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Modelling of Chemical Process Plant

2.1 Introduction

A chemical plant involves the following basic operations, or stages:

(a) raw-material handling and preparation

(b) the chemical reaction itself

“and (c) the separation of the various saleable products from one another
and from the waste products.

In practice, however, the three operations may not take place separately.
The rate of a chemical reaction, for instance, may be determined not so much
by chemical kinetics as by the mechanical process of mixing the reagents
(the reacting components) within the reactor if these are not freely
miscible. Fluid and solid mechanics may therefore dominate even the chemi-
cal reaction stage (b) of production in some instances. In other situations,
thermodynamics may play the dominant role in the reactor since the velocity
of chemical reaction is often highly temperature-dependent and furthermore,
large quantities of heat can be generated or absorbed in the course of the
reaction. Thermal considerations are obviously of paramount importance in
such cases, Conversely, the separation stage (c), although frequently
involving the thermodynamic process of distillation or perhaps the fluid
mechanical process of solvent extraction may nevertheless be affected by
the continuing reaction of unused reagents within the separation vessel
after these have left the reactor proper.

As a final example of the difficulty of categorising real life opera-
tions we sﬁould also note that even the preparation stage (a) may also
involve more than just the grading and premixing of reagents: as in the case of

preparing sinter feeds for the blast furnace where mechanical
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transportation and combustion take place simultaneously.

The isolation of three sequential stages in chemical production is
therefore only an idealising concept. Likewise the basic physical and
chemical phenomena (or processes) invélved, viz.

(i) mass transfer
(ii) *heat transfer
and (iii) chemical change
do mot take place completely separately and cannot in general be associated
uniquely with any of the three production stages (a), (b) or (c). It is
neyertheless essential to studyidealised systems dominated by single
isolated processes to acquire insight into their behaviour before proceeding
to large scale simulation or pilot plant studies of systems involving all
three phenomena operating in parallel because of the risk of error rom
auman, numerical or instrumentation sources) and the often unmanageable
number of degrees of freedom otherwise presented by full-scale process
simulation.

This chapter therefore sets out to show how idealised unit processes
might be modelled analytically so that expected approximate solutions may
be generated against which full-scale system simulations can be tested.

Setting up the process equations

Process equations are formulated from fairly elementary concepts of physi-

tal and chemiecal dynamic balance and equilibrium. Three system examples
are considered here each dominated by a different process from the list

(i), (ii), (iii) (above). We consider first an elementary, liquid/liquid
head exchanger of the counterflow type.

Heat—exchanger example

The system is illustrated diagramatically in Fig. 2.1. The two liquids
flow in opposite directions parallel to one another at mass rates Wl and WZ

and separated by a heat-conducting interface which will be assumed to have
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negligible thermal capacitance or resistance. The outer shell is
assumed to be perfectly insulating. For modelling purposes the process
is first imagined to be subdivided into N cells each of length 6h' and all 2
identical except that cells 1 and N have atypical conditions pertaining at
their left—and right-hand boundaries respectively. (These are the process
boundary conditions to be discussed later). Within each cell conditionms
are assumed to be completely homogeneous either side the interface so that
the temperatures of the two fluids 1 and 2 within cell n may be represanted
by the single variables el(n,t) and Bz(n,t) respectively. The functions
Bl(h}t) and Gz(h;t), where h' denotes a general distance from the left-—hand
process boundary, are therefore approximated initially by spatially discrete-
funections el(n,t) and ez(n,t), n=1,2...N, which undergo step-changes at
each cell boundary. This is an example of the use of the "stirred-tank
concept" employed in process modelling : each cell being thought of as a
digcrete tank the contents of which are thoroughly mixed.

Tﬁere being no chemical change in this process, it is now necessary
merely to draw up an inventbry of the material and heat entering and leaving
each cell (or tank) compartment, any imbalance between inflow and outflow
being equated to a rate of build-~up of material or heat within the
compartment. The material balance is trivial in this example (if the
fluids are assumed to be incompressible, of constant density and completely
filling the cells at all times) yielding merely the result that Wl and W2
are functions of time only and invariant in h'. ‘The heat balance for the
system is more complicated however and, for fluids 1 and 2 in cell n, may

be written

]

s Al Sh' d Sl(n,t)/dt wlsl {Gl(n-l,t) - 91
W,S, {8,(n+1,t) —‘Sé(n,t)} - 8q(n,t)

P (n,t)} + &4 (n,t)

1
52 Py A2 §h' d Gz(n,t)/dt

where the suffixes apply to the associated fluids and compartments, S
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denotes specific heat, p fluid density and A the cross—sectional area of
the flow passage. §q(n,t) is the rate of heat flow across the interface
from liquid 2 to liquid 1 and is proportionally dependent upon the tem—
perature difference between the liquids and the interface wall and also
upon the interface areaw dSh' (where d is the interface tube diameted.

The major resistance to heat flow is provided by thin boundary layers of
near—stationary liquid, lining both sides of the interface, the thicknesses
of which are found to decrease with flow-rate. In fact it is found that

; . : i =
this resistance is proportional to W 8 so that:

5 0.8 B "

8q(n,t) = k1 T d Wl {Gi(n,t) el(n,t)} sh
0.8 ‘ ’

= k2 md W2 {Gé(n,t) - Gi(n,t)} Sh'

where k, and k, are constant coefficients of heat transfer 6, denotes
interface temperature, and may be eliminated from the two equations above
to give

-k, k

do! e o Y
m.d (W, W,) ""{8,(n,t) - 6, (n,t)}sH
Sg(a,t) = Y=g 12 2 1 :

B 0.8
klw? + kolly

Given the constant parameters of the system and input functions

(2.2)

W, (t), Wé(t),el(o;t) and BZ(N,t) equation 2.1 and 2.2 are suitably
expressed for computer simulation of the system provided a value for N
can be specified for solutions of the desired accuracy. For analytical
solution however we require a much more compact model representation.

Now the true temperature functions will be continuous in time and space
between the boundaries (at h' = 0 and L' in this case) and will therefore

be governed by Taylor series so that

.30, (n,t) t 326 (n,t)(GHUZ ¢ higher powers of éh']
il Sh ik 1

Bl(n,t) - 81(n~1,t) = s g e

‘ (3n")
and 9 2

Bez(n,t) ;0 ez(n,t)@h')
B,{n+l,t) = 8,(n,t) = = §h' +2 e + higher powers of ¢6h'
2 2 oh Z (ah')2 J

(2.3)




and as Sh'is made progressively smaller for a given length L' of process,
i.e. as N, (= L'/¢h') is made progressively larger, the approximate discrete
temperature functions governed by (2.1) and the continuous functions governed

by (2.3) will tend to equality so that we are justified in substituting (2.3)

in (2.1) if 6HW' + 0, yielding: \
; - o 30,8
e 8By .. 5 904 i kky md (WyW))" (8, = 8y)
1P1%1 Fe 171 AR 7 0.8 0.8
Sy V)
and ;a0 hlow I (2.4)
0.8
iy o g s o Wiallacor oo AN T
2faty T% 2°2 3R" ;0.8 .y 0.8
1% 2% /

Later in the chapter we shall consider further a symmetrically built

and operated process, i.e. one in which A1 = A2 = A, k1= k2 =k, S1 =85, =8,

Py = Ps operated under the nominal working condition
Wl = W2 =W (2.5)

under which circumstances (2.4) simplifies to the normalised form

fl

361/81 —Bﬁllah + 6, - 61

2

~0_+0
20, /90 ~ 6, + 6,

(2.6.)

