of s-MSPRT shows a power law dependence on the KLD
offering an account of Piéron's law (relating reaction time to stimulus intensity). These re-
sults show the foundations for a research programme in which spike train analysis can be
made the basis for predictions about behavior in multi-alternative choice tasks.

Introduction

The decisions we make every day rely on processing continually refreshed streams of uncertain
information. This information guides our choices, until some assumed termination criterion is
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reached, upon which a decision is made [1-6]. Previous influential frameworks have addressed
the concerns of uncertainty and time continuity by assuming that new information or evidence
occurs as continuous stochastic processes [1, 7-10], often mapped at the level of the membrane
potential of individual neurons [11-14]. However, most of the ensuing mechanisms are not
naturally suited to exploit the statistical structure of the discrete and irregular sequences of ac-
tion potentials that must ultimately form the substrate for decision making in the brain. As no-
table exceptions, [15-17] assumed that evidence is sampled from Poisson processes and that
statistical inference is conducted upon them. However, their result is founded on the assump-
tion that, for Poisson-based spike trains, the evidence was given by counting spikes, and it is
not apparent what theoretical foundation might underly this assumption.

Further, there is, as yet, no clear way of dealing with spike trains with arbitrary inter-spike-
interval (ISI) statistics, although there has been some interest in log-ISIs as means for sampling
for decision formation [18]. Almost all previous models of decision making have worked at a
more abstract behavioural level, where the interpretation of evidence is less constrained.
Hence, they have either assumed the evidence is Gaussian distributed (e.g. [1, 7, 8, 10]) or they
have used a general formalism with no distribution specified (e.g. [19]). Both views have issues:
the negative tail of the Gaussian makes it conceptually inadequate for describing ISIs (or their
inverse, the instantaneous firing rate) and better fits are to be had with other skewed probabili-
ty density functions (pdfs); while the general view does not provide any connection with neural
mechanisms, in particular spikes. Typical neural recordings show spike trains which cannot be
described by Poisson processes (e.g. see [11, 20-27]) and these should be amenable to the same
theoretical analysis as their Poisson counterparts. Fortunately, there has been considerable at-
tention paid to identifying the particular pdf that adequately describes variables like these [20,
22,23, 26, 27]: it is known that the typical distribution of ISIs is positively skewed and has a
non-zero mode (maximum). Any neurally grounded account of decision making must accom-
modate these data.

To address these issues, we introduce here, a general approach to decision making with
spikes based only on the assumption that evidence for decisions is conveyed in the distribution
of ISIs. Thus, our premise is that the arrival of spikes provides the primary basis of information
transfer and that the ISI provides the basic ‘unit of evidence’. The ISI is therefore considered to
be an ‘atomic’ time interval that is not linked to some more fundamental, continuous-time pro-
cess (as is often the case). Our proposal gravitates around a novel variant of the likelihood func-
tion which can be applied to any Bayesian or frequentist inference algorithm that uses
sequential sampling (for excellent reviews see [9, 28]). With this likelihood we produce a new
principled and general formulation of a statistical inference procedure known as the multi-hy-
pothesis sequential probability ratio test [29] (MSPRT). We dub this mechanism spiking
MSPRT or simply s-MSPRT.

This novel and more general spike-based account allows us to address several previously un-
answered questions. This was made possible by investigating several particular cases of the s-
MSPRT, each of which assumed a pdf compatible with the distribution of ISIs in existing data
[30, 31]. First, noting that the non-zero mode in typical ISI distributions is dictated by an inter-
spike refractory period, we ask, what is the advantage of such shape? The refractory period is
often seen as drawback for information transmission, but we show it actually furnishes ISIs
with additional information for discrimination, thereby facilitating their ability to inform
decision making.

Second, given the diversity of s-MSPRT instances now possible, how robust is decision mak-
ing if the distributions tested-for (the basis of the particular s-MSPRT) are not the same as
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those of the data being tested? Hitherto, this issue has not been as acute because of the assump-
tion of Gaussian signals and test-distributions. However, as well as parametric differences be-
tween test and data distributions, we now have to consider the possibility of a fundamental
mismatch between the two, reflecting a potential ‘ignorance’ of the algorithms regarding the ac-
tual statistical structure of the task [32]. Here, we show that this issue does not fundamentally
compromise the s-MSPRT, thereby revealing a robustness we might expect of a

biological mechanism.

Finally we ask, what are the implications of positing a neural-level mechanism for decision
making like s-MSPRT, at the behavioural level? Our starting point for this analysis is the obser-
vation that the mean decision sample size (mean decision sample for short) of our algorithms is
intimately related to the discrimination information between the distributions of the input
data streams, as measured by the Kullback-Leibler divergence (KLD) [33, 34]. Based on this,
we demonstrate that the mean total information needed to reach any particular decision is con-
stant and thus conserved. We show how this postulate gives rise to an expression consistent
with Hick’s law [35], a well-known psychometric regularity where mean reaction times are
shown to approximate a logarithmic function of the number of choices. Lastly, from the same
postulate we demonstrate that the mean decision sample of any of our algorithms depends
through a power law on the KLD. This bears a strong resemblance to a second regularity
known as Piéron’s law [36], where the mean reaction time decreases following a power law as
the intensity of the stimulus increases. The KLD between the possible ISI distributions of a sen-
sory neuron should increase for more intense stimuli, we argue, therefore, that our postulate
on the conservation of mean total information is a possible explanation for Piéron’s law. We
conclude that, the hypothesis that the brain approximates an algorithm like s-MSPRT in its de-
cision making, is consistent with several behavioural phenomena, and that the s-MSPRT pro-
vides an explanation for these phenomena grounded in information theory.

Earlier versions of some of these results have been reported in conference abstracts [37, 38]
and JC’s PhD dissertation [39].

Results
s-MSPRT: a Bayes-based decision mechanism using spikes

We establish an idealised decision making mechanism grounded in the Bayesian approach,
which works by sampling a set of spike trains encoding information or evidence about a stimu-
lus in a set of parallel data streams or channels. The mechanism is a variant of the multi-hy-
pothesis sequential probability ratio test (MSPRT) [29] and must decide which of a set of
hypotheses about these data streams is the most probable.

Sequential sampling algorithms usually assume that all data streams are sampled synchro-
nously, and evidence is thereby accumulated for all hypotheses simultaneously. However, our
point of departure is to suppose that, in a neural context, evidence is supplied on each channel
of a decision mechanism by the arrival of spikes on that channel. Thus, there is a notion of
sampling in spike trains grounded in their very construction—that the arrival of a spike within
a channel supplies new evidence therein, and conversely, that no new data for the channel is
supplied between its spike arrivals. The implication of this is that the notion of synchronous or
uniform sampling is lost, because, in general, spike arrivals across channels will be asynchro-
nous. However, it is still possible to establish a sequential sampling scheme that can be used in
Bayesian (and indeed, frequentist) inference.

To proceed, consider a decision process over C data channels, each one comprised of a neu-

ral spike train. Let the process start at £, and let £, ¢!, ..., £/, . . . be the sequence of spike arrival
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times on channel i, where t? >, and £/ > ¢/ ' for all j. We assume the basic unit of data being

supplied to the neural decision mechanism is the inter-spike-interval (ISI) defined by

x,(j) = £ — £ The ISIs also serve to define the (non-uniform) data ‘sampling times’ or ‘sam-

pling intervals’ on a per-channel basis. There is, therefore, no way of exactly assigning a number
of observations consistently across all channels up to a specified time T. To define the channel-

specific sample size, let s,(T) = argnaxj{tf < T}. The first and last spikes in the interval [¢°, T]

for channel i occurred at ¢/, and £ respectively; note that time ° does not necessarily coin-
cide with any spike arrival. Then, the decision process is effective on this channel for an interval
T =" — t?, and there are s;(T) ISIs on i during this time. Now let x,(T) be the set of observa-

tions (equivalently ISIs) for channel i during the decision process, where x{(T) = (x;(1), x/2),. . .
x,(s,(T))). Finally, let X(T) = {x;(T), k = 1,. .., C}. Thus, X(T) is the entire data set available to
the decision mechanism up to time T.

