This is a repository copy of The Dynamic Behaviour of Packed and Tray-Type Binary
Distillation Columns Described by Lumped-Parameter Models.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/86424/

Monograph:

Edwards, J.B. (1979) The Dynamic Behaviour of Packed and Tray-Type Binary Distillation
Columns Described by Lumped-Parameter Models. Research Report. ACSE Research
Report 91 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

The dynamic behaviour of packed and tray-type binary

distillation columns described by lumped-parameter models

s by J.B. Edwards

Department of Control Engineering
University of Sheffield

Mappin Street
Sheffield S1 3JD.

Research Report No. 91

June 1979




The dynamic behaviour of packed and tray-type binary

‘distillation ¢olumns described by lumped-parameter models SHEIT
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ENES

Parametric transfer—function matrix (T.F.M) models are derived from
the differential equations describing the variation of liquid and vapour
compositions within symmetrical distillation columns separating binary
mixtures. Both packed and tray-type columns are comsidered, the models
developed having minimal order 6 and 4 respectively, (implying perfectly-
stirred mixtures and minimum number of trays in each column sectiom) so
removing the complications introduced by spatial variations encountered

in earlier studies ’

of longer columns.

The T.F.M's obtained are again shown to be diagonal with the same
choice of input and output vectors as were employed in the '"long"
column studies. Furthermore, the fundamental behavioural differences
between packed and tray—type columns are again revealed using these
low-order physical models as were demonstrated in the previous studies.
In particular, the sign of the static gain of packed-columns, responding
to total flow changes is again shown to be parameter—sensitive and the
sign of the total-flow gain at high-frequency is shown to be the reverse
of that for tray-type columns, so again causing nonminimum-phase
behaviour in packed~columns in some circumstances.

Because of their behavioural and parametric similarities, it is
proposed that the minimal-order models developed in this report be used
as a future basis for control system design studies for spatially-
distributed and multi~tray columns in situations where travelling-wave

phenomena are unimportant.
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i | The dynamic behaviour of packed and tray-type binary
¥ distillation columns described by lumped-parameter models
1= Introduction
The author's previous analyses of the dynamic behaviour of compositions
within binary distillation columns have revealed that:
; (a) Provided theprocesses are constructed and operated in a
symmetrical manner then the transfer—function matrix (T.F.M)
of the system, G(h,p), is diagonal, i.e.
i 81(h,P) s 0
G(h,p) =
: 0 s 89(h,p)
(where p denotes the Laplace variable w.r.t normalised time T
and h denotes the normalised distance measured from the two
ends of the column) provided the output vector selected is:
: vhi,t) = =" (HyT)
q(h,t) =
y(h,t) + x'(h,T)
and the chosén input vector is:
w(t) + o)
ulr) =
: vit) = 4zx)
where y and x' denote the vapour and liquid composition pertur-
bations in the rectifying and stripping sections respectively
and v and § denote the circulatine vapour and liquid rate
changes.
(b) Over a wide range of high frequencies g, and g, may be approxi-
mated by pure integrating processes but that the sign of g1 for

% packed columns is the reverse of that for tray-type columns
within this frequency range.

5 (c) The sign of the static gain gl(h,o) is dependent upon packed-
column parameters with the result that long packed columns show
nonminimum-phase behaviour, gl(h,o) having a sign opposite to
that of the high-frequency gain.

(d) Long tray-type columns (having sufficient trays to permit the
approximation of spatially discrete functions y(h,t) and x'(h,t)

3 by continuous functions of h and t) do not exhibit nonminimum-
phase behaviour, irrespective of parameter values, and therefore

permit approximation by multivariable first-order lag T.F.M's.
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Further conclusions concerning the effects of travelling waves on
the system behaviour were also drawn but these were found to be relatively
unimportant in long columms.