]

30 /3
o101

where T and h denote normalised time and distance, given by

T t/T
b (2.7)

h

WA
where =
2S pAf(kmd wp's)

n
(2.8)
28 wo‘zl(k T d)

T

]

L
n

It is interesting to note that base time T is the time for either fluid
to travel base distance L that in turn has an important physical signi-

ficance which will become apparent later.




2.2.2

Binary distillation column

(a) Packed type

Distillation columns too are counterflow processes like the heat
exchanger discussed above and can exhibit similarities in their behavioural
characteristics. There are, however, important differences in their com-
parative behaviour resulting largely from the very different boundary con-
ditions which apply in the two cases. These will be examined later but for
the moment we shall concentrate on the development of the system's partial
differential equations (p.d.e's) which will be found to closely resemble
those of the heat exchanger. The system is illustrated by Figs. 2.2,
which shows the two—stage constructuion of columms, involving two sections:
the rectifier and the stripping section, and 2.3 which illustrates a concep-
tual cell of the rectifier, again assumed to be thoroughly mixed. Vapour
and liquid streams flow past one another 'as shown at rates denoted by V and
L moles* p,u. time, the streams being composed of mixtures of the two com-=
ponents to be separated by the column. X denotes the mole*-fraction (com-
position) 6f the more-volatile- (lighter-) component in the liquid mixture
and Y that in the vapour stream. Primes are associated with the variables
in the stripping section and suffixes s and r associated with the flow-rates
denote stripping-section and rectifier quantities respectively, As Fig. 2:2
shows, boiling mixture is fed into the column between stages, the liquid
entering at flow rate F, , composition Z and the vapour at flow rate Fv’
composition z. Products are withdrawn from the process at top and bottom,
i.e. from the accumulator and reboiler at rates Vr - Lr an@ LE = VS and at
composition X(N + 1) , Y'(-M-1) respectively. The object of the distillation

One mole of an element or compound has a weight numerically equal

to the molecular weight expressed in the chosen system of units,
e.g., one mole of water in S,I. units weighs 2 + 16 = 18 kg.
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is to make X(N+1) as close to unity as possible and Y'(-M~1) close to zero
at as high a throughput as possible and with a minimum energy utilisation
i.e. with minimum recirculation flow. (Economic factors clearly determine
the optimum compromise between these éonflicting requirements).

Column sections of the "packed type" are deliberately filled with
solid, pourous packing material to produce a spatial distribution of com-
position through the columm so again necessitating consideration of an
infinitessimal cell illustrated in Fig. 2.3. Within each cell evaporation
and condensation occur and under adiabatic conditions, if the two compo-
Nentg have equal molecular latent heats, each mole condensing, of whatever
component; causes another to ;vaporate. If only latent heats are consi-
dered therefore, (sensible heat changes being assumed negligible by
comparison), the heat-balance for each cell is trivial and merely constrains
the flow rates; Vr, VS, Lr and L, to be spatially invariant, (as in the
heat exchanger considered earlier but for different reasons).

In this process, unlike the heat-exchanger, it is the material-balance

which produces the significant dynamic effects. If H_, Hrl’ H and Hs

rv sV 2

denote the fixed molar capacitance p.u. length of the rectifier and stripping
section for vapour and liquid respectively, then material-balances for the
lighter component taken on elementary slices of the two sections produce

the following differential equations

21
rv dt

~

(n,t) sh' = vr‘ {YGielt) = Tinatdd # k. {Ye(n,t) - Y(n,t)}sh'

dX(n,t)

et = L {X(a,e) - X(,6)} - k(Y (n,t) - Y(n,£)}sh'

e (2:.9)

H;§E§%cn’t)ahv = V0¥ (a-1,8) - Y (a,0)} + k(X' (0,6) - X (n,e)}on’

and n< = 1

o ' (®Bgnt < L {X' (@+1,t) - X' (0,0)} - k(X' (n,t) = X! (m,)}6h')

(2,10)
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where kr and ks are constant coefficients of evaporation and suffix Te!
indicates equilibrium quantities. The terms involving these quantities
{above) represent the met rate of evaporation of the lighter component
i.e. the cross—flow from the liquid to the vapour phase which.ceases in
situations where neighbouring liquid and vapour mixtures are in so-~called
“thermodynamic equilibrium" with one another. For ideal mixtures,

(tﬁose obeying Dalton's and Rayoult's Laws), the equilibrium relationship

(1)

may be shown .’ to be

B =Y, (1-X/ {x(1 - Y )} (2,113
where Y is the composition of a vapour in equilibrium with a liquid of
composition X, and, in terms of stripping section quantities:

Bo=Y'(-x)/ X Q- ¥} (2.12)
where Xé is the composition of a liquid mixture with which vapour of
composition Y' would produce equilibrium. The parameter B is nearly con-—
stant for a given ideal mixture and is termed the "relative volatility"
of the mixture.

A typical equilibrium curve is sketched in Fig. 2.4 from which the

symmetry about the - 45° 1ine should be noted. B is greater than unity
but the smaller its value the closer the curve approaches the + 45° 1line
(i,e. the smaller the difference between the vapour and liquid compositions
of equilibrium mixtures and the more difficult the distillation). For
convenience of subsequent dynamic analysis, the curve is usually approxi-
mated(z) by two linear relationships, (one for the rectifier and the other
for the stripping section), these being

afl =1 =1~X (2.13)
and mXé = Y | (2.14)
where the straight-line slopes are constrained thus;

g > o >l (2.15)

so that, eliminating X and Y' using (2.13) and (2.14), we obtain
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B, %%(n’t)5h'= V_{¥(n-1,t) - Y(n,t)} + k_{Y_ (n,t) - ¥(n,t)}6h'

n>1
dYe(n,t)ah'
PRSI =) = - —_— - L}
O‘Hrﬁ. dt aLr{Ye(n+1’t) Ye(n’t)} kr{Ye (H,t) Y(n,t)]’ﬁh
(2.16)
and
dX' (n,t)sh'_ B - , ookl
U, & = L{X"(n#1,t) - X' (n,0)} - kX' (n,t) - X '(n,t)}
' n<-1
dXé sh'
—— = 4 .- — T 1 il T
uHSV 5 aV, {Xe(n 1) Xe(n,t)} + kS{X (n,t) Xe(n’t)}
(2.17)

We therefore have situations pertaining in the two column sections very
similar in mathematical stfuéture to those applying within the heat-
exchanger (c.f. equations(2.1) and(2.2)) so that applying Taylor's theorem
and letting 8h' + 0, as before, yields the p.d.e's

ot = -V_ 3aY/3hn' -
H_~ 3Y/3c V_3Y/sh' + k (Y - Y)

h' > 0 (2.18)

= | - ,_.
aH aYe/at ol Y, /oh k (Y, = Y)

v = T ] | 1
HS2 3X'/at L 3X /ah' + ks(Xe wx ) e (2.58)
1 e 1 - 1 - !
ol aXe/at aV, axe/ sh kS(Xe X')

again very similar to those for the heat-exchanger.

If we again confine attention to a symmetrical plant, i.e. ome in

which
uHr =H =H
ko Tk _ (2.20)
H = qH = ¢ H
rv sV
kK =k =k
T s

where ¢ is a constant, and operated under the nominal working conditions

Vr = aLr = Ls = uVS =V (2.21)

then normalising the p.d.e's(Z.lB)and(2.19)yie1ds the simplified system:

c 3¥/atr = ~3¥/sh + Y - ¥
, h>0 (2.22)

8Y /ot=23Y, /3h - Y + Y
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It

aX' /ot = 3X"/ah + X; - X'
1)

s %8 e R

I

] ; B v - iy ¥
caXe/B‘r axe/ah X +X

where 1 and h denote normalised time and distance, being given by

T = t/Tn (2.24)
Tt

h h /Ln (2.25)

where Tn = H/k (2.26)

and Ln = V/k (2.27)

Again the base distance/time ratio (L /T ) = liquid velocity so that T, is
the time for the liquid to travel base distance T_.n (the significance of
which emerges later). The vapour/liquid capacitance ratio ¢ will usually be
<< 1.0 but in later analysis will be set at unity in the interests of ease
of solution.