We now suppose there are set of N hypotheses H;, with i € {1,. . ., N}, about the data which
we wish to test. At this stage, we retain the most general formalism in which the number of hy-
potheses, N, is not necessarily the same as the number of channels, C [40]. Further the hypothe-
ses may concern perceptual interpretations of the data rather than their statistical properties as
such [19]. However, subsequently, we specialise to the case where the number of data channels
and hypotheses is the same and make more precise the nature of the hypotheses themselves. In
general, the hypothesis test requires we compute the posterior probabilities P(H;|X(T)). Using
Bayes rule we have

__ PX(T)[H,)P(H;)
i1 P(X(T)|H,)P(H,)

P(H|X(T)) (1)

where P(H;) are the priors for each hypothesis, and P(X(T)|H;) the likelihoods. While our gen-
eral model allows for a manipulation of the priors to bias choices, for simplicity we hereafter as-
sume that they are all equal. We also take logarithms, thereby transforming fractions to sums

N
log P(H,|X(T)) = log P(X(T)|H,) — log Y P(X(T)|H,) (2)
k=1
Now, following [10, 19], we write this as

log P(H,IX(T)) = log P(X(T)|H,) — log ) _ exp (log P(X(T)|H,)) (3)

k=1

(Lepora and Gurney [19] actually dealt with the negative of the log-posterior which allows the
interpretation that the decision is performed by basal ganglia [10]; this is not essential to our
exposition here). Then putting P,(T) = P(H;|X(T)) and y;(T) = log P(X(T)|H;)

log P,(T) = y,(T) — log ) _ exp (y(T)) (4)
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It is apparent that a key computation here is the log-likelihood y;(T). Assuming indepen-
dence of data across channels, and no dependence between ISIs within a channel

C_s(T)

> logp(x()|H)

k=1 j=1

y(T)

5(T) c (D (5)
Z log p(x,(j) | H,) + Z Z log p(x;(m)|H,)

ki

Where p(x,(j)|H;) is some probability measure applied to x,(j) under the hypothesis H;, e.g.
a probability density (from a pdf) or probability (from a probability mass function). Thus far,
we have a very general situation where an arbitrary number of data streams or channels C (e.g.
spike trains from individual neurons) can contribute to any number of hypotheses N. However,
we now specialise to the case when there is the same number of hypotheses as data streams (C
= N), and each hypothesis H; takes the following form: that the i.i.d. data x,(j) in channel i was
drawn from a ‘preferred’ pdf f-, with mean y* and standard deviation ¢*, while i.i.d. data in
other channels x(j), k # i were drawn from a ‘null’ pdf f; with mean y, and standard deviation

0y (in general, y* # o # 0" # 0p). Thus

si(T) N (D)
y(T) = Z logf, (x(7)) + Z Z log f, (x,(m)) (6)

ki

The form of the log-likelihood may be simplified by expressing it in terms of probability ra-
tios [10, 19]. To do this we rewrite Eq 6 as

(1) (T) N_s(T)
y(T) = Z log . (x,(j)) — Z logf, (x,()) + D> logfy(x,(m)) (7)

The double sum on the extreme right is hypothesis independent and we denote it by B(T).
Then

(1) (i
A1) = Y tog e 4 (r) ®

Note that this novel definition of the likelihood, grounded directly in the ISIs of the spike
trains, is quite general and may be also used in frequentist sequential sampling methods. It is
straightforward to show using Eq 4 that hypothesis independent terms like B(T) do not alter
the posterior, and so we only need consider the first term in Eq 8. We therefore redefine y,(T)
to be this term, and also introduce some additional notation

L N ACT0))
WO =D L), LG = logf (L 9)

which defines the per-observation ratios L,(j). These constitute the ‘evidence contributions’, so
that y(T) is the ‘accumulated evidence’.
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data

priors and xpyn () fexpye(i xp Y (7)
likelihoods

exp y1(J)

normalization
constant

b4 /
posteriors P\(T) Q “u

termination rule

d

Fig 1. MSPRT in schematic form. Panel a shows the general MSPRT where all the C data streams contribute to all of the N likelihoods and thus posteriors,
which are then evaluated at a termination stage. Panel b only shows the effective components after all simplifications have been applied.

doi:10.1371/journal.pone.0124787.g001

Then, after substituting Eq 9 in Eq 4, the decision D(T), at time T is:

Choose hypothesis i if log P,(T) = max logP(T) > 0,at T =T,
D(T) _ je{l,...N} (10)
Continue sampling:  if max log P,(T) < 0

Although an individual threshold can be set per hypothesis [29], for simplicity [10, 16, 17]
we assume the single 6 € [log(1/N),0); where the position of 6 controls the speed-accuracy
trade-off. Informally, Eq 10 states that the decision at any given time is: either picking the most
salient (likely) hypothesis (i), if its decision variable (logP;(T)) has surpassed a threshold 8 at
the spike arrival time T, or continuing to gather data. In what follows, Eq 10 is called the spik-
ing MSPRT or simply s-MSPRT. In Fig 1 it is shown in schematic form to illustrate the flow of
information through the algorithm.

Fig 2 shows the time course of a single trial in s-MSPRT which serves to illustrate several
key points. First, unlike several other instances of the use of MSPRT in neural decision making,
s-MSPRT has its sampling grounded in a physically observable process—spike arrivals—which
ties it directly to time. Thus, there is no arbitrary synchronous sampling time of some more
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Fig 2. Time course of signals in a single trial of s-MSPRT. The trial is for an s-MSPRT using the gamma distribution, with 4 choices, under the
parameterisation set Q) (see Methods). Panel a, shows the spike rasters of the 4 spike trains as small vertical line markers, with that of the preferred channel
in red. This panel also shows the accumulated evidence y,(T) as a red line graph. Panel b shows y,(T) of all four hypotheses with the preferred hypothesis in
bold red. Panel ¢ shows the posteriors with the preferred hypothesis in black and the others in gray. The threshold is shown by the horizontal dashed line, and
was chosen to give a 5% error rate.

doi10.1371/ournal.pone.0124787.g002

fundamental continuous-time process, and the decision time emerges naturally in terms of the
input data streams. A second observation is that sampling is not uniform; for a given time T,
there are different numbers of observations per channel, s,(T), which depend on the firing in
that channel. This means the y;(T) are updated at different times, see Fig 2b. Third, while the
contribution y,(T) is updated only at spike arrival times on channel i, the log-posterior logP,(T)
is updated at the arrival of a spike on any channel (see Eq 4 and black line in Fig 2a). Finally,
the preceding analysis is quite general; no requirements have been made on the form of the dis-
tributions of ISIs (Gaussian or otherwise). In the next two sub-sections, we go on to consider
the consequences of using different neurobiologically plausible forms for fo, f-.
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Accumulated evidence with exponentially distributed ISIs is
approximately a spike-count
Consider an s-MSPRT with hypotheses that the data is distributed exponentially f-(x) = A- exp

(=A+ x), fo(x) = Ap exp(—Ag x). Here, A- and A are mean instantaneous firing rates, defined by
the inverse of the respective mean ISI y*, yo. Then, substituting these forms in Eq 9.

= 3 g (5) = 5002 - )

=

5,(T) log (jﬂ) —T,(A, — 2) (11)
= s(T)log <j_0> —T(%, — 2) + 6,(T)

where 6(T) = (T — T;)(A+ — A¢) and we have used the fact that summing consecutive ISIs just
gives their overall duration (here, T;). The term T(A+ — A,) is hypothesis independent and can
be absorbed into B(T) in Eq 8. We therefore have

3(T) = 5(T) log (—) T 5(T) (12)

0

or
. A
T) (1), with g = tog () (13)
0

and where the ‘error’ term defining the degree of approximation is 6,(T).

The right hand side of Eq 13 is a spike count scaled by a ‘gain’ g = log(4-/4,). This approxi-
mation resembles the expression used by Zhang & Bogacz [17] for y;(T). The difference be-
tween the precise form for y,(T) here (Eq 12) and that of [17] stems from them formulating
their likelihood function upon discrete Poisson probability mass functions (of spike counts)
and us in terms of continuous exponential pdfs (assumed here for ISIs). Nevertheless, up to the
approximation in Eq 13, we concur with Zhang & Bogacz that, for Poisson-based spike trains
(with exponential ISI distributions), the accumulated evidence y,(T) is given by a (gain-multi-
plied) spike count. However, in deriving their result, Zhang & Bogacz started by assuming that
y{T) comprised the spike count, and then deduced and included a separate gain factor. In con-
trast, we have not assumed any a priori form for the total evidence, and have obtained the inte-
grated form (counts and gain) in Eq 12 directly from the general expression for the sum of
individual spike contributions in Eq 8.

To obtain a better understanding of the spike count approximation in Eq 13, use the gain
defined there in Eq 12 to obtain

yi<T) = g(si(T) + gi(T))

where 5,(T) = 0,(T)/g is the error in the spike count. Now consider the spikes immediately
prior to, and after T. The expectation of the intervals between these spikes and T are equal, and
their sum is the mean ISI y. Therefore (T — T;) = 0.5 and so, for the preferred channel

om - 45(1-3)

0.5
=(1-e)
g
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Table 1. Analytic expressions for ‘evidence contributions’, L) for a range of distributions.

distribution f(x) Lij) gains
e o -t
g] = /u* — /“0
lognormal g% + gt[log x,(j)]* + ghlog X,(j) ot = % _ 292 i log(e“>
Xei/i’? p[(m')] 91—2@2_293
9=5—o
g?rlnma 9o + gilog X,(j) + 92X, (/) gl =1o g[?i” ]
rp XP <%) gl =a, —a
9= /flu /fl
-+t () + ) ot 2]
i e(~) ' =9, - 9.
92 ﬂu i
inverls/? Gau§sia? gs +a5%() " +g5x,() o= ‘log(m) n_n
() exp [P ] g = o

gs:l Yo Vs
2 2\

The left hand column shows the canonical functional form of the distribution in terms of its ‘natural’
parameters. The central column is the evidence contribution L;(j), and the right hand column contains
expressions for the ‘gains’ in terms of such parameters.

doi:10.1371/journal.pone.0124787.1001

This takes its largest values as g — 0, in which case (5,(T)) — 0.5. There is therefore an upper
bound on the expected error in the spike count to decision on the preferred channel of 0.5.