Because of the complexity in the analysis of spatially distributed
systems and systems of very high order, and because of the complexity
of the resulting transfer—function expressions it is interesting to
speculate as to whether the above noted behavioural characteristics (a)
to (d) can be reproduced by columns of minimal order and complexity.
Figs. 1 and 2 illustrate two such conceptual columns, the first of the
packed-type and the second of the tray-type. The crucial difference
between the two is that the packed column requires comsideration of both
the liquid and the vapour capacitance in each section which do not run
in equilibrium. The rate of cross—flow from liquid to vapour depends
upon the departure of the liquid and vapour compositions from equilibrium
and therefore the two capacitances are effectively separated by a cross-—
flow, or interphase, "resistance'. The minimal packed-column model
(ensuring liquids and vapours in each section to be thoroughly mixed)
therefore requires a total of 6 discrete capacitances (vapour and liquid
capacitance in rectifier and stripper plus the capacitances of the two
terminating vessels) for its representation and hence a 6th-order
dynamic model. The tray—~type model, however, requires only 4 discrete
capacitances for its representation since liquid and vapour are assumed
here to be in continuous equilibrium so that interphase ''resistance' is
zero permitting either the neglecting of the vapour capacitance or
lumping it with the liquid capacitance. A 4th order model therefore
applies to the minimal tray-type column.

The following sections of the report consider each type of "lumped"
system in turn, developing parametric T.F.M's in both cases, the impli-
cations of which for system behaviour are then considered.

Packed Column Modelling

The large-signal model

1
Taking mass balances on the four column capacitances HV’HR’HV and

HR'(shown in Fig. 1) in turn we get, if Y(Y') and X(X') denote compo-
sitions of vapour and liquid in the rectifier (stripper);

Hv'i(o) VY (0) =V y(0) + Fyz +k {Y (o) - Y(o)}

H

2

or

Hv Y(o) = qVSXe'(o) - V;Y(o) + ng.+ k. {Ye(o) - Y(o)} (1)
where

¥ = X/a + (o-1)/a 1

e

and } (2)

X! = ¥Y'/a }

e
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H. X(o) = L_X(1) - L_X(0) - k_{Y_(0) = ¥(o)}

or "
o, ¥ (0) = oL Y (1) - oL Y (0) - k_{Y (0) - ¥(0)} (3)
H! ¥'(0) = v_ Y'(D) -V, Y'(0) +k {X'(0) - X} (o)}
‘ oHY ké(o) =V, a X, (1) =V o X (o) +k (X'(0) - X (o)} (4)
and finally:
Hi X' (o) = L X(o0) - L X' (o) + F, 2 -k, {X' (o) - Xé(o)}
- H) X'(0) = oL, Y (o) = L, X'(0) + F,Z -k {X'(0) - X! (o)} (5)

where FR and Fv are the feed rates of liquid and vapour respectively, the
feed vapour composition being z and the feed liquid composition being Z.
k_ and ks are constant coefficients of crossflow from the liquid to vapour
phase and suffix e denotes "“equilibrium value". Vr (Vs) and L_ (LS)
denote vapour and liquid flow rates in the rectifier (stripper).

The terminal boundary conditions are the mass balance equations
pertaining to the accumulator and reboiler vessels (capacitances H and

H_ respectively) which may be written

Ha X(1) = Vr Y (o) -rVr X()
or

H_ o %8(1) =V, Y0 -V a¥ (1)+V (@=1) (6)
or

Y, (1) = {¥(0) + a~1}/a(l + T D) )

H /V (8)
a

where D = d/dt and Ta

and  H X'(1) =L_X'(0) - L Y'(1)

or Hb}'(;u) L, X'(0) = L_eot X! (1) (9)

since Xe(l) X(1) , assuming the reboiler to be in thermodynamic equilibrium.