(b) Tray-type column

Industrial scale column sections are more usually physically segmented
by the deliberate inclusion of barriers or "trays" holding constant volumes
of liquid which cascades down the column from tray to tray. The vapour
forces its way up through the trays by lifting so called "bubble-caps"
wﬁich act as non-return valves. With this construction a discretely
changing spatial distribution of composition is achieved and our hitherto
conceptual cells now acquire a definite physical significance. With this
type of colummn it is generally assumed that the liquid and vapour above any
given tray are in continuous equilibrium with one another and vapour
capacitance is either neglected.or lumped with the liquid capacitance, Hrv
and Hsv are therefore put to zero in (2.9) and (2.10) and k_ and kS made
infinite so that

Ye(n,t) =Y(m,t) , =n>1
and Xé (n,t£) =X@,t) , as%s1l (2.28)

yielding general tray equations




a 1}_ -
“Hrz %(n’t}ah‘ = al_ {Y(n+l) - Y(n,t)} + v, [Y(n-1,t) - Y(u,t)} - n>1
and (2.29)
Sz' -g%' (n, EISR'_ L, {X'(+l) = X'(0,0)} + oV {X'(n-1,t) - X' (n,t)} n < -1

h' here, of course, denotes the actual finite length of column between trays.
Together with the boundary conditions, wyet to be considered, numerical solu-
tion may therefore be undertaken at this stage with the advantage over the
heat—exchanger and packed-column that the total number of cells (trays in
this case) is prespecified. For analytical solution however a p.d.e. repre-
sentation is again preferable and is a permissible approximation when the
column comprises a large number of trays: as is normally the case with indus-
trial scale systems separating difficult mixtures. It is assumed that the
discrete composition profiles may be closely approximated by spatially
continuous functions so again permitting the use of the Taylor series to

eliminate dependent variables other than Y(n,t) and X'(n,t), giving
(oL +V.) .2

9Y . \9Y ¥ : ,
QH . S-=(aL -V )=, + sh*  , h'> 0
ry At r ' gR 2 Gh")2
and (2.30)
. . L 4+ aV) 2.
Hxr . " 3x? ( s S 2 X' ] [
sf dt (Ls a qu) sh! " 2 sht , h1 <0

2
(3h")
ignoring higher powers of Sh'.

Under the symmetrical operating conditions (2.20) and (2.21), the
system therefore reduces to the normalised form

3Y/3r = 32¥(3h)> 5 h >0

x 2 (2.31)
3X'/at= 3°X'/(3h)" h <0
where again T = t/Tn and h = h'/Ln
but the base time and distance are now given by
T = HSh'/V )
(2.32)
and L = gh'
n

The fundamental differences between the p.d.e's for packed-and tray-columns
give rise to important differences in the dynamic behaviour as will be

demonstrated later.
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“ It should be emphasised that our treatment of columns has been
confined to a consideration of composition dynamics. Columns are of
course subject also to variations in internal pressure and in the levels
of the end vessels, all of which interact with and are affected by the
composition variations. The foregoing analysis has however, assumed that
these variables can be closely regulated, which is generally the case but
for a thorough investigation of these faster dynamics the reader is refer-

3 (1)

red to the text of Rademaker et al Judson King provides an excel-

lent detailed coverage of steady-state column design.

2,2.3 The Tubular Chemical Reactor

Having demonstrated similarities (and differences) between the mathe-
matical structure of ideal heat—, mass—transfer processes, we now examine
the influence of chemical-change on process dynamics in situations where
chemical kinetics dominate other factors. Mass—transfer will be seen to

: play an important role easily embraced by the analysis. Thermal effects,
through often crucial, are more difficult to include and temperatures will
therefore be regarded as perfectly regulated in our investigation of the
"tubular" (spatially-distributed) reactor. Uncontrolled temperature
variations will, however, be examined afterwards in a consideration of

the continuous stirred—tank reactor described by a lumped parameter model.

We consider the simple liquid reaction in which reagents A and B
react together to form the single product C. For generality we will initially
consider the reaction to be of the reversible type permitting C to decompose

back into A and B. The stoichiometric equation for the reaction is

therefore

A+ Bz 2C (2.33)
indicating that one mole of A reacts with one mole of B to form two moles
of C and vice versa. (In practice the situation can be much more compli-
cated involving gaseous' and solid materials, intermediate products,

several reactions taking place sequentially and in parallel, and the
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influence of catalysts etc., but the overall mechanism can often be
constructed from a conceptual network of elementary systems of the sort
examined . here).

Because of equation(233)we must now account for a new phenomenon in
our basic concepts of dynamic balance: that of one type of materiél
(mixture A and B in this case) changing into another type (here, product
C). We therefore become involved with rates of chemical reaction which

(4)

are found from the kinetic theory of gasses,and experimentally, to be

governed by equations of the type

i

r

o =k, [A%[B]" ' (2.34)

It

and k, [c]” (2.35)

rab

where r, denotes the rate of generation of C(and r that of A and B)

ab

expressed in molds: p.u. volume of mixture p.u. time, and the square

brackets indicate concentrations of the appropriate substance expressed

in moles per unit volume of the overall mixture. The velocity coefficients

kl and k2 are, for ideal gasses, functions only of absolute temperature
0 taking the form

k, = a; exp (- ebl/a) s ky = a, exp(“ﬁbz/ﬁ) (2.36)
(where ays eblyaz and abZ are constants) and are frequently assumed to be
nearly so for ' reactions involving liquids and other none-ideal materials.
The indices a, B and y in (2.34) and (2.35)are usually small integers (or
their reciprocals) generally determined experimentally.

Considering now the tubular reactor, a short section of which is
illustrated in Fig, 2.5, then for conceptual cell n of length §h' and
volume 8V we may write down a material balance for any one of the three
component substances A B or C, taking account of the fact that components
can now change from one to another, within the cell considered, at rates
governed by equations of the type (2.34) and (2.35). Choosing C, the

material balance for this substance may be written
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sv 4 gé“’t) - = F{[C(n-1,t)] - [C(n,£)]} + GV{kl[A(n,t):]“[B(n,t)]B
=k, [€n,t)]"} (2.37)
where F is the volumetric flow-rate of mixture through the reactor.

Now if one mole of A,B or C occupy identical volumes, i.e. if the
substances are EEEEE’ then the molar densityfbm of the overall mixture will
be unchanged throughout, i.e.

Py » = [h(n,ti] + [B(n,ti] + [F(n,ti] = a constant (2.38)
and if reagents are fed in stoichiometric proportions (equal portions in
this example) then

[A(n,t)]

so that [:A(n,t):[,

[B(n,t)] (2.39)

[B@,t)] = 0.5{p - [C(n,t)]} (2.40)
permitting (2.37) to be expressed in terms of C only. The resulting
differential equation becomes
v AEEOL i [em-1,00] - [Etn,0)])
* 8V (kg /2~ (k) /24 k) [C(a,t)]} (2.41)
if the reaction is of first-order with respect to [C], i.e. if
2a=28=v=1.0 €2.42)
Alternatively, the composition of C could be expressed in terms of its
mole~fraction, X, rather than [C], the number of moles p.u. volumejsince
p, X = [c] (2.43)
equation (2.41) thus becoming.
sV EILE) < BX(n-1,t) - X(n,0)} + 6V{k /2 = (i R4 )X(n, 1))
(2.44)
from which we deduce, in a manner similar to that used for the previous

examples, the p.d.e

8X/0t = -(F/a)dX/3h' + (k /2 + k,) {kj /(k; + 2k))- X} (2.45)

where, a, is the cross—sectional area of the reactor tube.




