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Abstract

This note outlines a procedure for determining the asymptotic
behaviour of the optimal closed-loop poles of a time-invariant
linear regulator as the weight of the input in the performance
criterion approaches zero. It is based on the systematic use
of dynamic input/output transformations to the relevant return-

difference. A sensitivity property of the pivots is noted.




I INTRODUCTION

It is well-known [11 that the stabilizable and detectable
time—invariant linear system S(A,B,C)
A x(£) +Bu(t) x(t) (=R

L
cx(t) , yWOER , uwER (1)

x(t)

I

y(t)

with state feedback controller minimizing the performance criterion

(s

Jo=of {yT(t)Qy(t) i p_luT(t) R u(t)}dt (2)
o}

(where both Q and R are positive definite and p>0) has closed-loop

poles equal to the left-half plane solutions of the equation,
T
|1E +p G (-s) G(s)| =0 (3)
where

e e Q% . (5L B iE

B3l—

(4)

A fairly complete theoretical analysis of the unbounded
solutions of equation (3) as p»+~ has been provided by Kwakernaak {1]
but computational procedures were not suggested until quite
recently [2,3]. However, in [2], proofs are provided for only the
first few orders of infinite zero and the techniques of [3] are
primarily suited for systems with small numbers of inputs. This
note provides a complete analysis and computational method for the
case of S(A,B,C) left-invertible and hence m>% and |GT(—5) G(s)l Z 0.
The case of S(A,B,C) right—invertible can be deduced by replacing
equation (3) by the equivalent equation lIm+G(s)GT(~s)| = 0, The

approach used is that described in references [4*6}.




IT ASYMPTOTIC BEHAVIOQUR OF THE OPTIMAL ROOT LOCUS

The following new lemma is fundamental

Lemma: Let S5(A,B,C) be left-invertible with G(s) given in equation
(4) and define Q(s) = GI("S)G(S). Then there exists integers
q>1, 15k1<k2<..<kq and dj, 1<j<q, a real nonsingular transformation

T1 and unimodular matrices of the form

L(s) = rId o/ S . BRI
1
O(s_l) Id
: 2
-1 -1
sl e R ITR . Ny R
q
Mls). =1 bls ) | . . Ofa 5
d
1
0 I F
d, s (5)
O(sul)
0
\ 0 Id J
q
such that
=1 —(2kq+2)
L(s)l1 Q(s)flM(s) = block dlag{Qj(S)}lfij + 0(s )

(6)
where the djxdj transfer matrices Qj(s) have uniform rank 2kj, 1<j<q.
Moreover it is always possible to choose Tl to be orthogonal,
i T
L(s) = M (-s) and
T
(

Qj(s) = Nj —s)Nj(S) (7)




for some mxdj left-invertible transfer matrix Nj(s), 1<j<q.

Remark: The concept of a uniform rank system is fundamental to
root-locus theory [4}—[6]. A square transfer function matrix K(s)

; ; : z k : S
has uniform rank k if, and only if, 1lim s K(s) is finite and
§ |
nonsingular.

Proof of Lemma: The para-Hermitean structure of Q(s) ensures the
2k
pe 1 such that 1im s "Q(s) is finite
s[>
and non zero and equal to a real, symmetric matrix Pk . If this

existence of an integer k

1l =

matrix is non-singular, the result is proved with T1

Suppose therefore that d1 4 rank Pk < ¢ and let T1 be a real
1

orthogonal eigenvector matrix such that

; —(2k1+1)
Q. (s) 0(s ) (8)

T 1
T, d(s)T = —(2k_+1) -(2k_+1)
1 1 0Cs 1 5 it 1 )

where Ql(s) is alxdl and of uniform rank Zkl. Noting that this
matrix is para~Hermitean, it is easily verified that it is possible

to construct a unimodular matrix of the form

MI(S) = o (9)

such that

Q. (s) 0

T T o
Ml (-S)Tl Q(s)TlMl(s) = (10)

L9

ik
0 Hz(s)

i T
However, HZ(S) has a decomposition of the form HZ(S) =V (-s)V(s)
where V(s) is the mx(ﬂ—dl) matrix generated by the last E—dl columns

of G(S)TlMl(s)' In particular, the assumption of left-—invertibility

L(s) = M(s) = I

.

Z




ensures that !HZ(S)I # 0 and hence that V(s) is left-invertible,

Applying a similar procedure to HZ(S)’ and continuing by induction,

it is possible to find q, dj(lfij) and unimodular matrices of the form

M) = (I 0 0 ,» 1352971
il
0
(11)
I 0
dj_1
~1
Id. 0(s ™)
J
2 0 bpd, = oom il
1 T
and real orthogonal matrices
= [ = 1 < -
I, I, 0 v 3 , 1<j<q-1
]
0]
(12)
1 0
del
0 .0 T,
di J
such that
T T T T T T
- i = s M =
Mq_l( S)Tq'-licl“?.( S)Tq_2 M, ( s)T1 Q(S)TlMl(S)
Ly ) s ~ ’ " :
q—qu-l(S) block diag {Qj(s);lEqu (13)

where Qj(s), 1<j<q, are of uniform rank 2kj, 1<j<q. The existence

of kj at each stage of the decomposition is guaranteed by the left-

invertibility assumption.