In general accumulated evidence is not given by a spike-count alone

The exponential distribution is not privileged in its relation to Eq 9. Thus, it is possible to ob-
tain a closed form for L,(j) for any analytically defined distribution, by substituting a suitably
parameterised pair of pdfs for f-(x) and f,(x) into Eq 9. The results for a range of distributions
which may fit ISI data are shown in Table 1. Each distribution has a pair of parameters {,
(not usually the mean and standard deviation of the pdf). Taking two pairs of such parameters
{+, - and (o, 10, specifies f-(x) and fo(x). Substitution in L,(j) in Eq 9 yields the expressions in
the central column of the table. Each one comprises the sum of a constant g;, and a sum of
products of a coefficient or ‘gain’, g; (i = 1,2), together with a simple function of the variable
like log x,(j), (log xi(j))z, xi(j)_l. Summation over spikes leads, in all instances, to a term like g;
si(T), which is the analogue of the right hand side of Eq 13; that is, it expresses a ‘spike count’
contribution to y,(T).

However, there are other terms in L,(j) which depend on x;(j) and which can make a sub-
stantial contribution to the development of y,(T). This is demonstrated in Fig 3 for a particular
set of biologically plausible pdfs and parameterisations, Q;y, described in the Methods. Fig 3a-
3d, shows the pdfs specified by Q. In the corresponding panels e-h below, L;(j) is shown per
pdf as a function of x;(j) (solid red line) as well as the functions for its contributory terms. The
term g is constant (solid black line), the spike count contribution and other non-linear terms
are functions of x,(j) (dashed and broken gray/black lines). There is clearly a wide variation in
non-constant contributions to L,(j). Most notably, the terms linear in x,(j) in the gamma and
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Fig 3. The two-parameter families of pdfs (top) and their ‘evidence contributions’ L,(j) (bottom). Panels a-d show the lognormal, gamma, inverse
Gaussian, and inverse gamma pdfs respectively, for the independent variance parameter set Q) (see Methods). The ‘preferred’ and ‘null’ density functions
(f+, fo) are in red and black respectively. The plots are for ISls from 1 to 100 ms. For infinitesimal ISls, the lognormal, inverse Gaussian and inverse gamma
tend to zero; for the the gamma the pdf grows up to a bound as the ISI tends to zero. Panels e-f are the corresponding contributions L(j) to the accumulated
‘evidence’ y(T) (see Eq 9) and the separate components therein (see Table 1). L) itself is shown in red, the constantterm g° (D=L, y, S, M) by the solid
black line, and non-constant terms by dashed-grey and broken-black lines. The horizontal dashed grey line indicates 0 on the y-axis.

doi:10.1371/journal.pone.0124787.9003

inverse Gaussian, have an apparently disproportionate effect on L;(j). However, as noted earlier
in connection with the exponential distribution, when summed over spikes, such terms give an
expression which is approximately ¢T (for some gain g). If these terms were identically equal to
gT, they may be absorbed into the constant term B(T) in Eq 8, and have a null effect on the pos-
terior. Thus, assuming the terms linear in x;,(j) are a good approximation to g7, they will have a
very limited influence on the outcome of a decision.

s-MSPRT has a ‘regular MSPRT counterpart for all IS| distributions

It is instructive to compare the s-MSPRT with a counterpart ‘regular’ MSPRT with temporally
uniform-sampling; that is, in contrast to neural spike trains, observations are drawn simulta-
neously for all channels every time interval 5t (MSPRT as in [10, 19, 29]). We denote this
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uniform-sampling variant, u-MSPRT. Note this alternative form, like its s-MSPRT counterpart,
is not supposed to be based on observations from an underlying continuous process. Rather, u-
MSPRT relies on a fundamentally discrete, sequential process with uniform inter-observation
time, but is abstract and does not assume any explicit representation of spike arrivals. Its sole
purpose is to provide a ‘bridge’ from the s-MSPRT to the more usual, uniformly sampled deci-
sion processes (which may well assume a continuous time foundation). In this scheme, the dis-
tribution-independent formalism developed above is preserved almost in its entirety, with x(j)
interpreted as the j™ observation on channel k, drawn from one of the pdfs describing ISIs.
Thus, Table 1 applies for all such u-MSPRT, which therefore extends previous results describ-
ing the specific form of MSPRT for Gaussian inputs only [10].

In all u-MSPRT variants, the expressions contributing to y,(T) in Eq 9 now refer to sums up
to observation s(T) for any channel (instead of s(T)) and T = s(T)dt (T; = T, for all i). With like-
lihoods and posteriors thus updated simultaneously for every hypothesis, every 8¢, u-MSPRT
also takes the form in Eq 10 and has the structure in Fig 1.

We now turn to the comparison between s- and u-MSPRT. For both variants, the decision
time is governed by the decision sample—the number of observations required to reach the
threshold. For a given decision, in s-MSPRT the decision sample will depend on the hypothesis
which has reached threshold. On average, when y* <y, there will be more observations in a
preferred channel than in one of the null channels; this is observed in cortical sites that supply
evidence for decision formation, like the middle-temporal visual area (MT) [30] or the primary
somatosensory cortex [24]. We report the expected decision sample with respect to an equiva-
lent number of preferred channel observations, (s), irrespective of the hypothesis crossing the
threshold. For u-MSPRT, all channels are sampled equally frequently but we will, nevertheless,
denote the expected decision sample with respect to the preferred channel, (s*), in order to fa-
cilitate comparison between u- and s-MSPRT.

For s-MSPRT, the decision time T is the sum of an integer number of observations, s,(T%),
and a ‘residual time’ comprising the time from ¢° to first spike arrival at . For correct deci-
sions, the expected value of x;(0) is 0.5u*. Thus, the expected decision times for each type of
MSPRT are given by

(Tp) = () +05)w (15)
(Tp) = (s;)ot

Notwithstanding the simple formal relations above, the interpretation of decision making by
these algorithms, in terms of an overall decision time, is rather subtle. For s-MSPRT, observa-
tions are explicitly determined by spike arrivals, and we will ultimately need to know whether
we are we dealing with single or multiple spike trains and, if the latter, how these combine to
make ISI-pdfs for algorithm input. These questions are taken up again in the Discussion but, in
all subsequent results, we consider processing of an individual afferent spike train as the ‘unit
of decision making’. All the analyses of IS statistics described above are, therefore, directly ap-
plicable. Further, in previous application of uniform-sampled MSPRT to neurobiological deci-
sion making, the parameters were chosen to allow behaviourally appropriate decision times
[10]. Here, however we wish to examine decision making at the level of spike trains and neural
processing which requires a different approach relating observations in u-MSPRT to ISIs.

Given these issues, we will report results (for both u- and s-MSPRT) in terms of the decision
sample rather than overall decision times. In particular, we can ask whether the decision sam-
ples for each of u- and s-MSPRT are similar. Given the mechanistic difference between s- and
u-MSPRT in terms of a homogeneous versus heterogeneous channel sampling rate, it is not
clear a priori whether this is necessarily the case. However, if they are indeed similar, then
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notwithstanding the problems with interpreting decision times, it is instructive to see what
choice of sampling period 6t would ensure similar decision times. The investigation to answer
these questions is largely empirical, but we supply heuristic analysis to give insight into

the outcomes.

We ran simulations of s-MSPRT as a function of the number of choices or hypotheses, N,
for a range of pdfs, and the two parameter sets Q;y, Qry (see Methods). All the simulation re-
sults use trials with an error rate of 5% obtained by iteratively seeking a threshold that satisfied
this criterion. Every data point for a particular number of alternatives is the mean over 950 cor-
rect, out of 1000 total trials (982 correct for the inverse gamma based s-MSPRT at N = 2 with
Qry in Fig 4 which is at an error rate of 1.8% as it was not possible to reliably achieve a 5%
error here; this decision task would appear to be too easy to be compromised to this extent).
The large trial numbers ensure that estimation of the error rate during threshold determination
is sufficiently accurate. For the simulations in this section, the ISIs are drawn from the distribu-
tions, f+ for the preferred channel, and f; for the null channels.