243

- 15 =

Now kl/(kl + 2k2) is the equilibrium value, Xe, which X would

acquire were the reaction to take place in a closed system, such as a

batch reactor, for a sufficient length of time. Under such circumstances
backward and forward rates of reaction r, and b ultimately balance so

that if suffix e denotes equilibrium values, then from (2.34) and (2.35)

we get
ky [C]Y =k, [a]%[B]" (2.46)
which in our case reduces to
k, [6] =& [A]°‘5BO‘5=kA 2.47
2 el 1 e [ e] 1[ ;] (2.47)

if the initial charge of teagents were in stoichiometric proportion.

Since, in general,

[a] + [B] + [c] = o (2.48)
and, in our case [A] = [B], then
2[a] = ¢, - [c] (2.49)

so that, substituting for [Ae] in (2.47) we get

c,]

or X
e

]

kyp /(k; + 2k,)

It

kl/(kl + 2k2) (2.50)
and so (2.45) becomes

9X/3t = - U 3X/ph' + (k1/2 + k2)(Xe = %) (2.51)
where U is the fluid velocity. The equation may again be normalised
giving a result identical but for the symbols to the previous spatially

continuous examples, viz.

9X/3t = - ?X/dh + Xe - X (2.52)
where 7 = thn and h = h'/Ln and in this case
-1
Jc (k1/2 + k2) (2.53)
e i
and Ln = U(k1/2 + kz)

Similarities and differences in mathematical structure of the system models

In all three cases of the truly spatially-continuous processes
examined, the p.d.e's have involved only the first-derivatives of the
dependent variables with respect to space and time and cross—flow terms

dependent upon the departure of these variables from their equilibrium
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values, (ez(n,t) is the equilibrium value of el(n,t) in the heat-exchanger
example and vice versa). Indeed similar p.d.e's are widely encountered in
chemical plant modelling generally. It would therefore appear that any
approach capable of producing a salutioﬁ to one example should also cope
with others provided the boundary conditions involved in the latter are of
No greater complexity. We shall therefore focus attention on the distilla-
tion column to illustrate an approach to model solution since the process
clearly involves the most complex boundary conditions of the examples
considered.

Before proceeding, however, it is important to notice an important dif-
ference between the first two examples and the chemical reactor arising in
connection with the multiplicative nature of the process equationS (2.1){and
(2.2)}, (2.18), (2.19) and (2.51). In the first two examples simple pro-
ducts occur, each involving one dependent variable (or its derivative) and
one independent variable (or some power thereof): the flow-rates in both
cases being directly manipulable forcing functions. In the chemical reactor
(equation 2.51), however, k1/2 + k2 is a dependent variable unless tight
temperature control can be exercised throughout the reactor length. 1In
view of the great sensitivity of k, and k, temperature § (see equations 2.36)
and the often considerable rate at which heat is released or absorbed by
reaction, the control of temperature can unfortunately pose a problem of
greater magnitude than that of controlling composition X itself. This
problem is therefore examined briefly before proceeding to the solution
of the p.d.e's. The following section will also serve indidentally to
introduce the concept of linearisation in the fields of chemical process

modelling,

2.4 Thermal characteristics of chemical reactors

The sometimes unusual nature of the thermal behaviour of reactors can
be demonstrated by consideration of merely a single continuous stirred tank

reactor (C.S8.T.R) often employed in practice despite the less efficient
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3 utilisation of the available volume compared to that achieved with a tubular
reactor. The C.S5.T.R. model is identical to that for a single cell repre-
sentation of the tubular reactor and obtained by setting n = 1 in equation
2.41 and setting [C(o,tﬂ to zero, aséuming the reactor to be fed with
reacgents only. We shall also assume an irreversible reaction in this
analysis so that k2 is also zero. Hence, dropping the spatial argument
n (=1) of the variables we get :

[c(e)] = ~@/W) [o(0)] + (k@) /235 - [C(e)]) (2.54)
where the dot denotes the derivative with respect to time, t, V, the total
reactor volume, is set equal to 8V and argument 6 is associated with velocity
kl to emphasise its temperature dependence. In termsuof X rather than [d 3
therefore we obtain

X(t) = - (E/MX() + 1k 6)/2} {1 - X(0)} (2.55)
Now if 6 is to vary, i.e.

6 = 6(t) ‘ (2.56)

a heat balance is also necessary to compiete the process model. We shall
assume the reaction to be exothermic so that the rate of heat generation
qg(t) by the reaction is given by

qg(t) = AH.rc(t). v (2357)
where AH is the energy released per mole of C produced. rc(t) is the
rate of generation of C in moles p.u. volume and given by equation (2.34)
so that using equations (2.40), (2.42) and (2.43) we get

9g(t) = ARV, g %y (8) {1 - X(£)} (2.58)

Now heat also enters the tank in the feed stream at a rate F.Hc S0 (1

a

there is no preheating) and leaves in the outflow at a rate F.Hc.e, where

- 0

5 18 the ambient temperature and Hc the thermal capacitance p.u. volume

*
of liquid. Heat will also be lost via the tank walls at a rate QW(B—Ga)

%
Assuming Newton's law of cooling to hold.
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where Qw is constant and heat may be deliberately extracted by the immersion
of, say, cooling tubes, at a rate Qt(ﬁ—ec) where Q, is an adjustable heat-
transfer coefficient and B the temperature of the cooling fluid, set for
simplicity of analysis = 6, in this e#amplef The heat-balance thus
becomes

H U (£) = AH. Vp k (0) {1-X(0)} = (Q4Q, + F H).{6(e)=8.}  (2.59)
and thus, together with (2.55) and (2.36) - which determines the variation
of ky with 6, provides a complete description of the thermally uncontrolled
reactor. The steady-state equations of the process, obtained by setting i
and é to zero are

X =k (8)/{k  (0) + 2F/V} (2.60)
and, eliminating k1(9) between the mass—and heat-balance equations,

X =1{(Q +Q)/F +H1}(®-0 )/AH.p_ (2.61)
the resulting curves of X versus 6 being of sigmoid shape in the case of
(2.60)T and a straight-line in the case of (2.61) for constant Q_ and F.
Depending upon the constant parameter values therefore, single or tripple
points of intersection of the two curves are possible as illustrated in
Fig. 2.6, suggesting the possibility of up to three steady-state working

conditions.

Reactor Linearisation

The small-signal stability of the solutions may be investigated using
the linearised, small-perturbation model of the system, derived by differen-
tiating implicitly the nonlinear large-signel d.e's (2.55) and (2.59) and
setting the differentials dX, d0, dF and dQ_ equal to small perturbations

z(t), ¢(t), £(£) and qt(t) respectively, giving

£ 3 r 5 3 { 3 3
% ~(F/v+ky/2) ,  0.5(1-X)Ik /38 [x X/v o, 0 ff
- AH. p_(1-X) (3k,/36)/2H, o - (2.62)
| |-mpk /2m - +Q +HF/HY | b == = | |9
\ ) L) \ c J

8 wilh, of course, vary to some extent with O but will be nearly constant
if a large flow of coolant is used.

T Since k) increases monotonically with increasing g (see equation 2.36)
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Provided the perturbations are sufficiently small in magnitude compared to
the steady—state values of the variables X, 6, F and Qt, then solutions of
the large-signal steady-state equations (2.60) and (2.61) may be substituted
as quasi-constants in the coefficient matrices of (2.62) so yielding the
desired linearised system.