Or, X!(1) =X'(0)/a{l + T, D} (10)
where T, = Hb/aLS (11)

Large signal steady-state solution

This solution is required to provide parameter values for the small
signal model yet to be derived. We shall assume the following symmetry of

operating conditions
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z = qf/l4a) s, Z=1/(1+y)

FSL = Fv =F
= - = (12)
VI' LS s Vr (},Lr , so that LS uvs
and F(= v Vs) g Lr = Vr(a - 1/o

Putting the time-derivatives in equations (1), (3), (4), (5), (6) and (9)

to zero and eliminating Ye(l) and X;(l) we get

from (1) , X\ (0) = Y(0) + (@=1)/(a*1) = (k /V ) {¥(o) - Y, (0)} (13)
from (3) , {Y(0)-1}/a - {Ye(o)-l} = (kr/Vr){Ye(o) -~ Y(0)} (14)
from (4) , X' (o) /g = X;(o) = (kS/Vr)'{X;(o) -~ X" (0)} (15)
and from (5), Y_(0) = X'(0) = (a=1)/(a+1) =(k /V) {X'(0) = X (o)} (16)

Dropping the argument (o), writing V = Vr, assuming for symmetry that

k, =k =k 7

and writing Ol > eand Q.= Lo By (18)

equations (13) to (16) become, respectively

X + Q- 2/@+) = (k/MQ, - Q) (19)
Q, = Qo = &/V)(@Q - Q) (20)
Gl S L = (/Y)Y = K1) (21)
and Q, * X' = 2/@#)=k/V) X - XY) _ (22)

From the symmetry of equatioms (19) — (22) it is clear that

Q=X"' and Q= Xé (23)
so that, from (19) and (22) we get:

@, * Q = 2/(atl) =(R/VXQE {0 (24)
and, from (20) and (21)
40, ~ B = (0k/V)(Q - Q) (25)

So that, eliminating Qe between (25) and (26) gives, reinstating the

argument " (o)"

20(1 + a) =1 = ¥(o] (26)
(1#g){1+q + (3a=1)a}

Qo) =X"'(o) =

where a = k/V (27)

and substituting back for Q(o) gives
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T e, 2(]-'!'0-3) . 15
Qe(o) N Xe(o) T (@) {1l + o + (Bu-1)a} 2 Ye(o) (28
and hence
= ¥! 1 = 2(c = 1)
T,(0) - (o) = X'(0) ~ X (0) = iy TinT(5aTya] Mg

Small-signal model

The large signal d.e's (1), (3), (4) and (5), upon eliminating
Ye(l) and Xé(l) using boundary conditions (7) and (10) become

H¥(0) = aV X1(0) -V Y(0) + Fz + k {Y (o) - ¥(0)} (30)

ofl, Ye(o) = L {¥(o)*(a~1)}/(1+1,D) - oL Y (o) = k(Y (0)~¥(0)}

al! X! (0) = VX' (0)/ (4T, D) = aV X!(0) + k{X'(0) - XL (o)} (32)
and

H) X' (0) = oL Y (0) = LX'(0) = L (a-1) + FZ = k{X'(0)=X, (0)}

Dropping the common argument "(o)" and differentiating implicitly
produces the following d.e's describing the variation of small changes
y,ye,x' and xé inY, Y., X' and Xé to small imposed changes v and £

in V and L respectively:
oo . = N :
Hvy v(aXe YY) + ere Vry + k(ye v) (34)
uHﬁyé= l(aQe = QN L., y/(1+TaD) = gk, = k(ye-y) : (35)

| (A 5 t - v - ! Toaye !
qu X, v(X' = gX'e) st /(1+TbD) uVS X + k(x xe) (36)
and

1 &t - Y - L R
Hy % z(aYe X' re 1) # 0y =YX k(x xe) (37)

(31)

(33)

in which the upper case symbols may be replaced by their steady-state values

derived in Section 2.1.1. for the investigation of very small perturbations

about the steady-state. From these solutions it is readily shown that

coefficients —(uXé -Y) = aYe -X'—a + 1

Ao (o-1) {(o-1) + (a+l)al

=R = GFDTo+l + (3a-Dal (38)
and that aQ - Q = -(X - aX ) '