The decision samples (s*) are estimated in Fig 4 (solid lines). We can consistently interpret
these results as decision times because y* = 16.5 ms throughout. Then, assuming only the single
preferred afferent spike stream, Eq 15 implies that 10 observations translates to 165 ms. The
solid symbols in Fig 4 show the comparable decision samples (s;) for u-MSPRT. There is clear-
ly a very close correspondence between the two sets of mean decision samples across a range of
conditions; that is, (s7) & (s?). There are two possible exceptions to this; the gamma distribu-
tion with parameters Qy and the exponential with Qpy, but even here, the correspondence is
reasonably good. It would appear therefore that, for a given s-MSPRT, there is a u-MSPRT
counterpart with the same mean decision sample and error rate. Further, given the provisos
above, Eq 15 implies that decision times in the two cases will be equal (ignoring the residual

— lognormal — exp — inv. Gamma

b

1 0 T 1 1 ] L
20 2 5 10 20
number of alternatives number of alternatives

Fig 4. Mean decision samples against number of choices for a range of pdfs, parameter sets, and mechanisms. Each panel shows mean decision
sample as a function of the number of choices for a range of pdfs (see legend) and for the two alternative mechanisms: s-MSPRT (solid lines) and u-MSPRT
(solid circles). Panels a and b are for the parameter sets Q), and Qg respectively (see Methods). In the case of Qf, the gamma and exponential distributions
are identical and so not reported separately. All data points are the mean of 950 correct, out of 1000 total trials (see text for inverse gamma based s-MSPRT).
Error bars are omitted for clarity and are small; the standard error of the mean is typically 2% of the mean.

doi:10.1371/journal.pone.0124787.9004
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term 0.5u™) if we assign 6t = y*. In the Methods, we develop a heuristic argument to show why
there is a close match between the two methods.

s-MSPRT can be more observation efficient than the usual u-MSPRT
Consider Eq 4. Then, putting R(T) = 3", expy,(T), Eq 4 becomes

expy,(T)

P(T) = R(T) (16)
where, R(T) is a hypothesis independent normalisation constant. The idea, therefore, is to
think of the posterior as a ‘scaled’ version of exp y,(T), although this scaling will change at
every spike arrival in any channel. This is illustrated in Fig 2, in which panels b,c therein show
y{T) and P(T) respectively; the notion of scaling is especially clear for the preferred hypothesis.
Assuming a small error rate, most decisions will choose this hypothesis, and so the critical fea-
ture for the decision time is the trajectory of the integrated evidence therein, y«(T) (here, and
henceforth, a “*’ subscript denotes quantities on the preferred hypothesis).

In general, the terms L-(j) in Eq 9 contributing to y-(T) have similar form whether they are
notionally obtained from spike arrivals or uniform sampling. Therefore, at the level of observa-
tions, typical trajectories for P-(T) will be similar in u- and s-MSPRT, up to an overall scaling
by R(T). However, even with identically shaped trajectories, the decision sample will depend
on R(T) and the threshold in each case. We therefore proceed to examine these quantities.

In evaluating R(T), we first we note that each contributory term L(j) to the evidence in the
null hypothesis (in either MSPRT) is likely to be negative, since we expect f-(x;(j))/fo(x:(j)) < 1.
This, in turn tends to make y;(T) < 0; as an example of this, see Fig 2b. Secondly, suppose we
have taken the same number of observations in both u- and s-MSPRT on the preferred chan-
nel. Then, since y* < po, there will be fewer observations in a null channel for s-MSPRT than
for u-MSPRT because, for the former, they are sampled po/p* times more slowly than those on
the preferred channel, whereas all channels are sampled at the same rate for u-MSPRT. Inci-
dentally, note that given the equality of decision samples (with respect to the preferred chan-
nel) this means that the total number of scalar observations, summed across all channels, to
reach decision is less for s-MSPRT than it is for u-MSPRT. Thence, s-MSPRT is more observa-
tion efficient than its non-spiking counterpart.

There is no single optimal I1SI distribution for decision making

There is a clear distinction in Fig 4 between the performance of algorithms assuming the differ-
ent distributions. Is the rank ordering of performance maintained as we vary the distribution
statistics? To explore this we repeated the experiments with s-MSPRT corresponding to N = 10

in Fig 4, but with other parameter sets Q (1, ), Ry (1)> pho = 49.5,66,82.5 derived from the
original sets Qpy, Qry (see Methods). The results are shown in Fig 5, which also show those for
Qpy, Qpy for comparison (¢ = 33 ms).

Fig 5a shows a clear difference in relative performance over the parameter sets Qy, Q. ( Uo)
defined by their means. Further, there is some patterning to the variation in which the peak de-
cision sample is a unimodal function of mean ISI. The inverse gamma shows best performance
for small means, but is superseded by the other distributions at higher means, and in particular,
by the gamma distribution. However, the latter is not a good fit to the data sets we examined
(see Fig 10) and so a realistic mechanism might be more likely to use the lognormal or inverse
Gaussian, both of which have similar decision samples.
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Fig 5. Decision sample in s-MSPRT against mean ISI for range of pdfs and parameter sets. Each bar shows, for the pdf indicated in the legend, the

mean decision sample for N = 10 alternatives, averaged over 950 correct out of 1000 total trials. Panel a used parameter sets Q), Q,,(49.5), Q,,(66),

Q,,(82.5), panel b used Qgy, Q,(49.5), Q,(66), Qp, (82.5) (see Methods). Each group of bars relates to one parameter set with its i indicated on the x — axis

(Qu, Qv have o = 33). For the case of Qr, and any Q, (1,), the gamma and exponential distributions are identical and so not reported separately.

doi:10.1371/journal.pone.0124787.g005

In contrast, Fig 5b shows no such variation of performance for the sets Qgy, Q. (1), de-
fined by their means and variances; the rank order is preserved. The inverse gamma also shows
best performance with this parameterisation. In sum, there would appear to be no consistently
‘best’ distribution for decision making and that distribution contingent performance varies
with the statistics of the data distributions.

Note also that the decision samples under the parameter sets ., (4,) in Fig 5b are much
larger in general than they are for those derived from Q;y in Fig 5a. This is because, for

Q,, (1,), the standard deviation for f- and f, does not grow with o, whereas it does for

Q.. (), since it is always equal to y*, po.

MSPRT is robust under variation of hypothetical distribution

Thus far we have assumed that the underlying statistics of the spike trains are the same as those
of the hypothetical distributions (those in the likelihood). In particular, we have assumed that
the functional form of the spike ISI distributions f, f; were identical to their hypothetical coun-
terparts in the decision mechanism, f”, 7, (so that no distinguishing superscript , s was re-
quired). However, in general, the decision mechanism may not ‘know’ a priori what form f’, f;
take. We now ask the question: what effect would an incorrect choice of the pdf form f, f;" take
on the decision time? To investigate this we fixed the distributions of ISIs to be inverse gamma,
and supplied this data to decision mechanisms (u-MSPRT) based on a variety of pdfs. We used
the Q;y parameter set for both distribution sets throughout. The results are shown in Fig 6 by
the pattern filled bars. There is always a change in performance when an ‘incorrect’ hypotheti-
cal distribution form is used. However, for all the ‘incorrectly’ established mechanisms, the per-
formance is better with the inverse-gamma-distributed data than that when each mechanism
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Fig 6. Decision sample for u-MSPRT when the distributions inthe data were not matched to those tested for. Each bar shows the mean decision
sample, for N = 10 alternatives, averaged over 950 correct out of 1000 total trials. The parameter set was Q). The pale, patterned bars are for the case when
the data is always sampled from an inverse gamma distribution, but inserted into mechanisms which test using the distribution indicated on the x — axis (by
definition, the bars have equal height for the inverse gamma). The solid bars are for the case when the tested-for distribution matches the true distribution of
ISls, as indicated on the x — axis. Error bars are at one standard deviation.

doi:10.1371/journal.pone.0124787.9g006
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uses observations drawn from pdfs that are the same in the data and the hypothesis test (solid
bars in Fig 6). Thus, there is no catastrophic decline in performance when using non-matching
hypothetical distributions, and performance variation appears more intimately linked to the
characteristics of the observations themselves.

Expected total information gain for a decision is constant

It is clear from several of our results that the choice of pdf can make a substantial difference to
the decision making performance. However, it is not clear what characteristics of the choice of
pdf cause these differences. We might suppose that performance will be a function of how ‘far
apart’ are the distributions f-, fy and one popular measure of this distance is the Kullback-Lei-
bler divergence (KLD) between two pdfs p(x), g(x) [33], defined by

Dipllg) = | pla)log, 4 1)
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Here we will use base-2 logarithms, so that results can be reported in bits. Note the KLD is, in
general, asymmetric with D(p||q) # D(q||p) (although symmetry may occur under some cir-
cumstances—e.g. Gaussians with different means and the same variance).

Now let p = f, g = fo, then, taking expected values of the per-observation ratios in Eq 9 with
respect to f-

D(fIlf) = (LG)),  Viij (18)

The KLD is therefore the mean increase in log-likelihood, y/(T), per observation [41]. Denoting
quantities on the preferred channel by *, and using Eq 9 together with Wald’s identity [42, 43],
we can find the corresponding expectation of the accumulated evidence for the preferred hy-
pothesis at decision time T5),

0.(Tp))y, = (LG, (19)
Thus, using Eq 18

LT,
(s) = (20)
D(flf,)

We now turn to an empirical investigation of Eq 20. If the numerator is constant for varia-
tion in parameters or pdf, we expect a simple inverse relation between (s') and D(f:||f,). Fig 7a
and 7b show that this is indeed true for each of the pdf classes Q;y, Qry (4o = 33 ms), used in
Fig 5a and 5b respectively. The dashed lines are power law fits and are remarkably good: R* >
0.998, with exponents —0.866, —0.844, for Q}y, Qry respectively. These exponents are almost
-1, as predicted by Eq 20 and, it would therefore appear that KLD is a good predictor of ‘local’
variations in performance under a given parameter set. However, plotting (s*) against D(f-||f;)
for all 32 tests in Fig 5 indicates a more general result—see Fig 7c, where the log axes emphasise
the power law fit over the wide range of the variables. The fitted function is

(s7) = 4.594D(f.||f,) " (21)

and again, the fit is very good (R* = 0.997). Just as significantly, the exponent is very close to -1,
in which case the product of KLD and the decision sample is a constant A

(D) = A (22)

Some indication of why this might be true is supplied by Veeravalli and Baum [44] (see
Methods). This indicates that the ‘constant’ A depends only on the error rate e and number of
hypotheses N according to

(1- oW - 1)

(23)

A(e,N) = (1—E—N€_1) log

(natural logarithm, note that in Fig 5, e and N are fixed).