If this system is written

5 b's £ a. .5 a x b.., b
1 il lam | o= |12 o] e (2.63)

? ¢ %) (2217 222 %) (P21’ P22) (%

then the characteristic equation of the open-loop system is

Det [Is - A] =0 o (2.64)
glying, in this case,

g =1{(a +a)+/(a - )2+4aa}/2 (2.65)

14 2 =T 11 22 1272% :
§o that for open-loop stability, i,e. RE s <0,
2

(a1 = ayp)" + 4 appay < (g + ay))
and '

414 + 322< 0
These conditions may be more simply expressed:

17 855 > a7, 8, (2.66)
and 355 < = Ay (2.67)

and substituting for the elements of A in (2.66) using (2.62) readily yields
the necessary stability condition that

(1—X)Bk1/36 < Z(Qt+Qw+HCF) (F/V-l-kllz)/FAH. P (2.68)
whilst (2.67), after substitution, may be expressed

(1-X)2k; /30 < 2{2H F(F/V) + H Fk /2 + (Q.+Q,) (F/V)}/FAH.p_ (2.69)

It is interesting to note that (2.68) has the immediate graphical

interpretation that the slope of the sigmoid curve (equation 2.60) in
Fig. 2.6 should be less than that of the straight line (equation 2.61)

(4)

and Denbigh offers a physical interpretation of the condition regarding
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the curves as heating and cooling characteristics respectively. The
arguments are not mathematically rigorous however, (as he acknowledges)
and the second condition (2.69) cannot be safely disregarded in general,
The question is pursued more thorouéhly by Himmelblau(S), but necessary
conidition (2.68) does preclude intersections of type (b) shown in Fig.
2.6 fromproviding stable open-loop working points whereas intersections
of type (a) might be stable or unstable. Clearly the likelihood of con-
travening either condition is increased the larger AH, i.e. the more
exothermic the reaction as would be expected.

This possibility of thermal runaway therefore poses a temperature
control problem outside the scope of a text on process modelling but its
analysis and solution is nevertheless crucial to the formulation of a

model for studying the composition control problem.

‘Parametric Transfer~Function Matrix Models

We now return to the general problem of obtaining analytical solutions
for the behaviour of chemical process plant. Using computer simulation
techniques it is, of course, possible to proceed to numerical solutions
directly from the system p.d.e's, already derived and the boundary condi-
tions (yet to be considered) without further analysis, given:

(a) a reliable progwammer

(b) values for the plant parameters
and (c) a control strategy for adjusting the manipulable input variables.

In practice however what is really required is a method for selecting
the parameters and control strategy to produce a loosely pre-specified mode
of behaviour of the dependent variables. Posed this way round, computer
solution of the problem is no longer direct since numerous iterations of
the simulation will be required until the desired parameters and controller
structure are, hopefully, determined. With the degrees of freedom possible,

rapid convergence to the desired solution is not generally guaranteed.
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An analytical model, in the form of a parametric transfer—function
matrix (T.F.M), i.e. a T.F.M. where parameters are known functions of
plant parameters, is however directly useable by the plant designer and
control engineers for the'sznthesis,‘in virtually one attempt, of the best
plant/controller combination. The accurate derivation of such T.F.M's
can be impractically tedious in the completely general case but if the
plant possesses certain properties of linearity and symmetry (generally
implied by good design as will be seen) such solutions can then be derived.
Because of the discrepancies between the plant idealised in this way, and
the true system model, simglation is still required but now primed with a
rationally determined initial controller structure and initial system para-
meters from which rapid convergence to the best solution, guided by the
insight obtained from the analysed solution, might reasonably be expected.

Likewise; in the field of experimental identification of a difficult
process model, analytical solution beforehand of the idealised system,
does provide a soundly-based model-structure and good initial values for
the iterative parameter—estimation exercise,

The procedure to be followed with spatially-distributed systems of the
type examined is broadly as follows, using the liquid/liquid heat exchanger
to illustrate the steps involved. It is left to the reader to fill in
some of the straightforward manipulations between steps.

2.5.1 Boundary condition formulation

The process description is incomplete without the boundary conditions
which must first be determined. In the case of the heat-exchanger these
will be taken as being simply

constant (2.70)

It

5 8, (o,t)
BZ(L,t) = constant (2.71)

where L is the normalised length of the process.




2.5.2 Large-signal steady-state solition

This is required to provide data for the quasi-constant parameters
of the small signal model and is abtained by setting time-derivatives
to zero in the process p.d.eis, (2.6) in this case, (and d.e's if any)
and solving the resulting spatial d.e.s subject to the boundary conditions,
(2.70) and (2.71) here. For the symmetrical heat exchanger the solution,
graphed in Fig. 2.7, is
6, (h) ={6, (o) (1+1-h) + ,(h} /(1+1) C(2.72)

and Bz(h) ={81(0)(L—h) + ez(L)(1+h)}/(L+l)

It will be noted from Fig. 2.7 that the two témperature profiles are
separated by a normalised distance of 1.0, i.e. by an actual distance

of Ln the physical significance of which now emerges. The temperature
profiles have equal constant gradients, which is a special result pertaining
to the summetrically-operated procesé, producing a constant temperature

drop Bl(h)-ez(h) so that heat-transfer is uniformly distributed along

the interface thereby making maximum use of the entire length of the

Process i.e. good plant design.

2«53 Small-signal model derivation

As with the chemical C.S.T.R. the small-signal equations are derived
from the large-signal equations by implicit differentiation, equating
differentials to small perturbations in the dependent and independent
variables, and substituting steady-state solutions for the coefficient
values. With spatially distributed processes it is perhaps safer to
operate on the large-signal equations before normalisation since the
base~time, Tn, and base-distance, Ln’ may be functions of the variables.

The small-signal equations may then be converted to their simpler normalised

form afterwards. From large-signal p.d.e's (2.4) we thus obtain
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93¢, /31 =8¢, /oh + ¢=¢, +f, (1)

(2.73)

]

3¢2/3T a¢2/ah + ¢1—¢2+f2(r)

where flow functions fl and f2 are given by

£ 0.6, =0.4|| w

6,(0)-0,,(L) 1

(2.74)

f2 W(L+1) 0.4, =0.6|| w

2
(Had the steady-state gradients BGI/Bh and 382/ah not been constant then

forcing-functions £, and f2, which involve these gradients, would have

1.
been spatially-dependent as well as time-varying so complicating
subsequent analysis considerably). The small-signal boundary equations

derived from (2.70) and (2.71) in this example are simply

¢$,(0,1) =0, $,(L,1) =0 (2.75)

2.5.4 Laplace transformation with respect to h and
Taking Laplace transforms of the small signal p.d.e's first in P

w.r.t. T and then in 8 w.r.t. h yields, in this case,

~ i

=(148)6, (5,p) 0, (s,p) 4, (0.p)+s ', (p)

P ¢1(s,p)

(2.76)

P $2(s,p) -(l-s)¢2(s,p)+¢1(s,p)-$2(o,p)+s_1§2(p)

(for zero initial conditions), in which superscript ~ denotes transforms

w.r.t h and T and ~ w.r.tTonly. Boundary conditions specified at h = 0
can be eliminated at this stage, here by simply putting ;1(o,p) to zero

as demanded by (2.75) but éz(o,p) is present unknown and must therefore

be retained until after inversion back to the space domain.