é g 20"(0'. T 1)3 (39)

T To+l) Lo+l + (3a-1)al
Recalling conditions (12) for symmetrical plant operation and setting

H, = H) = oH, = o} £y (40)

for dynamic symmetry equations (34) to (37) become




- f -

(H/vr)y = —(R/Vr)v + Xé s A a(ye = %)

(H/V )y, = (8/VIL +hyy/a =y, - aly, = ¥)

(H/Vr)ié = —(S/Vr)v + hﬁ z' /o - xé + a(x'—xé)
and

(H/Vr)k' = (R/Vr)ﬂ Byl x' -~ a(x'—xé)
where h;(D)=1/(l+TaD) §
and h%(D) = 1/(1+TbD)

Now introducing vectors

: et
. ,
y +Xx
\ b
I By 1
A Ve Xe
]
Lye i xe
-y v +
and = v}
¥ - L

taking Laplace transforms in p w.r.t. normalised-time, T, where
t =t V/H

by adding and subtracting analogous equations of set (42) to (44)

a-1. 3 0
(p+1+a)gq- r=-Ru
0 , a+l
and i £ . g
(p+1l+a)r-(a +a)g=S5 T
= e 2
. 0 4 =L

provided the terminating vessels are similar such that

. A m
Ta = Tb =T
so that
he(P) =1/ {1 + (T' V/H)p}
or
he(?) =1/ + T p)
tvhere,

L

il

T! 1
Vr/H

, is the normalised time.constant of the two end-vessels.

(41)
(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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o T
( g =1
fp:# I+ a) + (L = a)(he& + a), 0 i
0 5 (p + 1 + a)2 =i (1+a) (hea_1+ a)
2 ’(a «~1)S-(p+1+ a)r : 0 u (56)

0 , -(a+1)s- (p+1+a2a)R

\:
so that, with this choice of input and output vectors the system T.F.M.
is completely diagonal, as a result of the physical symmetry of the

system. Thus, if G(p) is the system transfer-function matrix (T.F.M)

then
gl(P) 9 0
q =6 u-= 4 (57)
0 > 8, (@)
= (a=l) §=fp # 1 +4) R
where gl(P) T i+ ar (da {he(p)m=T} a} (58)
S (a+l) S+ (p + 1 + a) R
and - g,(p) = (p +1 + a)* - (1+a) {he(P)a“i+ a} 5

Interpretation of the packed-column model

Static Gains

For steady-state responses to step changes in v + g and v - 3 we set
p = o in equation (58) and (59) and substituting for parameter function R
and S, using equation (38) and (39) yields the following expressions for

the system's static gains:

(ea’ -4oa~- e} '
glco) =|O!. £ £a Ao 8 . E (60)
{1 +a +a (3 - 1)} (a+l)
where e = og=1 (61)
e 81 ew gl Jadd
and g, (0) = TR S LT (62)

from which it is clear that, whilst gz(o) is always negative gl(o) may be
positive or negative according to the system parameters, being positive
for large k/V (=a) and negative for small k/V. These results are in com—
plete accord with those obtained for the spatially-distributed packed-
columm modell.

High-frequency gains

It is obvious from (58) and (59) that

Lim{p g, ()= -R (63)
p -0

and Lim {p gz(p)} = - R (64)
p|+e

and inspection of the expression for R ,{ equation (38)} -shows this to be
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always positive so that, as in the case of distributed packed columms,
the high-frequency gains are both negative.
It is interesting to note here in passing that results (63) and (64),
i.e. the high-frequency performance of the system, is again obtainable
immediately from the original transformed d.e. of the system (50), by
merely ignoring all dependent-variable coefficients not involving the

highest power of p. Equation (50) reduces in this case to simply

Lim pg=-Ru (65)
|p[+e
which yields results identical to (63) and (64).