Further, Eq 22 also has theoretical plausibility grounded in the notion that KLD is a founda-
tion of information theory. In fact, in its original formulation, it was noted that the KLD gave
the mean information per observation for discrimination between two hypotheses about the
distribution leading to the sample [33]. This kind of interpretation leads to the KLD also being
referred to as an information gain. To emphasise this view we write D(f-||fo) = I(f+, fo). Then,
using this, and Eq 23, the empirically supported result in Eq 22 becomes

(s fo) = A(e,N) (24)
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Fig 7. Mean decision sample for s-MSPRT against KLD. The KLD in all cases is D(f«||fo) (see text). Panels a, b are for decision with the parameter sets
Qu, Qry, respectively, and both use N = 10. The data points are the open symbols and the dashed lines, best fit power laws (nonlinear least squares). In
panel ¢, the data points shown in blue symbols correspond to all the decision samples in Fig 5. The solid line is the best fit power law.
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The left hand side of Eq 24 is the product of the mean information gain per observation and
the expected number of observations to decision; that is the mean total information required
for the decision. Thus, Eq 24 states that, for a given N and ¢, the mean total information for a
decision is constant. In this view, the empirically determined constant A = 4.594 bits (Eq 21) is
the expected amount of information required to perform a decision among 10 alternatives,
with a 5% error rate, given uncertainty in the signals supplied. We now go on to use the result
on information conservation to show how the neural refractory period can facilitate decision
making and to explain two well known psychophysical phenomena.

The spike refractory period is a benefit, not an impediment, for decision making. In
real biological neurons, spikes occupy a finite width and there is a refractory period between
spikes which forces a lower limit on the ISI of not less than 1 ms. A popular choice for spike

PLOS ONE | DOI:10.1371/journal.pone.0124787  April 29, 2015

17/35



@' PLOS ‘ ONE

Probabilistic Decision Making with Spikes

interval generation is the Poisson process for which the ISIs are distributed according to an ex-
ponential form f,(x). However, f.(x) has its mode (maximum) at x = X;;,,qe = 0 thereby allowing
the unrealistic occurrence of arbitrarily small ISIs. Nevertheless, if the assumption of f,(x) dem-
onstrated a decision making procedure (e.g. s-MSPRT) with a performance advantage com-
pared to other distributions, it could be that real neurons work to ensure their ISI distributions
are as close to f(x) as possible. On the other hand, if assuming f.(x) gives inferior performance
compared to distributions for which x,,,04c > 0, the ostensible limitation in neural processing
that is the refractory period may be thought of, instead, as a enhancing feature, since it is this
mechanism that has forced a non-zero location of the mode.

To cast light on this issue, consider the results in Fig 4b. This shows a comparison of the
performance of s- and u-MSPRT assuming f, against a range of other distributions with x;,,04e
> 0 using parameter set Qry. The procedures assuming the exponential distribution clearly
give longer decision times compared to the others. This could be a peculiarity of the choice of
the means, but examination of Fig 5b shows otherwise; in all cases the rank ordering of perfor-
mance across distributions is maintained and the exponential performs worst. Similarly, the
gamma assuming (u-)s-MSPRT performs worst among its cohort under Qy, (Fig 5b) while as-
suming distributions with maximum density at infinitesimal values of x (Fig 3b). By Eq 17, the
KLD is determined by the ratio of the entirety of a pair of densities. When the modes of both
are greater than 0 they also tend to differ from one another, as it happens in general in neural
ISIs under preferred and null conditions, as well as in the rest of our densities under biological-
ly realistic parameters (Fig 3a, 3c and 3d). Then, the area under the log-ratio of such densities
and thus the KLD between them tend to increase which in turn, by Eq 24, improves the ex-
pected performance of a decision procedure. All this therefore supports the hypothesis that the
existence of a refractory period helps neural decision making by facilitating the contrast of the
ISI distributions of simultaneous spike trains.

Information conservation explains Hick’s Law. Hick’s law (sometimes known as the
Hick-Hyman law) describes the relation often observed between mean reaction time Tr and
the number of alternatives N in choice reaction time experiments with low error rates [35, 45,
46]. There are two slightly different variants

T, = alog(N+1) 25)
T, = T,+alog(N)

where the first form was that originally proposed by Hick and the second used in more recent
applications [47]. The second form is also more plausible as the term T can absorb irreducible
components of reaction time which originate in some minimum decision time, sensory pro-
cessing delay and motor execution. In fact, in tasks where the stimulus-response mapping is
too simple or over-learned (e.g. [48, 49]), the contribution of the logarithmic, N dependent fac-
tor appears to become undetectable [8].

The use of alog axis for N in Fig 4 emphasises the fit of the simulation data to laws of this
form (all linear regressions of both kinds in Eq 25 have residuals R* > 0.95). Our results are
therefore consistent with the psychophysics of choice experiments as expressed in Hick’s law.

Moreover, the information gain perspective is able to explain the general form of Hicks law.
Starting from Eq 23, and assuming e/(N — 1) to be negligible (due to small €)

(1—¢)

€

Q

(s fo)

(1—¢) (log + log(N — 1)>
= h(e)+(1—¢)log(N—1)

(26)
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with h(e) = (1 — €)log[(1 — €)/€]. For given neural distributions, I(f+, fo) is constant and so

(s5) =a+Dblog(N —1)

(27)

which is close to the second form of Hicks law (in terms of a decision sample) given in Eq 25.
Eq 27 is similar to the empirical expression for mean decision time of u-MSPRT obtained by
McMillen & Holmes [8]. Through a different method, our expression completes their intuition,
confirms the log(N — 1) dependence on N and demonstrates this form to generalize to s-
MSPRT; both expressions constitute concrete, experimentally testable predictions.
Further, we tested the ability of this theoretical result to quantitatively explain our data, by
calculating I(f-, f) for the distribution pairs used in Fig 4a, and substituted these in Eq 26; the
results, together with the original simulation data are shown in Fig 8a There is good agreement

with the empirical results.
Information conservation explains Piéron’s Law. There is another widely observed, law-
ful relationship in psychophysical experiments which has a long history. Piéron’s law [36, 50]
is a psychophysical regularity where the simple reaction time to the detection of stimuli across
a range of sensory modalities has been found to depend through a power law on the intensity
of the stimulus, u. It is also a characteristic of low (< 5%) error rate circumstances [51, 52].
Piéron’s law has also been extended to the effect of stimulus intensity on choice reaction times
(CRTs) [51, 53, 54] and to the effect of stimulus separability on CRTs [55]. In terms of the in-
fluence of stimulus intensity u on reaction time T, Piéron’s law may be written as

Ty =T, +au, b>0

(28)

Just as in Eq 25, the term T, may include components of reaction time which originate in mini-
mum decision time, peripheral sensory delays and motor execution; we are interested only in

the main decision making component au™".

b
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To make the link between this component of Piéron’s law and Eq 24 we need a linking hy-
pothesis which describes how neural responses, as firing rates, depend on u; that is we require
firing rate r as a function of . We base this on the study by Muniak et al on firing rates and tac-
tile sensation [56]. Here, the task is one of stimulus detection and, while we are interested pri-
marily in choices tasks, we take the kind of linking hypothesis developed in that study as
indicative of a more general one. Further, we modified the relation 7() used by Muniak et al
[56] to include an explicit baseline firing rate r(ug), where uy is the sensory threshold.

u
r(u) = alog -+ r(uy) (29)
0
The use of a baseline ensures that we are comparing the firing in the preferred channel with a
non-zero null rate; that is we assume pg = 1/r(up) for a fixed fo. Similarly, we assume the pdf of
ISTs in the preferred channel, f+(u), is parameterised by its mean IST y* (1) = 1/r(u).
Then, starting from the decision time relation, T;,(u) = (s*)*(u), and using the expression

N

for (s*) from Eq 24, we have
A(e,N)

{oc log u% + r(ue)} D(f.(w)|[fy)

TD(“) - (30)

To test the validity of Eq 30 we ran a ‘virtual experiment’, obtaining simulated data points
from Eq 30 with the following parameterisation, chosen to give firing rates comparable to
those in the rest of this article: & = 10, (ug) = 10, ug =1, 7 < u < 100; f-, fo were lognormal
with, 0y = 200 ms, ¢* = 65 ms; the error rate € = 0.05, and N = 2. Fig 8b shows the resulting the-
oretical datapoints (dark blue symbols) and a best fit line of the form Tr(u) = au”?. The fit is
good, and so it is possible for virtual experiments based on Eq 30—derived in turn from Eq 24
—to be described by a Piéron-like law. We infer that Eq 24 with a linking relation like Eq 29
could account for Piéron’s law in vivo.