2.5.5 Inversion to the h,p domain

~

Having isolated separate expressions from (2.76) for ¢1(s,p) and

~

¢2(S,P) in terms of inputs El(p), fz(p) and the unknown $2(o,p) these

may now be inverted from the s,p to the h,p domain with the aid of Laplace




transform tables and, by substituting L=h, the second boundary condition

of (2.75) may be invoked to yield an expression for %2(o,p) which may
then be used to determine ¢1(L,p).' These two results grouped into

matrix form are conveniently expressed thus:

-

@) = 80D g (o) - 6,1 v, (@) + ()

={ } G(p) (2.79)
W(L+1)

6, (Lp) + §,(0,p) v, (p) = W, ()

-

where the T.F.M., G(p) takes the diagonal form

!—gl(P) s O
&p = (2.78)
o ] 82(13)

where (v) = 0.2{ p(cosh qL-1)+q sinh qL} (2.79)

By P q4 {q cosh qL + (I+p) simh qL} .
and 2 ; ;

{g) (q”/p) (cosh qL-1)+q sinh gL (3. 80)

& q{q cosh qL+(1+p) sinh qL} .

the frequency function g being given by
2
q = p(p+2) (2.81)

Alternatively, in terms of the real life input and output vectors,
rather than their so called "tilt" and "total" combinations (2.77) may

be expressed:
b, (L,p) 1, 1| g@ , ool[1 L 1] w®
B, (0)-8, ()

SR (2.82)

={
“1 3 1 o gz(P) i ;=1 WZ(P)

~”@2(0,92

e PR B

the T.F.M. between this input and output vector having a "Dyadic"

(6)

structure because the dynamics of the system are contained entirely
within a diagonal matrix that is coupled to the observed outputs and

manipulable  inputs by purely static matrices. This structure arises

from the physical symmetry of the process considered and occurs frequently

in analytically-derived T.F.M. models because tractable analytic solutions
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are generally limited to symmetrical cases - as has been already
emphasised. Since control system design lies outside the scope

of this text suffice it to note thaé the dyadic nature of system's
T.F.M. clearly makes the solution of the interaction problem in
controller design a fairly trivial exercise exhaustively investigated
by Owens(6), (who has also considered the application of Dyadic
approximation which would be applicable to plants operated with a
degree of assymmetry). The problem therefore reduces essentially to
the design of stable controllers for the individual diagonal terms of
G(p), the computed inverse Nyquist loci for which are shown in Figs.
2.8 and 2.9 for the case of L=2.0. These are clearly directly
useable for control system synthesis.

Approximations to gl(p) and gz(p) may also be derived (a) by
simplification of their accurate formulae (2.79) and (2.80) to provide
a check on the computation of the true loci or (b) directly from the
small-signal p.d.e's and boundary conditions to avoid the labour of
deriving precise solutions altogether. The approach resembles in
some respects those of Owens(7) and Friedly(g) and involves the matching
of Aasymptotic models derived for very-high and very-low ranges of
frequency.

2.5.6 Multivariable first-order lag models

Owens(71 has proposed that if a system has an inverse T.F.M.

G*(p) where

Lim p lot(p) = A (2.83)
R '
and Lim G*(p) = _él (2.84)

p~o
where éb and.él are constant matrices then, under certain conditions,
G*(p) may be approximated, for controller design purposes, by a multivariable

first-order lag system of inverse T.F.M. EA*(p) where
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G *¥(p) = A+A P (2.85)
since G*(p) and GA*(p) approach equality at very~high and very-low
frequencies. Such a representation is highly éppropriate and very
convenient in chemical plant modelling since él and éb are readily
determined either from measurements of the initial rates and the
settling values of the system's step responses or by simple analytical
derivation, From the transformed system p.d.e's (2.76) in this

example A, is readily deduced by merely ignoring all dependent variables

1

other than those with coefficients involving the highest power of p.

In this case clearly we get

rél(h,p) £ ®
Lin .| = i (2.86)
pre ﬁbz(hsP) fz(P)

from which, transforming to our tilt and total variables we get

B @)-5,00,0) " P2 o] w ey, )]
8, (0)=0,(L)
) % 2 (2.87)
i : "y S
e ¢, (E,p)+¢,(0,p) S0 s 1w (p)-w, (p)

from which matrix A is immediately obtainable. It is interesting to
note that A, is spatially-independent and independent of boundary conditions

upon which A, is crucially dependent. A is in fact determined by the

1

solution of the small-signal p.d.e's (2.73) with constant inputs subject
to the system boundary conditions (2.75) in this example with time-
derivatives set to zero. In the case of the heat—exchanger this yields

the result

B L EELy . 8] e

$; (L)=¢,(0) 6, (0)=6,, (L) kn

T )
¢1(L)+¢2(0) . T 5 W, W,

(2.88)




From (2.87) and (2.88) we therefore deduce that the multivariable

first-order lag model for the system to be

b -t fo2fwnymm T, o || w k), ()
-5 5 L 88,0 | ’
b, @,p)+f,(0,p) | WD) 8 (/1Y || w, ()=, @)
x il (2.89)

the inverse Nyquist loci for which are also shown in Figs. 2.8 and

2.9, for L=2.0, alongside the true system loci. Agreement is clearly
good but the loops in the true loci could produce unexpected oscillation
or even instability in the presence of high-gain integral control actionm.

2.5.7 Lag/delay models

G

Failure to predict the loops in the inverse Nyquist loci arises
from neglecting the imaginary nature of p when considering the high>
frequency asymptotic behaviour of the system. If therefore only the
interactive terms are omitted from (2.76) (rather than all dependent

variables not multiplied by p) we obtain, since %‘O,p) =30

H—G—!z

(s,p) = fl(p)/s(s+p+1)

and (2.90)
~,

0y(8:2) = {b,(0,0) ~E,(p) /8}/{s=(p+1))

giving, an inversion and substituting h=L, , isince ¢2(L,p)=0} s

s - ”
¢; (L,p) £ (p)
= l-exp {~(p+1)L} 2.91
(p+1) t )

%(0,9) fé(p)

- . et

Now substituting for fl(p) and fz(p) in terms of wl(p) and wz(p) we

obtain the high-frequency model:




; $. (L,p)=9, (0,p) b s
Liin,. E 2 81(0)-62(L) 0,250 wl(p)+w2(p)

P ~ ol ” 2 5
|py+ o | 1=exp {~(p+1)L} ¢1(L,P)f¢2(0,p) { W(L+1) } F i i o) wl(p)-wz(p)

(2.92)
which resembles the high—frequency equation (2.87) apart from the appearance
of the attenuated delay-term exp {-(p+1)L} and the indication that the limit
applies irrespective of p being real or complex. The same result may be
derived from the accurate model (2.77) to (2.81) noting that, as |p| » =,
g+ p + 1.0 (2.93)
Combining the inverse system T.F.M's for low and high-frequency in a manner

similar to that for first—order lag approximation we therefore now obtain the

multivariable lag/delay model; -

#1@©,p)=9,(0,p) | 6, (0)-0, (1) o.aFLgl) : 1_exp$_(p+1)L}] 0| @)+, )

2 i R W 1 ! o :

A CRIE MCRY] I GO oG b e @ - @)
. L

(2.94)
which exhibits loops in its inverse Nyquist loci very similar to those of the
real system as inspection of Figs. 2.8 and 2.9 reveals.

The loops are in fact the result of reflected travelling waves in the
process which become progressively more attenuated with the passage‘of time.
The first-order lag model predicts only the fundamental integrating nature
of the system at high-frequency whilst the lag-delay model - reproduces the
effect of the passage of the first of these waves in addition.