It is also important to note that, as with distributed columns, time-
constant T, and hence the end-capacitances, do not affect the high-
frequency behaviour of the system since R does not involve T or any
parameters related thereto.

Finally we note that if p is allowed to describe a clockwise infinite
semi-circular contour around the positive half p-plane the gil(p) and ggl(p)
will describe clockwise infinite semi circular excursions around the
negative half of their own complex planes as a result of the negative signs
of the high-frequency gains. With gl(o) negative, and gz(o) which is
always negative this therefore yields inverse Nyquist loci of the general
form shown in Fig. 3. With gl(o) " positive however the locus of gil(p)
must take the form shown in Fig. 4, (accepting the system to be open-loop
stable), and requiring the presence of a positive zero in g, (p) because of
the anticlockwise encirclement thus produced. It is therefore necessary

to confirm the presence of a positive zero in g, (p) under the condition
P 1

_ gl(o) > 0 and its absence when gl(o) # 0 to check that the system is indeed

open-loop stable.

Location of system zeros

Returning to equation (58) and (59), since S and R are both positive

{see equations (38) and (39)}, it is clear that gz(p) can only be made zero

by negative values of p : as expected, whereas, for gl(p) to be zero, it

requires that
p R=(a-1) S - (a+l) R (66)

and, on _substituting fur R and S , this relation becomes:

2
_ Ea =l4ga- ¢
P (a~1) + (a+l)a (67)

the solution clearly becoming positive omnly if gl(o) is positive - see

equation (59). We therefore conclude that the system is indeed open-loop
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stable for either sign of gl(o) but that gl(p) is a non-minimum-phase
system when gl(o) > 0. This conclusion again coincides with the
findings for spatially-distributed packed-columns.

Modelling the tray—column

Taking mass—balances for the more-volatile component of the binary
mixture for each of the two trays shown in Fig. 2 yields the differential

equations:

H X(o) = L {X(1)-X(0)} + V_Y' (o)~ V Y(o) + F 2 (68)
and

H X'() = VY'Y (0)} + L X(o)-L X' (0) + F,2 (69)

v . . + .
where Hr and HS are the molar liquid capacitances of the trays in the
rectifier and stripper respectively. Treating the accumulator and reboiler

vessels similarly yields:

H k() = Vr{Y(o) - X(1)} i)
or

X(1) =Y()/(1 + T_D) (71)
where

5 - Ha/Vr (72)
and

B X(1)'=L_{X(e) - ¥'(1)} (73)
and since the reboiler is in equilibrium:

Y (1) =a X'(1) (74)
so that

Y(1)' = X"(0)/(1 + T,D) (75)
where '

Tb = Hb/aLS : (76)

where I-Ia and H are the accumulator and reboiler molar capacitances.
Now tray-column models assume each tray's liquid to be in continuous
equilibrium with the vapour above it so that, in this case,
Y = X/a + (a-1)/o (77)
and

¥Y' = o X' (78)

T Vapour capacitances are generally neglected in tray column models
but could be lumped with the liquid capacitances slightly modifying
equations (68) and (69) with insignificant consequences - see
introduction.
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assuming the usual piecewise linear approximation te hold for the vapour/
liquid equilibrium line. The use of these two relationships together with
boundary conditions (71) and (75) therefore allows all dependent variables
other than, say, Y(o) and X' (o) to be eliminated from the tray equations
(68) and (69) giving

2 il 13 Fg _ 1 i
Hru Y(o) = Lr{(a 1) (1-Y(o)]} + (ha l)Y(o)Lr + Vs o X' (o) VrY(o) + sz
and
'f o o ] s 1 = 4 1
. H, X'(o) = vs{(a X' (o)} + (h, ~1)X' (0)V_ + Lr{aY(o) a+l} L.X" (0)+F,2Z
where again ' b s (79)
: H (D) = 1/(L + T D)
and (80)
Hb(D) =1/1 + TbD)
As with the packed column we now assume symmetrical feed conditioms, viz:
7. =l R ; z =ol Z
so that
z = af (1+a) and Z2 = 1/(1+a) (81)