Noting that we can replace T, by T1T without changing

1 2...Tq_1

the structure of the Mj(s), we can set Tj = IR’ 2<j<q-1 when

equation (6) holds with

M(s) = Ml(s)Mz(s) s Mq_l(s)
L(s) = Mz_l(—s) e M (ms) 2 M (-s) (14)

Finally the decomposition of equation (7) is wvalid with Mj(s) equal

to m.xdj matrix generated by the d1+d2+..+dj_1+1, d1+d2+. '+dj—1+2""

dl+d°+"'+dj th columns of G(S)TIM(S). This completes the proof

of the lemma.

A comparison of the lemma with previous work [4], [61 indicates
immediately a main result of this paper ie that the transfer matrix
Q(s) = CT(~s)G(s) satisfies the assumptions required for the
application of the methodrof dynamic transformation to the
calculation of the orders, asymptotic directions and pivots of
the unbounded roots of equation (3). The technique is simple and
numerically efficient and does not suffer from restrictions inherent
in other techniques [2], [3].

It is possible to obtain more detailed information on the

general structure of the optimal root-locus,

Theorem: The optimal root-locus of the left-invertible system

S(A,B,C) with control minimizing the performance criterion (2) has

unbounded branches as p++e of the form

1

.
= + + g,
sjlr(p) P J M F W EJRI(P)




lim Ejgr(p) = 0 15£5kj 3 lfl”fdj > 1<jzq (15)
peabn

where each oL is pure imaginary and the n.
j

igr’ lfﬂfkj, take the

form n. = A, u. where A, 1is real and strictly positive and the
G U = 14 T

u 1<R§kj, are the distinct left-half-plane 2kjth roots of

g AS
s
Bt s
Remark: In other terminology the optimal system root—locus has only

even order infinite zeros with pivots on the imaginary axis of

the complex plane.

Proof of theorem: Following the results of [4], [6j the lemma

indicates that the unbounded solutions of equation (3) can be split

into groups of even orders 2k 2k2,...,2kq. The more detailed

1!
structure of the 2kjth order roots is assessed by consideration

of the unbounded roots of

!Id. + ij(s)| = 0 (16)

J

In particular, equation (7) and the uniform rank structure of Q.
J

indicates that

—2kj () —(ij+1) 45y —(2kj+2)
Qj(S) = g Pk_. + s PE.+1 + 0(s ) (17)
J ]
() . o . 6
where Pk 1s real, symmetric and nonsingular and Pk +1 18 real
: et e .
and skew-symmetric. Also, suitable modifications to T, enable us

1
(1)

J
that are negative if k. is odd and positive if kj is even. The
4

to assume that P is diagonal with real, non-zero diagonal elements

theorem is now easily proved by direct application of [4], [6],

separating out only the left half plane branches and noting that




the {ajr} must be pure imaginary as they are the eigenvalues of
(3)

diagonal blocks of Pki+1

multiplied by real numbers. The diagonal

blocks are, of course, real and skew-symmetric.

We can obtain a little more information on the structure of

the pivots {ujr} as follows:

Corollary: The pivots are 'almost always' equal to zero.

Proof: If the eigenvalues of P

ij) are distinct (the generic case!)

i
then the pivots are equal [4], [6] to a real number multiplying the

(3)

diagonal terms of ij+l'

The corollary suggests that the optimal system root-loci may suffer
from a sensitivity problem analogous to that noticed in more
general studies [6]. This is easily illustrated by considering

the case of

(1+€) Y
G(s) = 8 s2 (17
O i
when
2
- 1 —(1+€) 0 1 0 -(1+e) 2y
G (=8)G(s) = -5 + + 0(s )
s 0 -1 ] (1+g) 0

(18)
has uniform rank two. Application of the algorithms of [4] and [bJ
yields the left~half plane infinite zeros of the asymptotic forms

for g O




1

1 1
s« - p® + B8 v @ =~01 Rsdp” % e, (p)

lim e.,6p) =0 , = 1,2 (19)
pre
and, for ¢ = 0,
b .4 ]
o - = = - -
s pr+ 5 te P, s P 5 * £,(p)
lim e.(p) =0 s = 12 (20)
P d

Note the discontinuous behaviour of the pivots in the vicinity of

e = 0.

ITT SUMMARY

It has been shown that a recently derived computational method
[4], [6J can always be applied to the calculation of the asymptotic
behaviour of the root-locus of optimal linear regulators. The
analysis has alsco demonstrated that the optimal root-locus has only
even order infinite zeros with pivots on the imaginary axis of the
complex plane. In particular the pivot: are almost always (but
not always) equal to zero suggesting that the optimal root-locus
has sensitivity characteristics similar to those noted in multi-

variable root-locus studies [6].
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