The analytical appreach to T.F.M. development outlined 1in this Section
is next applied to the distillation process described earlier. This is a
much more difficult case because of, (a), its two-stage construction,
therefore involving four boundaries not two and (b), the relative complexity
qf the individual boundary equations. Solution is however not impossibly
tedious if full advantage is taken of physical symmetry to simplify the

system equations at every step of the analysis. Because of space limitations
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only the key intermediate results are provided here but the reader should
not have great difficulty in performing the intermediate manipulations for
himself, The fully worked—out analyses are to be found in references

(9) (10) and (11).

The Analytical Determination of Parametric T.F,.M's for Symmetrical

Without these the system description is incomplete and their formulation
requires the consideration of the mass balances pertaining at the top and
hottom of both the rectifier and stripping sections, Their final forms differ
somewhat in the cases of packed and tray-type columns largely because of the
fixed; finite cell-length in the latter case. Considering the feed point,
firstly for packed columns it is readily deduged that, for the wvapour and

liquid streams respectively:

VS Y'(o) + sz Vr Y (o) Z

(2.95)

L]

and L. X(o) + FEZ L.X (o) 5

and it follows from the assumed syﬁmetry conditions (2.21) that the liquid
and vapour feed flows must be equal and given by

Fv = F2= F =YV g/a (2.96)
g =~ 1 : (2.97)

where €
For symmetry we shall also assume that the feed mixture is supplied in

equilibrium for both sections so that

zZ =g Zand z=1+~12 : (2.98)
so fixing z and Z tolfixed nominal working values. For the tray columm
however considering the tray above the feed point we deduce that

H, 61 dX(o)/dt = Fz + V_Y' (o) - v ¥(0) + L {X(1)-X(0)}
so that approximating the finite difference in X by the first spatial

derivative, eliminating X and Y' in favour of Y and X', substituting for

z and normalising we get
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3Y(o) /o1 = =2/(a+1) + X'(0) + {1-Y(o)} + 3Y(o)/dh (2.100)
and similarly for the tray beneath the feed point
3X'(0) /3t = 2/a+1l) = X"(0) = {1-¥(o)} - 3X'(0)/3h (2.101)
Turning attention now to the top - (accumulator) end of the rectifier (h=L)
we have, for the packed-columm
H dX(L)/dt = VrY(L) - VrX(L) (2.102)
where H_ is the capacitance of the accumulator. Assuming this vessel to
run in continuous equilibrium therefore
H o dy (@)/dt =V _[a{l - Y (1)} - {1 - Y(L)]] (2.103)
Similar consideration applied to the reboiler (h = -L) give
B, oo dx' (L)/dt = L_[X'(-L) -0 X'_(-L)] (2.104)
if o He is the reboiler capacitance. The tray-column's terminal conditions
are similar in their finite difference form i.e. for the accumulator:
He dX(N+1)/dt = Vr {Y(N) - X(N+1)} (2.105)
but X(N+1) = X(N) +{3X(N)/5h'}sh' (2.106)
so that eliminating X in favour of Y using the equilibrium relationship
(2.13) a normalising yfelds.
T,p Y(L)/3t = e{1-Y(L)} - 8Y(L)/3h (2.107)
and similarly for the reboiler
Te X' (L) /3T = - eX'"(-L) + 3X'(-L)/dh v a2 108)
where T is the normalised time-constant of the end-vessels given by
T, = H /H 6n' (2.109)

e

2.6.2 'Large-signal steady~state solution

With the formulation of the four boundary conditions the two columns
are now completely specified and steady-state solutions for constant inputs

v L.,F ¥ ;2 and z) may be determined by the simultaneous solution of

.r’ ,1’

. p.d.e's (2,22),(2,23) with (2.95) (2.103),(2.104) for the packed column

and p.d.e's (2.31) with (2,100),(2.101),(2.107) and (2.108) for the tray
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column, putting the time-derivatives to zero beforehand. Because of the

4 symmetry of the system equations resulting from operating at flow condi-
tions(Z.E.l)and with input compositions governed by (2.98) the composition
profiles Y(h), Ye(h), X'(h) and Xe'(h) are readily determined and are found
to be linear. The solutions are graphed in Fig. 2.10 in which G is the
composition gradient given by

G =2 ¢(@+1)(2 €L + a+l) ' (2.110)

The equal separation per unit length of column is again characteristic of a
well~designed plant making full use of the available column volume. Solutions
Y(ﬁ) and X'(h) for the tray-column are found to be identical to those for.
Ye(h) and Xe'(h) in the packed column because of the continuous equilibrium
assumption. The equality of X'¢h) and 1-Y(h) and if Xe'Gh) and 1—Ye(h) is
an important symmetrical property of these profiles which also greatly eases
solution of the small-signal model now to be considered,

2.6.3 Small signal p,d.e's and Laplace transformation

2.6.3.1 Reversal of rectifier distance base

It will be recalled from the heat—exchanger case that the first dependent
variable to emerge from the solution was éz(o,p) from which EI(L,p) and
indeed $I(h,p) and }z(h,p) could then be obtained by substitution of the
iz(o.p) expression. The important dependent variables in the column are
the output perturbations y(L) and x'(-L) in Y(L) and X'(L) and labour is
therefore saved if these too emerge first form the analysis so saving addi-
tional substitution of perhaps complex expressions. The distance Base is
therefore now altered replacing h by L-h in the rectifier equations and h
by L+h in the stripper equations, so that h = L now locates the feed point
in both cases and h = o locates the top and bottom of the entire column.
y(L) and x'(-L) in the original system of coordinates therefore now become

y(o) and x'(o) whilst y(o) and x'(o) in the original base now become V(L)
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and x'(L). The transformation is best understood by imagining the column
bent into an inverted U-~tube with the feed-point now at the top of the U
and both the reboiler and accumulator now at the bottom. The transformation
clearly reverses the sign of the odd but not the even—spatial derivatives in
the rectifier equations. The new base is assumed in all subsequent equations.

By implicit differentiation of the general packed column p.d.e's
(2.18) and (2.19) and substitution of the symmetrical steady-state solutions
we get, after normalising,

cdy/dtT = 3y/dh + G v/V = ¥

- Bye/BT = 8y,/0h +. G L/V = ¥ ¥
(2.111)
- 9x'/or + 3x"/3h + GL/V = x' - xe'
cdx'/AT + ¥x' /Ah + 2o G v/V=x'-x1*
e e e

in which v and % denote perturbations in inputs Vr and Lr’ whilst the boundary
conditions (2.45), (2.103) and (2.104) yield, (in the new base),
y@) = x,"(L) ~ (e/2)6 v/V

(2.112)
x' (L)

i

V@) + (2)6 /¥

a(l + T 3/31) y_(0) = y(o) (2.113)

il

and a(l + T B/BT)xTe(é) x' (o)
Taking Lapalce transforms of the p.d.e's in s w.r.t. h and in p w.r.t T produces

(1 +cp=s)y -y, +Co/Vs +§() =0

-(1+p+s) }e +y 40 G L/Vs + ie(o) = 0
I h (2.114)

=(l4p-s) x' + xe' + G L/Vs - x"(0) =0

(1+cp+s)x'-X% +0GT/Vs - %,'(0) =0

whilst transforming (2.113) w.r.t T only gives

™~ "'1 ~e

¥, (e} = 0 "h {(p) ¥y(o)

% W (2:115)

ke(o) = O he(p) x' (o)

where he(p) is the transfer function of the end vessels, i.e.

h,(p) = 1/(1+T p) (2.116)
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The system clearly becomes completely symmetrical if we set c, the
colum's vapour/liquid capacitance ratio, = 1.07 producing both dynamic
as well as static symmetry.