which, on substitution into the differential equations above and noting that

| NS e and FQ =L =1L (82)
v r s 8 X
gives
uHrY(O) ot Y(O)}{Lr(u-l) ik (ha“l)Y(O) L.
L/
+ Y X(o) Vr/(1+a) v, a/ (1+a) (83)
and
s f < § = _ ) ' N
H /aX(o) = X (0){V_(a-1) + L.} = (b -1)X(0) vy
+ L. a{l-¥(o)} = L _/(1+a) = L a/(1+a) (84)
4 4,1.1 Large-signal steady~state solution
Assuming the same conditions (12) to apply for symmetrical column
¢ operation as were assumed for the packed-column analysis, setting
Q) 21 - ¥(o) (85)
then, on putting the time derivatives in d.e.'s (83) and (84) to zero,
we obtain
Qo) (2a=1)/a + X'(0) = 2/(14a) =0 (86)
and
X' (0) (2a-1)/a + Qo) = 2/(1+) = 0O (87)

from which we deduce that

Qo) = 1-Y(0) = X'(0) = 20/(3a-1) (a+1) (88)
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‘ It is interesting and reassuring to note at this point that the steady
state~solution (26) obtained for the packed-column approaches the tray

column sclution (88) as
a (=k/Vr) + (89)

i.e. as the packed-column sections approach near—equilibrium conditions

A 4.2 Small-perturbation model

Differentiating implicitly the large-signal d.e's (80) produces the

following relationships between the small composition changes y(o),x' (o)

. and the imposed flow changes v,&, about the steady state:
= = 1]
uHr y (o) Y(D)(&Lr + Vr) * Lrha(D) y(o) + Vs o x' (o)
+ e+ v){1=-Y(0)} + oX'"(0)v = v (90)
and .

- ()" = ' - ! -
QHs/u)x (o) b4 (O){OLVS + LS} Vshb(D)x (o) Lr o y(o)
+ (ev+ VX"(0) + & afl -~ Y(0)} -2 (91)
where again, e=q ~ 1
Substitution of the symmetrical steady-state working condition (12)
and the resulting solution (88) for Y(o) and X' (o) into (90) and (91)

produces the matrix equation:

hé(D)/& = (2+TtD) 5 1 y (o) 1 3N -20./ (a+1) v
= g (92)
Vrz3a—l)
o) R {he(D)/a ™ (2+TtD)} x' (o) ~20.f/ (a+1) 1 3
L = o
where t aHr/Vr also set Hs/aV
(93)
v = T o v
and he(D) = ha(D) hb(D)
. Introducing the now familiar vectors of [}omposition Neite":

composition "total"| and [flow "total" and flow "tilt"|, viz

y(o) - x'(o) 1
qle) = s w=g | (94)

y(o) + x' (o) v - %

and taking Laplace transforms in p w.r.t normalised time T(=t/Tt) thus

allows (92) to be expressed
q(o) =G(p) u (95)

where T.F.M. G(p) is again diagonal:
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g;® , O
g(p) % (96)
0, g,
where

g, () = /{3 + p = h(p)o '} (3a-1) (a+1) 97)

g,(®) = ~(Ba+l) /{1 +p - he(p)uml}(3a~1)(u+1) (98)
where

he(p) is of course given by
h,@) = 1/ + B /1) (99)

which is readily shown to be identical to the related expression for the
packed column {equation (54)}.

