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A natural extension of the results of Kouvaritakis and

MacFarlane on the calculation of multivariable zeros is described.

: p 142
Kouvaritakis and MacFarlane ’" have suggested a conceptually
simple numerical technique for the calculation of the invariant
zeros of the f-input/m-output linear, time-invariant left-invertible

system S(A,B,C),

Ax(t) + Bu(t) . x(t)yERY
cx(t) , TWER | sl (1)

x(t)

y(t)

when, in particular, m > %, rank B = £, rank C = m. The purpose
of this note is to describe a natural extension of their results
that can make possible a reduction in dimension of the defining
relationships.

%*
Let k be the uniquely defined integer >1 such that

i_]. ) *
CA-"Be=bD 4 Leicsk-=1 " CX B#0 (2)
Lemma 1
The subspaces
A A k-1
VO = {0} , Vk = R(B)@AR(B)@..EBA R(B) (k>1) (3)

*
have dimension k& for k in the range O<k<k . By suitable choice

of subspace W, the state space has the direct sum decomposition

B =v,@vedw (4)
k .

* -
where Vv is the maximal {A,B}-invariant subspace in the kernel of C.

%
o 2 k -
Sufficient conditions for W = {0} are that m = ¢ and |CA 1B| # 0.

~

Proof

Follows directly from theorem 5 in ref. 3.




This fundamental lemma leads to the following construction

Lemma 2

Let 1fkfkh and, for each complex scalar A, define

k )
so i=1

5, (0 = {xg-:@ ker CA” " : (AI_ - BxE v} (5)

Then
k -1

5, #w VB ( Vk_lr\{(;;)ker CA™ 1) (6)
where w (1) = {(AIH—A)-IR(B)} N ker C.
Proof

: 3 * i .
It is known™ that ml(A)C:U and, using equation (2),

k .
" i-1
. AT oo
v < C:;D ker CA By definition ( In A)ml(h)c:,v — Vk P

1
which we obtain wl(A)C: Sk(l). It is also easily verified that
(AIn—A)Vk_lc: Vk and hence that
L3 i-1

0 (V@ V,_ A {,:1\ ker CA™"}lezs, (1) (7
(the sum being direct by lemma one) ., Now take xEE_Sk(A) and
write

(AT -A)x = Bay, + ABg_ + ee + Ak-IBa (8)

n 1 2 k

This expression can be written in the form

- TR k-2
(AIn A) (x+A Bak) = Ba1+ABa2+ ew F K B(uk_1+hak)




and hence (by induction) in the form

(AIn—A) (x-b) & R(B)

for some be V ie XHbEElul(A). In particular, it is seen that

k-1
b& Sk(l)+ml(k) = Sk(A) from which

K .
I—~1
bEV,_ N {ler ca™ 4

and hence

1

k .
xCu, W DIV_ A ker CAT "}}

i=1

which reverses the inclusion in equation (7). This proves the lemma.

We obtain immediately the following geometric characterization of

the invariant zeros of S(A,B,C).

Theorem 1
*
Let I<k<k . Then the complex number A is an invariant zero
of S(A,B,C) if, and only if,

1

dim § () > dim V. _, N {fk\ker cat (9)

L T

Proqg

Follows directly from lemma 2 noting3 that A is a zero if,

and only if, ml(k) # {0}.

This geometric formulation can be converted into algebraic relations
paralleling those of Kouvaritakis and MacFarlane by the following

constructions. Define the matrices




CA (10)

%
when, taking I<k<k , lemma one indicates that we can define full
rank matrices Nk’ Mk of dimension (n-k#)xn and nx(n-rank Ck)
respectively satisfying the relations

NB =0 ; cM =0 (11)

Lemma 3

*
rank Bk k% < rank Ck » 1<k<k , equality holding if m =8,

Proof

%
rank Bk ke, 1l<k<k , follows directly from lemma one. iR
m = £ then a dual argument on the system S(AT,CT,BT)yields
rank Ck = km as required. Finally, taking m>% and choosing an

2xm matrix K such that the square system S(A,B,KC) is invertible,

we see that

*
ki = rank KCA < rank Ck 5 lfkfk

as required.

Defining, for notational convenience, No = In, we now prove the

following main result of this paper.

Theorem 2

The complex number A is an invariant zero of S(A,B,C) if, and

only if,




rank Nk(AIn-A)Mk < rank Nk—le (12)

for any lgkfk“.