Discussion

We have shown how arbitrary renewal spike trains may be subject to general Bayes-based se-
quential analysis and, when this treatment specialises to the use of log-probability ratios, we ob-
tain an instance of the MSPRT. In this spiking MSPRT (s-MSPRT), the data are ISIs, and the
sampling times are given by the asynchronous spike arrival times on several parallel channels.
The corollary of this is that the posterior, for any hypothesis, is updated at spike arrivals on
any channel.

Our analysis of ISI data for neurons involved in a decision task showed that this is not well
approximated by a Gaussian. Indeed there is a conceptual problem that the Gaussian admits
negative ISIs which is infeasible. On application of s-MSPRT to the most oft-used, realistic ISI
distribution -the exponential yielding ‘Poisson spikes’- the accumulated evidence, y,(T), up to
time T, is shown to be approximately equal to the scaled count of spikes to T (up to a scaling
factor). This grounds previous work by Zhang and Bogacz (2010) [17] whose starting point
was the assumption that the evidence in this case was given by a (scaled) spike-count. Our re-
sult also modifies the result of [17] showing that, while providing the main source of evidence,
for an exponential-based s-MSPRT the spike count needs to be augmented by an additional
‘correction’ (6,(T), in Eq 12).

Our data analysis also highlighted a series of candidate distributions which fitted the data
better than the exponential (gamma, inverse gamma, lognormal, inverse Gaussian). The
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accumulated evidence for these was shown to be a spike count with additional terms which, in
general, cannot be neglected.

We showed that s-MSPRT is comparable with a uniform sampling counterpart—u-MSPRT
—if the sampling rate of the latter is set to the mean ISI on the preferred channel, y*. However,
in making this comparison, we argued that performance is best measured in most cases using
the decision sample rather than decision time per se as the latter requires careful interpretation
(see below). The decision samples for s- and u-MSPRT are very close and there is a heuristic ar-
gument to be made why this might be so. Nevertheless, s-MSPRT can achieve the same perfor-
mance and error rate with fewer observations than u-MSPRT because it doesn’t have to
accommodate as many observations from the non-preferred (‘null’) channels; thence, s-
MSPRT is more observation efficient than u-MSPRT. As with many decision mechanisms (e.g
[8, 10,57, 58]), both s-MSPRT and u-MSPRT showed a Hick’s law relation between decision
sample and number of alternatives.

A key result was that there is no universally optimal distribution for making a decision. The
best performance varies with the underlying statistics of the data. However, a decision mecha-
nism assuming the exponential distribution shows, in general, an inferior performance com-
pared to when assuming other distributions with mode at non-zero ISI. Thus, the spiking
refractory period can be viewed as positive feature which aids decision making mechanisms,
rather than a drawback which hinders attainment of optimal performance therein.

In most of our simulations, the s-MPSRT was configured to give the best performance be-
cause the hypothetical distributions (i.e. those tested for) were matched to those of the data.
That is, the decision mechanism was given ‘privileged’ information about the data. However,
this will not normally be the case and we showed a case where this assumption is violated and
there is no catastrophic decline in performance.

We showed empirically in our model that the mean total information gain required to make
a decision was constant, over a wide range of distributions and parameters. This was supported
by some analytic results and so we conjecture that it may be a quite general result. While this
result may not sound surprising in isolation, it is remarkable that it emerges empirically in
such a precise way from the examination of a variety of conditions with different distributions
and parameterisations. This result allowed us to provide a theoretical rationale for Hick’s law
and Piéron’s law and a concrete, experimentally testable expression for mean decision time as a
function of sensory information content, error rate and number of choices (Eq 24).

Interpretation of s-MSPRT and perceptual decision times

The grounding of a probabilistic decision mechanism in neural firing statistics is clearly a con-
ceptual advantage, since neural decision mechanisms must ultimately make use of spikes in
some way. However, we are confronted with interpretational issues which may not arise if we
are working at a more abstract level of description, in which ‘evidence’ and ‘sampling times’
may be chosen to fit behavioural reaction times. First, assuming the brain performs decisions
using a mechanism akin to s-MSPRT, we suppose it operates in neural systems which do not
include sensory pre-processing (through early visual cortex, for example) or delivery of motor
output (through motor cortex to spinal cord or brainstem). In reality, most probably these
three stages are not sequential but overlap in time [59]; indeed, decision making may carry on
during motor execution resulting in observable ‘changes of mind’ [60]. Nevertheless it is useful
to conceive of these three contributions as separate processes as we are interested in the
central, decision making stage, which will be observable electrophysiologically in studies like
(30, 61-67].
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Given this demarcation of processing, there is a wide range of possible neural decision times
discernible in perceptual tasks. For example, using high contrast, easily distinguished stimuli in
a paradigm designed specifically to tease out the perceptual decision making process, Stanford
et al [68] showed that this could occur in as little as 30 ms for a 2-alternative task. However, for
the relatively hard to distinguish stimuli in the random dot motion task (RDMT) with 2-4 al-
ternatives, neural integration times can be several hundred ms [69, 70].

The statistics of the neural data we used here were obtained in a RDMT with stimulus co-
herence of 12.8% [30] (see Methods). In the RDMT-based study of Churchland et al (2008)
[69], with stimulus coherence of 12.8%, the mean reaction times for N = 2 and N = 4 were 535
ms and 618 ms respectively. Using estimates of sensory and motor delays of 200-300 ms [60,
71] we would expect corresponding decision times of 285 + 50ms, and 368 + 50ms; that is of
the order of 10> ms. A full behavioural comparison with studies like this is out of the scope of
the present article, however, if we convert the sampling times for small N in Fig 4a to decision
times using Eq 15, we obtain decision times of the same order as this for several of the distribu-
tions, including the lognormal which gave the best fit to the data in [30, 31].

Thus far, we have predominantly used a simple version of s-MSPRT based on a single neural
input stream on each channel (Fig 1b). In general, however, the theory (leading to Eq 10) is
neutral regarding the origin of the spikes in each channel—they may derive from a single or
multiple neural sources (Fig 1a). We now consider two possibilities for combining the informa-
tion across them. In the first, we assume there is some mechanism of spike superposition to
pool spikes across neurons into a unitary stream before being subject to s-MSPRT. In this case,
for large numbers (~ 100) of contributing streams with arbitrary distributions, the resulting
superposition of spike trains has a distribution extremely close to the exponential (albeit with
some subtleties of its power spectrum) [72]. If u*, py are the mean ISIs within each input stream
for preferred and null channels respectively, then the effective means of the ISIs in the super-
posed streams in each channel for M inputs per channel are y*/M, po/ M. However, assuming a
good approximation to the exponential distribution, the gain, g = log 4, //,, remains un-
changed, and so the accumulated evidence y(T) is still a spike count which simply scales with
M. This will render shorter decision times and lower error rates, as more information
is available.

The second approach works by directly pooling observations over M inputs. It is obtained
by directly extending the formalism leading to s-MSPRT to include more inputs than hypothe-
ses (C > N). Thus, let x[(j) be the ISI from the " spike train of channel set k at time tfq, and let

T; = maxj{t{;.r : tf{, < T}, then it is straightforward to show that the analogue of Eq 9 is

PO A C 1))

Mechanistically, since the order of summation can be reversed, the operations of integrating
likelihood ratio terms over time within a stream, and summing across contributory streams,
can be conducted in either order. Since the individual ISI statistics are preserved in each
stream, the individual L/ () are distributed in the same way as their single stream (M = 1) coun-
terparts. Using a slight abuse of the original terminology we refer to this method as evidence
oversampling, as it is equivalent to a version of the original s-MSPRT which samples M-times
faster than the rate given by the nominal ISI sampling times. We would therefore expect its de-
cision times to scale, on average, as 1/M.
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For large M, both spike superposition and evidence oversampling may comprise dense cod-
ing implementations (that is, actively engage a large fraction of the relevant neural population).
Sparse coding ones could be devised by adding: (a) input spike trains that are weakly- or non-
informative for the decision and (b) corresponding distributions in the likelihood functions
which make weak contributions to them. All approaches in this study assume that spikes, and
functions of spike statistics like L (j), are independent over different inputs. This is almost cer-
tainly not the case. Studying the net effect of correlations on decision making remains an inter-
esting problem since positive correlations among spike trains [73, 74] may be detrimental for
discriminability, but negative serial ISI correlations may reduce the variability of the signal [75]
and help on information transfer [76]. However, our simple independent-input cases, provide
a starting point for future models of pooling evidence in these ways. Whatever the details of
any ensuing models, the range of single neuron ISI statistics which can yield physiologically
plausible decision times will be extended considerably by allowing combination or pooling
over many inputs (M > 1).

Optimality or sufficiency?

It is often assumed that the brain implements nearly-optimal decision making mechanisms.
For N =2, u-MSPRT collapses [29] to Wald’s sequential probability ratio test [77]. u-MSPRT is
thence optimal in the sense that it minimizes the mean sample size (and decision time) to
make decisions at any given error rate; for N > 2, it is asymptotically optimal as it minimizes it
for vanishingly small error rates [10, 29].