Comparison of packed—-and tray-column models: Conclusions

Low=frequency behaviour

Setting p to zero in (97) and (98) produces the following expressions

for the static gain of the tray-type column:

g,(0) = a €/ (Bu-1)% (a+1) (100)

and

]

gz(O) = a(3a+1)/(30-1) (a+1) (101)

the expressions agreeing precisely with the limiting values of the equivalent
static gains for the packed colummn as a,(=k/Vr), tends to infinity: as

would be expected. Unlike the case of the packed-column however, gl(o) for
the tray—-column can only be positive. Both these findings are in complete
accord with the analytical results obtained for spatially-distributed énd
multi-tray column. i

High-frequency behaviour

Now by substituting for terminal transfer-function he(p) in (97) and

(98) and denoting the normalised time constant of the end vessels by T,»

- z . T/Tt | (102)

gl(p) and gz(p) may be expressed in the following forms for the tray-type

column
(L +7Tp)

Il

gl(p) (103)

1+ {a(3T_+1)/Ga=D Ip + {T_a/(Bu=1)}p”
s g,(0) (1 +1Tp)

g, () = 3 (104)
1+ (af @(Te+1)p + (aTe/ £p
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from which it is readily deduced that
Limp g; (®) = g (o) {(3-1)/u} (105)

and Bhoa =

Lim p gz(p) = g2(0) (e/a) (106)
lef = =
so that the signs of the high-and low~frequency gains are identical in
the case of both elements of the T.F.M. for the tray-columm. This
contrastswith the case of element — 1 of the packed~column's T.F.M.
which always exhibits a negative high-frequency gain and a low-frequency
gain whose sign is parameter—dependent. Again identical conclusions
were drawn from the earlier studies of "long" columns of the two typesl’ ;
It is also obvious, from (103) and (104) that again end-capacitances
have no effect on the high-frequency behaviour of the 'short' tray-type
column, as in all the cases studied previously. Finally it may be con-
cluded that, because of the non-minimum-phase nature of the "short"
tray-type column's T.F.M., a multivariable first-order-lag approximation
should be particularly applicable+, as was found to be the case with
"long" tray—types. The inverse Nyquist loci for the short tray type column

will therefore take the general form illustrated in Fig. 5.

i This conclusion is further supported by the fact that the phase-
lag of g, (p) and -g,(p) can never exceed 90° as is quickly proven
from (103) and (1043.
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‘List of Symbols

]

k/Vr

initial slope of equilibrium curve approximation

g =1

liquid molar feed rate

vapour molar feed rate

transfer~-function matrix (T.F.M.)

diagonal elements of G

transfer function of accumulator and reboiler

h; and hé normalised

liquid capacitances of rectifier and stripper (packed—columm)
vapour capacitances of rectifier and stripper (packed-column)
liquid tray-capacitance of rectifier and stripper (tray-column)
accumulator and reboiler capacitance

evaporation rates for rectifier and stripper =k when equal
molar flows of liquid in rectifier and stripper and small
changes therein.

Laplace variable for transforsm w.r.t T.

vector of difference and total composition changes

function of packed—-column parameters

vector of difference and total equilibrium composition
changes (packed-colum)

function of packed-column parameters

time

normalised time

tifte~conatants of accumulator and reboiler

values of Ta and T, when equal

b
normalised value of T' (packed-colum) = end-vessel time-
constant (tray-column)

tray time-constant

normalised value of T (tray-column)




u =
Vr,Vs,v =

X(0) ,X'(0) =
x(0),x' (o) =
Y(0),Y"' (o)
y(0),y' (o)
Ye(O)Ké(O)

]

1

ye(O),xé(0)=
X(1),x" (1)
x(1)5x" (1)
Y1), ¥ (1)
y(L),y' (1)

Y (1), x (1)
Yo (1), x (1)
& =

Z =

st TR A L

= L.
vector of total and difference of vapour and liquid flow
changes

molar flows of vapour in rectifier and stripper and small
changes therein

liquid mdfractions in rectifier and stripper

small changes in X(o) and X'(o)

vapour moplfractions in rectifier and stripper

small changes in Y(o) and Y'(o)

equilibrium values of vapour and liquid composition associated
with X(o) and Y'(o)

small changes in Ye(o) and Xé(o)

as above but pertaining to accumulator

and reboiler respectively

vapour feed composition

liquid feed composition
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