Proof
The proof is obtained by evaluation of the expressions occurring
in equation (9). Firstly, we see from the definitions and lemma

three that

k F
. 3 1=1
dim Sk()\) dim {xEler CA : Nk(?\I Ax =0 }

dim ker Nk()\In~-A.)Mk

rank Mk - rank Nk(AIn_AJMk (13)

Secondly, we can, without loss of generality, assume that Mk = [Xk,Yk

k X
where the columns of Xk are a basis for Vk_ln'((’\\ker CA;_I} and
1=1

= 10k, i = ¥
ker Yk {0} It follows directly that rank Nk-le rank Nk—lYk
Consider now the relation Nk—lYkB = 0, We see immediately that
k ;
=1 . G,
YkBEE‘Vk_lr\{ o ker CA™ 7} ie YkB = 0 (from the definition of Xk

and Yk) and hence B = 0. It follows that

k .
, s s |
rank Nk—IMk = rank Mk dim Vk—lr‘{r;:;\kﬁr CA } (14)

The theorem follows by combining equations (9), (13) and (14).

1- .
The results of Kouvaritakis and MacFarlane 2 are obtained

by cetting k = 1 when equation (12) reduces to

rank Nl(AIn~A)M1 < rank Ml =n-m (15)




or, in the important case of m = £ when (Lemma 3) the matrices

o
are square, we recover the well-known relation

| AN, M —-NIAM1| = 0 (16)

1

%*
For those systems with k >1, the choice of k>1 represents a
reduction in dimension of the relationships defining the zeros.
The rank conditions in equation (12) can be simplified when

%
k - ; ;
m = £ and |CA 1B] # 0. In this case, applying lemma three

%
rank Mk = rank Nk%n—km, 1<k <k, Noting that (using equation

(2) and lemma one)

K )
~1
A | ker CAY '} = ¥ (17)
L (::D min{(k—l),(k*—k)}

*
and that dim Vk = km, 1<k<k , then a combination of equations (9)

and (13) indicates that A is a zero of S(A,B,C) if, and only if,
i *
rank Nk(AIn—A)Mk < n~km—min{ (k=1) ,(k =k)}m (18)

* % 5
In particular, if k = k this reduces to the (n-k m)x(n-k m)

determinental relationship

2 (0 5 N M, - N A = 0 (19)
k k k k
k*
As |CA _1B|% 0, then it is easily verified that N ,M , is non-
k k j:
singular and hence that, if N P is replaced by N g = (N 4 *) 1N -
k k kL k& k

in equation (19), then the invariant zeros are the eigenvalues of

= ’ : . " p 1
N AM . This result is a direct generalization of the result
kk

that the invariant zeros are the eigenvalues of NlAM1 if

|CB| # O and we choose N, such that N.M, =T _ .




Finally, note that equation (19) will also give the correct
algebraic multiplicity of each zero. To prove this, note that
the above discussion indicates that %§A) has degree equal to
n—k*m. The decomposition of lemma one makes possible the
consideration of arbitrarily small perturbations § to A such that
Sv*C: v* and GEV *] = {0}. It is easily verified that the number

: k PP RRgeng % *

of zeros including multiplicities (ie” dim v = n-k m) is unaffected
by any such perturbation, that the invariant zeros vary continuously
with § and that both N , and M 5 are unchanged. The invariant

k k
zeros are hence defined by the relation

2, (A) = AN M, - N, (A+O)M |
k k k k
=N LM LT, - N L (Ase)M |
k k n~k m k k
s ok (20)

Note that the degree of the polynomial n—k*m_is independent of &
and that the n*k*m zeros are distinct for "almost all' choices of §.
A simple continuity argument mow proves that zo(s) provides the
correct algebraic multiplicity.

To illustrate the results, consider the system defined by

(

0 1 0 i 0 g 0

6 =0 1 0 0 0070

1L 2 1 0 3 =l 0 1

A = 3 S | FR 0 1 0 0 o
i 9 0 1 0 1 g 0

3 0 © 0 c 0 1 0

1 2 1 0 1 2 P |

=2 0O 0 L @ 0 0 =4




(21)

*

The system has one zero at the point A

= 3.

-4 and k

Consider now the application of equation (12) to the calculation

Take initially k = 2, then Cl = C,

of the zero.

(22)

W

yielding

(23)

o)



Substituting into equation (12) indicates that A is a zero if,

and only if,

0 0 0 0
0 o o0 | 0O 0 0 O
rank 0 ¥ 0 < rank d £ B g (24)
o -1 0 0 0 0 0 (0]
0 0 0 A+4 0 1 0 0
0 0 0 1
ie » = -4 is the only zero. Considering now the case of k = K =4
we obtain
0] 0 0 1 0 0] (0] 0
N3 " lo o o o o o
3
. T _ 0 0 0 0 0 0 0 (25)
3 0 0 0 0] (0] 1

Substituting into equation (12) indicates that A is a zero if, and

only if,

0O O
0] 0
rank [ 0 st } < rank o @ (26)

0 0 |
0 1 C;*l ! J ‘,‘;';J"‘Ji

again verifying that A = -4 is the only zero of the system. RISTRPANAR
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