Beck et al (2012) [32] have recently shown that decision mechanisms will, in general, be im-
plemented in a fundamentally suboptimal way. The main reason they give for this is that the
brain does not usually have access to the statistical structure of the task. This was precisely the
issue addressed in the Results dealing with robustness. There, the true statistics of the stimuli
were supplied by an inverse gamma distribution, but we used incorrect (non-inverse-gamma)
hypothetical pdfs for the computation of probability ratios. This mismatch of hypothetical and
real, underlying data distributions is inevitable; the real data will never comply exactly with an
analytically tractable pdf. Such a mismatch may also occur when the response distribution of
sensory neurons changes by learning or adaptation (as in [78-81]) and stops approximating
‘previously trained” hypothetical distributions (although this seems not to happen in MT over
RDMT training [82]).

The results in our experiment were that low decision samples were maintained and were, in
all cases, lower than those of other mechanisms assuming non-inverse-gamma pdfs used in
conjunction with their own, correctly matched data. In this case, therefore a deterministically
sub-optimal decision mechanism (in the sense of Beck et al) suffices, because its potentially op-
timised variant (here with inverse gamma data matching the test-pdf) is better than
its counterparts.

There is a related argument here which starts with the data. The dataset we used to establish
the parameters Q- was best fit by the lognormal, but MSPRT assuming this distribution does
not have the best performance; this place is occupied by that assuming the inverse gamma.
Thus, if the best performance (given the set of pdfs we used) requires data with an inverse
gamma distribution (and ideally, inverse gamma hypothetical pdfs) why is the data not distrib-
uted in this way? We argue that, in general, neural codes will putatively result from a compro-
mise in achieving several goals, including maximising discriminability of firing patterns, as
discussed here, and expressing an efficient transformation of their inputs based on perceptual
information [83-85].
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Neural substrates for s-MSPRT

While the s-MSPRT is grounded in the neural communication medium of action potentials
(spikes) we have yet to address the way in which specific computations involved in mechanisms
like s-MSPRT may be performed. Consider first the complete Bayes-based expression in Eq 4.
This apparently complex form is subject to a mapping onto the basal ganglia—a subcortical
group of interconnected nuclei involved in mediating action selection. Thus, Bogacz and Gur-
ney (2007) [10] have shown that (at least simplified forms of) the basal ganglia architecture
and cortex could implement Eq 4 when applied to a u-MSPRT, using inputs of Gaussian form.
While the original MSPRT was not confined to Gaussian inputs [29], its expression in the form
given in Eq 4 is essential for the mapping to basal ganglia-based architectures. Lepora and Gur-
ney [19] have since extended this mapping to much wider range of decision processes (with ar-
bitrary type, and numbers of, pdfs). Indeed there are several possible mappings from this form
to basal ganglia and associated circuitry [10, 19, 86]. One possible substrate for a process like
the s-MSPRT as a whole therefore, is the basal ganglia and its afferent and target structures.

In all of the anatomical mappings of MSPRT to basal ganglia, the cortex is the locus of the
neural representation of integrated evidence y(T). Moreover, it has often been assumed that
the pdfs delivering input to these integrators are Gaussian (although this is not necessary [17,
19,29, 37-39, 87]). The integration of Gaussian signals is straightforward if all Gaussian inputs
have the same variance; it is simply the product of a gain and a term linear in the (abstract) sig-
nal input L,(j) = x,(j) [7, 10, 16]. However, the forms for y,(T) resulting from the distributions
we consider here can be complex (see Table 1). We now offer some heuristic arguments to sug-
gest how the accumulated evidence y(T) might be computed in cortex. In order to ease nota-
tion, in what follows we drop indices on x;(j) and represent an ISI generically by x.

One term which occurs several times in defining the accumulated evidence is log x. Now, if
r is the instantaneous firing rate with r = 1/x, then log x = —log r. The transfer function, from
current z to firing rate w, of the simple leaky integrate and fire neuron (LIF) can, under the cor-
rect circumstances, approximate the form w = log(z) [88]. Now suppose that the input spikes
with rate r give, after low-pass filtering by the membrane, a roughly constant current z. This
will be proportional to r, as z = cr, and so we have w = log(cr) = ¢’ + log(r), with ¢’ = log(c). The
constant terms like ¢ may be absorbed into the term B(T) in Eq 8. Thus if  was an input to an
inhibitory LIF-like neuron, the neuron’s output could form an additive input —log(r) to a sec-
ond neural stage which combines the required terms.

Now consider the computation of terms like (log x)? which occur with the use of the lognor-
mal distribution. Recall from the narrative immediately following Eq 11, that the sum of ISIs to
decision time for the i channel is just T}, and that this is approximately T for all i. Further,
such constant terms makes no overall contribution to the outcome. Thus, a term linear in x,
which gives rise to such a sum of ISIs, will have no effect on the decision time (within the ap-
proximation T = T;). We can, therefore, always add a term linear in x to any component with
negligible effect on the decision outcome. Thus, we can replace the squared log term by (log
x)*~a® x with constant a. Using x = 1/r, this becomes (—log r + a/+/r)(—log r — a/+/r). Each
bracket contains a term in —log r which we can compute using the procedure described above.
The term a/+/r involves division by /r and could be achieved by shunting inhibition acting on
a tonic firing rate a [89-91]. The multiplication of the brackets is also plausible using active
dendritic processing [92, 93].

Finally, terms linear in x can (as noted previously) be ignored, and terms like 1/x correspond
to additive input based on firing rate—often the default assumption for neural processing. In
sum, all the computations required for L,(j) in Table 1 are available to neural machinery at the
synaptic and circuit levels.
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From ISls to behaviour

The s-MSPRT provides a direct link from the information in spike train ISIs to ‘neural decision
times’ which are a component of an overall behavioural decision time or reaction time. Further
this link is strengthened by the hypothesis, supported in our simulation work, that the mean
total information gain required to make a decision is constant (for a given error rate and num-
ber of alternatives). This was a key to providing explanations for Hick’s and Piéron’s laws and
provides a direct link from neural signalling to psychophysical observation. We argue that we
have laid the foundations for a programme of work in which neural recordings and spike
trains’ statistical analysis can be made the basis of predictions about behaviour in multi-alter-
native choice tasks.

Methods
Choosing probability distributions to model spike data

Fig 9 shows the distribution of ISIs (grey histogram) in a macaque MT neuron, from the study
by Britten et al [30, 31] using the RDMT. In this task, the monkey is typically shown two eccen-
tric targets and then a kinematogram composed of dots in which a given percentage of them
(the so-called ‘coherence’) move towards one of the targets, while the others move randomly.
The animal is rewarded if it saccades towards this target from a gaze fixation point [30, 94].
The RDMT is therefore a perceptual decision making task of the kind we envisage being solved
by a mechanism like the one proposed (s-MSPRT).

Each panel of Fig 9 shows the best fit (using the method of moments) of a pdf to the experi-
mental data in the histogram. Data is assumed to come from single neurons and thus to be
drawn from one such pdf; the implications for multiple neurons are considered further in the
Discussion. All the pdfs are from the exponential family. The choice of putative distributions
had the following rationale. The Gaussian, while an oft-used choice in more abstract (e.g. ma-
chine learning) approaches, cannot, in principle, be a genuine candidate for ISIs as there will al-
ways be a negative tail to the distribution which is physically implausible (there is no such
thing as a ‘negative ISI’). However, it might be argued that this tail is, in most realistic cases,
very small and that it can be neglected. We tested this possibility with real data sets (including
that shown in Fig 9). The exponential distribution of ISIs leads to spike trains following a Pois-
son process—another popular choice for spike train analysis. This time, while the distribution
satisfies the positivity requirement, it does not satisfy the requirement for excluding arbitrarily
small ISIs due to a neural refractory period. In order to achieve this the distribution must have
positive mode as well as lying wholly in the positive half-plane. In addition, we require that the
pdfis, in general, positively skewed which matches the general shape observed in ISI data.
These requirements are satisfied by suitable parameterisations of the other four candidate dis-
tributions: lognormal, gamma, inverse-Gaussian and inverse gamma.

The inverse Gaussian and lognormal appear to be the best fit to the single data set in Fig 9.
In contrast, note the large (implied) negative tail of the Gaussian, which could certainly not be
neglected in using it to sample from for a decision process. However, aside from these qualita-
tive observations, we sought to quantify the fitting process by repeating it with several data sets,
and using two ‘goodness of fit’ metrics, the Kolmogorov-Smirnov and Anderson-Darling (see
Fig 10) [95]. These tests are among the most powerful available for continuous and completely
specified distributions [96]. The datasets are taken mainly from the Britten et al study [30] and
are the first five described in Table 2. In order to avoid the transient due to stimulus onset, as
advised by Bair [21] working with the same data set, we discarded the first 336 ms of all used
spike trains. There is one other data set comprising recordings in the MT/middle-superior-

PLOS ONE | DOI:10.1371/journal.pone.0124787  April 29, 2015 25/35



@' PLOS ‘ ONE

Probabilistic Decision Making with Spikes

O

Gaussian

probability density

o

gamma inv gamma

O

inv Gauss

probability density

lognormal exponential

0 |
0 25
IS (ms)

50

25 50 0 25 50
ISI (ms) ISI (ms)

Fig 9. Fitting pdfs to an ISI histogram. The ISIs in the grey histogram (identical in each panel) were recorded by [31] from the MT neuron with tag e093
(Table 2). The few ISIs lying farther than four standard deviations beyond the mean were not plotted for clarity. Overlaid as a solid blue line in each panel is
the best-fit pdf from a set of theoretical distributions: Gaussian, gamma, inverse gamma, inverse Gaussian, lognormal and exponential

doi:10.1371/journal.pone.0124787.9009

temporal area, made during a paradigm using visual motion cues to initiate arm movements
[27].