2.6.4 Matrix representation

Adding and subtracting the analogous equations of set (2.114) produces
equations in composition til¢s and totals resembling their temperature
equivalents in Section 2.5. Furthermore identical coefficients appear in
the resulting equations so yielding matrix equations with purely diagonal
coefficient matrices which greatly assists solution. In particular, if

input and output vectors are defined thus

: y = x! y o~ % v+ 4
q = , =] ¢ | and u = = (2.117)
y + x! i y o+ x' =y v -4
e e
= I~ -.-.1 - -
we get (L +p ~-s) g-xr=-s5" u~-g)
and
_ _r Rt s (2.118)
~(l4p+g)lr + ¢ = g s gyl ET r (o)
- , 2T E

whilst similar cperations on the boundary conditions (2.112) and (2.115)

produce:
-1 , 0
q() = )~ % u : (2.119)
‘ o , 1
and
() = o " h_(p) (o) (2.120)

2,6.5 'Inversion to the h,p domain

]

Again the boundary conditions at h = 0 %equation 2.120,}may be used

immediately to eliminate say the unknown Eﬁo) from the transformed p.d.e's

which may then be manipulated and inverted before substituting the second

pair of boundary conditions for h = L (2.119) so yielding the desired solu-
.tion for Eﬁo,p), and hence for y(o,p) and x'(o,p). This is found to be

.1.

- This assumption implies high pressure distillation. It is not
essential to the tractability of the solution but is helpful
in as much as it produces diagonal coefficient matrices.
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. g;(0,p) 8 L
q'(o,p) = u(p) (2.121)
s 89(0,p)

where g, (0,p) a_{e(cosh SlL—l)/p - (1+a) (sinh g Lz{q =gl (2.122)

- {(1—~hE o J)(sinh q L)q/p + (1+hea Jcosh q L}

2 r

and gz(o,?) & {ap(cosElq L -1)/q" - (a+1}(51nh_% L)/q = €/2} (2.123)

{(1+hea Y(sinh q L)p/q + (lﬂheu ) cosh q L}
where again qz =plp + 2) (2.124)

and, for zero-frequency, i.e., step inputs
ile 17 } o/ 8

g, (0,0) = ale L7 = (@+1)L - e/2} / {26l + o + 1} (2,125)
and

gz(o,o) == gf{(a + 1)L+ /2}/e: (2.126)

Of course these results 4pply to the packed-column but an analysis of
*

the tray-column may be carried out on lines similar to those demonstrated
in Section 2.6.3 to 2.6.5 producing a result as (2.121) but in which the

elements are here given by slightly different formulae, viz,

8{(p+2)(coshf;i - 1)/p + (sinh/gi)/fg +0.5}

Sl(O,P) = : (2:127)
{CL *T)p &2 + E}cosh/a L + {(p+2) (e+Tp) + p}(sinh/;L)/J;

g,(0,p) = _](&+1)(cosh/SL =°1) + (a+l1) ‘sinh/p L/Vp + 0.5 (3¢ + 1) (2.128)

2 {p(1+T) + €l coshJ; L+ 1};(1+€4-T1:\) sith; L

gl(o,o) = (cL? +0 + 1)/(2L + a + 1) (2.129)

and

g,(050) = ~ {(a+1)L + 0.5 (3¢ + 1)}/ € (2.130)

2.6,4 'Form of the inverse Nyquist loci

' Two examples, for packed-columns, of the behaviour gl(o,jw)_l are

illustrated in Fig. 2.11 for the following parameters

*Although vector r as defined in (2.117) will not appear in this case,
the double spatial derivative of g will also generate two unknown
vectors at h = o upon transforming the system p.d.e's, so again
requiring two sets of boundary conditionms.
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(a) e=0.75, (@ =1.75), L = 2.8, T

20

and - (b) 210 , fo=20),%L =50,T

In both cases loops due to travelling wave effects are clearly visible
and obviously of greater significance in the case of the shorter column (a)
which, as:might be expected, causes less attenuation of the waves between
reflections. It is also very important, however, to' note that the sign of
the static gain gl(o,o) is parameter—dependent, being positive for longer
columns or, more precisely, if

etl > @+ DL+ o2 {2,131)

whereas, over higher frequency ranges, the gain is invariably negative.
Larger columns of the packed-type therefore produce non-minimum-phase open-—
loop behaviour (and therefore severe closed-loop stability constraints)
as indicated by the encirclement of the origin by locus (b), which would
not be predicted by say, first-order lag modelling, based on equation (2.85)
due to the opposing signs of corresponding elements of matrices éi and éﬁ.

{The true loci are compared in Fig. 2.11 with their multivariable
first-order lag approximations derived from (2.125) and the approximate
high~frequency model

Lim pg=-21u (2:132)
pe i
obtained from the first equation of (2.118);
X . . ; (12,13)
First-order lag modelling is, however, applicable to tray-columms §
%
the high-and low-frequency gains of which are of identical sign (positive
for gl(o,p) and negative for gz(o,p)). Travelling-wave effects are here
found to be unimportant because the validity of the spatially-continuous

model for tray columns depends upon L being >> 1. 1In the case of shorter

packed columns i.e. those mot satisfying(2.131) first-order lag modelling

%*
Rosenbrock(la) in 1966 first indicated the possibility of important

behavioural differences between packed and tray-type columns resulting

from the basic differences in their p.d.e's. It has nevertheless

taken until now for these differences to be identified thoroughlyg-m-ll-15
probably because of the avoidance of the analytical approach by the
majority of researchers.
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may also be applied but here the additional phase lag caused by the signifi-
cant wave effects must also be included for high gain controller design.
Discussion

In chapter 5 it has been demonstrated that, by using elementary physical
and chemical balance and equilibrium concepts, idealised units of chemical
process plant, involving significant spatial variation, can be modelled by
partial differential equations (p.d.e's) of similar type, involving only
first-order derivatives in space (h) and time (T), whether the dominant
phenomenon is material-transfer, heat-transfer or chemical-change. It has
been shown that physically-discretised processes involving numerous
stirred tanks can also be represented apprdximately by p.d.e's involving
second-order spatial derivatives. The analytical determination of parametric
transfer-function matrices (T.F.M's) has been demonstrated involving the
following sequence of steps

(a) boundary condition formulation

(b) large signal steady-state solution

(¢) derivation of the small signal p.d.e's and boundary conditions

(d) double Laplace transformation

(e) substitution of known boundary conditions (at h = o)

(f£) inversion of transformed system to the space-frequency domain
and (g) substitution of remaining boundary conditions (at h = L)

Analytical solution does demand a high degree of symmetry and linearity
in the plant equations but fortunately this is also a characteristic of good
plant design. The symmetry leads to T.F.M.'s of Dyadic structure the control
design for which is much more straightforward than for multivariable systems-
in general because of the ease with which interaction can be removed.

The examples conside;ed have revealed that the fundamental high—frgquency
behaviour is dictated by the p.d.e'Q alone whereas boundary conditions domi-

nate low-frequency behaviour. Because of the very diverse range of boundary
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conditions possible from process to process therefore, very different overall

dynamic behaviour can be expected from processes governed by similar p.d.e's

including non-minimum—phase responses. Travelling-wave phenomena can be

e

important in processes of length insufficient to cause significant attenuation

between wave reflections and in such circumstances lag/delay models can

closely reproduce true system behaviour. In other circumstances multivariable

first—order lag approximations provide rapid approximate solutions provided

‘high—and low-~frequency gains are of identical sign i.e. provided the system

is of a minimum—phase type.

The Chapter has been restricted to processes involving one dominant

physical .or chemical phenomenon though it has been demonstrated that

chemical/thermal interactions can in practice demand the consideration of

these two effects simultaneously. The analytical solution of the idealised

decomposed system can nevertheless provide, in general, good initial parameter

values and controller strategies with which to begin detailed computer or

pilot=plant simulations,
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