Fitting results are in Fig 10, the smaller the statistic the better the fit. It is clear that the
Gaussian is the worst fit to these data. Indeed, the scale on the Anderson-Darling plot is loga-
rithmic largely to accommodate the Gaussian fits which have a mean of 62.5 compared to the
next worst fit (the gamma) whose mean is 20.4. The exponential and gamma distribution had
intermediate levels of fit, but were chosen for further study because of the useful comparison to
be made with the oft-used exponential (giving Poisson statistics), and the fact that the gamma
simplifies to the exponential when its mean and standard deviation are equal. The last three
distributions (inverse gamma, lognormal and inverse-Gaussian) all have similar mean
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Fig 10. Goodness of fit of selected pdfs to ISI data. The black closed circles show the goodness of fit statistics for each of the first five data sets in Table 2.
The red closed squares are for the data set from [27]. The mean for all six data sets is shown by the large open circles which also has a line plot; the number
of significant fits at a level of 0.05 is noted per pdf next to such circles. Panels a and b are for the Kolomogorov-Smirnov, and Anderson-Darling tests
respectively (note log y-axis in the latter). The ordering of the results from left to right preserves rank order of the mean statistic and is the same for both tests.

doi:10.1371/journal.pone.0124787.9g010

statistics, and are the best fits of all; in fact, it is remarkable that in a few instances (numbers
next to the average-statistic symbols) the inverse gamma and lognormal pdfs significantly fitted
the experimental data. In sum, we selected the gamma, inverse gamma, lognormal, inverse-
Gaussian and exponential distributions for further study.

Parameterising the distributions

For each selection of distribution we have to set four parameters: the mean y* and standard de-
viation ¢* of the data and test distributions f- of the preferred channel or hypothesis (respec-
tively), and their null counterparts pq, 0y for fo. We used two base-parameter sets, from which
others were derived, The first base set we dub the independent variance parameter set, Qyy, as
both means and variances were independently fitted to one of the data sets from the RDMT
study by Britten et al [30, 31]. Thus, y*, 0* were fitted to the responses of neuron w144 when
this was stimulated at coherence 12.8% with dots moving in its preferred direction (last row in
Table 2). This neuron was singled out for being ‘typical’ of its parent population as its statistics
closely matched a mean of the ISIs of over 40 MT neurons from [31]. The value of p, oy were
obtained by fitting to the same neuron when stimulated at the same coherence but with motion
in the null (anti-preferred) direction (sixth row in Table 2). This gave

Q {w* =16.5, o =215, u,=33, o,=475}, all units ms (32)

v
The distributions resulting from using €y, are shown in Fig 3a-3d. Other parameter sets (such
as those in Fig 5a) are derived from Q;y by changing u, but keeping po — 4™ constant, and

keeping the standard deviations of Q. We will refer to these sets as Q (i)
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Table 2. Data sets from [31] used to generate ISl distributions.

Neuron tag coherence direction number of trials number of ISIs
j200 99.9% 1 7 1138

j200 6.4% 0 16 1030

e093* 25.6% 0 7 1044

e093 12.8% 1 6 1042

w059 51.2% 1 7 341

wi44 12.8% 0 30 1360

wi44 12.8% 1 30 2790

The Neuron tag is that used in the original data repository; the asterisk denotes the data used for the histogram in Fig 9. ‘Coherence’ is the percentage of
the dots moving coherently in the random dot stimulus. ‘Direction’ (0 or 1) indicates overall stimulus direction: direction ‘1’ is the preferred direction of the
neuron (across its entire tuning curve) while direction ‘0’ is its opposite. ‘Number of ISIs’ is the size of our sample, resulting from pooling data across the
‘number of trials’ indicated in the adjacent column.

doi:10.1371/journal.pone.0124787.1002

The exponential cannot be described by a set like Q;y, as it only has a single parameter A = 1/
y. In order to make comparisons with the exponential distribution, we therefore defined anoth-
er fixed variance base-parameter set Qpy,

Q., = {w=165 ¢ =165 pu,=33, 0¢,=33}, all units ms (33)

Other parameter sets (such as those in Fig 5b) are obtained by changing y,, but keeping po —
@* constant, and varying the standard deviations appropriately in order to maintain compati-

bility with the exponential. We refer to these sets as Q. (1,)-

Bounds on mean total information gain

Here, we give a plausibility argument for the empirical result in Eq 22. It is based on Lemma 2
in [44] which is framed in a more general situation where each hypothesis corresponds to a
probability distribution f;. The Lemma makes uses the error probabilities

o, , = P(decide H, is true|H, is true) (34)

and states that, the expected number of observations (s) to decision that any hypothesis k is
true (with respect to a reference j), is given by

< k_D(f;(Hf Z(xkllog (35)

In our situation, if € is the error rate of the decision process,

w,=1—¢ o0 = j#1 (36)
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so the sum on the right hand side of Eq 35 has only two non-zero terms

e, (1-gWN-1), « 6
> olog 2 = (1=l N1 oW
] (1—(N=1) (37)
- (1—6— _1)log
= &(eN)

Then, using our notation for the two distributions and for the expected number of observations
to decision, Eq 35 for the preferred channel becomes

&N
)= BT

We now compare this result with that in Eq 20. Being an inequality, it might appear at first
that Eq 38 is a weaker result than the equality in Eq 20. However, Eq 38 it is a strong result in

(38)

so far as the numerator is explicitly independent of the distributions or their parameterisation.
This makes it plausible that, in Eq 20, (y,(T})), is relatively constant. We therefore identify &
with A in Eq 22, so that A is now a function of e and N with functional form given in Eq 37.
Further, using the values of N and e in our simulations, £(0.05,10) = 4.856 which is only 5.7%
different from the empirical value of 4.594 for the constant A in Eq 22. Taking these observa-
tions together, we conclude that, at least over the values of N and € comparable with those used
here, Eq 22 and Eq 24 have a plausible basis.

A heuristic analysis of the relation between s-MSPRT and u-MSPRT

Returning to the analysis of R(T), let (yi(T)), (y;(T)) be the expected value of the evidence on
a null channel for u- and s-MSPRT, respectively. Then, using the arguments above, (y;(T)) is
formed from more observations than (y}(T)), and their contributions are likely to be negative.
Thus, (y5(T)) < (y;(T)). Taking this result together with observation matching on the pre-
ferred hypothesis it is plausible that

{exp y;(T)) < (exp (1)), (exp y:(T)) = (exp yi(T)) (39)

Let (R,(T)), (Ry(T)) be the expected values of the normalisation terms in u- and s-MSPRT,
where

(R,(T)) = (exp y!(T)) + (N = 1)(exp y3(T)), (R(T)) = (exp yi(T)) + (N — 1)(exp y,(T)) (40)

Then using Eq 39, (R(T)) < (R(T)). The expected value of the posterior P+(T) for u-MSPRT
will therefore be larger at T than that for s-MSPRT. We conclude that, in order to preserve the
observation count in the preferred channel before crossing threshold, we would expect the
threshold 0, for u-MSPRT to be greater than that for s-MSPRT, 0;. This result carries over to
any monotonic function of the thresholds such as the exponential.

Fig 11 shows that this condition on the thresholds is indeed met. Fig 11a and 11b show exp
(6,) < exp(6,) consistently across all numbers of choices for two examples (lognormal and in-
verse Gaussian based s-MSPRT) for parameter set Q. (The lognormal is more typical with lit-
tle varjation with the number of alternatives). Similar clear differences A, 0 = exp(0,) — exp(6;)
exist for all distributions across both parameter sets Qy, Q—see Fig 11c and 11d. Notice that
the gamma distribution in Fig 11c and the exponential distribution in Fig 11d have the smallest
A, 81n their groups (and in each case, A, 0 is significantly less than the next smallest one at
p < 0.001, two-sided t-test). This may account for the fact that decision times for the gamma
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Fig 11. Decision thresholds and their difference between s-MSPRT and u-MSPRT. To ease visualisation, all panels show the exponential of the
thresholds; ¢s = exp(6s) ¢, = exp(6,) for s- and u-MSPRT respectively. This yields positive values pertaining to the posterior (rather than negative values for
the log-posterior). Panels a and b, respectively, show the lognormal and inverse Gaussian cases in Fig 4a for the parameter set Q.. The red lines and
symbols are for ¢s, the black lines and symbols for ¢,,.. In panel c, the box plot labelled ‘lognormal’ shows the median and quartiles (box lines), mean (cross)
and one standard deviation of the differences ¢, — ¢s in panels a and b. Other bars show similar quantities for the test distributions of the other MSPRT
instantiations used to form Fig 4a. Panel d is similar to panel c, except it pertains to differences in (exponential) thresholds for results in Fig 4b, with the
parameter set Qf,.

doi:10.1371/journal.pone.0124787.g011
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distribution (Fig 4a) and the exponential distribution (Fig 4b) fail to achieve the criterion of
equal decision sample as well as the others.
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