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Abstract

This note outlines a procedure for manipulating the asymptotic
directions of the optimal closed-loop poles of a time-invariant
linear regulator as the weight of the input in the performance

criterion approaches zero.

(1,2)

It is known that the stabilizable and detectable f-input/
m-output time-invariant linear system S(A,B,C) with state feedback
controller minimizing

o

I = [ {yioey®) +p WT(e)R ule)}dt LD
(8]

(where both Q and R are symmetric positive definite and p>0) has
closed-loop poles equal to the left-half plane solutions of the

equation
T
|1, +p G (-9)6(s)| = 0 {2

1 1
where, if Q? and R® the symmetric, positive-definite square-roots of
Q and R respectively

-1 __12.

1
G(s) = QZC(sIn - A) "BR 6o 3)
. (1-5) ;
Attention has been focussed on the unbounded solutions of
equation (3) as p»+», which take the form(z)
/g .
. - J
Sjﬁr(p) P njzr " OLjr " Ejﬂr(p)
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for suitable choice of integers q, kj and dj, 1<j<q. Each mjr is

pure imaginary and the 7.

JAir

» 1<f<k., take the form A. u. where A,
== Jjrif JE




is real and strictly positive and the u.‘

» 1<@<k,, are the distinct
k135 T3

left-half-plane 2k th roots of (-1) J

It is the purpose of this note to point out a systematic method
for the systematic modification of the Q and R matrices to provide
the required asymptotic properties. More precisely, for the case
of m>% and S(A,B,C) left-invertible, we consider the systematic
modification of the R matrix to change the asymptotic parameters Aj
15ridj, 1<j<q, into 'desired' parameters ijr’ lfrfdj’ 1<j<q. The

(6)

results represent a generalization of recent work from the case
of m = 2 and |CB[ # 0 to the case defined above.

The following lemma is fundamental:

Lemma 1: Equation (2) remains valid if G(s) is replaced by

RN C(sIn—A)_lBV LSy

where V is any matrix such that VVT = R_l.

Proof: It is easily verified that VVT = Rfl if, and only if,
=
V = R *U for some orthogonal matrix U. The result then follows

from the identity |I£+pGT(~s)G(s)| = |12+pGT(—s)é(s)].

We also need the following construction:

Lemma 252) There exists a real orthogonal transformation T. and a

1

unimodular polynomial matrix of the form
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such that

MT(—S)TlTGT(-s)G(S)TIM(S) = block diag {Qj(s)}Ifij

-(2k +2)
+ 0(s 9.y 8T )

where the djxdj transfer function matrices Qj(s) have uniform rank(7’8)

ij and take the form NjT(~s)Nj(s) for some mxdj left~invertible

transfer function matrices Nj(s), 1<j<q.

(7

In fact, applying known techmniques , the characterization of

equation (4) follows quite simply(z). In particular, the following

result is easily proved: )

2k,
Lemma 3: The real, strictly positive numbers Ajr 3, 1§r§dj, are

the eigenvalues of the real, symmetric positive-definite matrix

(2. 2k. k.
] lim s qu<s)(—1) J L8y

||

<

Consider now the real constant nonsingular matrix

L = block diag {Lj}ljij val9)

where the nonsingular matrices Lj have dimensions djxd,, 1<j<q.

Multiplying equation (7) from the left and right by LT and L

respectively yields

Yy i
M(‘S)TlT(TlLTTlTGT(—s)G(s)TlLTlT)TlM(s)
-(2k +2)

= block diag {LjTQj(s)L.} * 00, 9 3§ ... (10)

i 1<i=zq

where M(s) (defined by M(s)L = LM(s)) has the same structure as M(s).




In fact, we obtain the following main result of this paper:

Theorem: If G(s) 2 G(S)TlLTlT, then the solutions of the relation

1, + p€' (=8)G(s)| = O vis C11)

characterize the stability of S(A,B,C) with state feedback controller
minimizing the performance criterion of equation (1) with R replaced

by RO where

=

5 - - |
R.0 1 R %TILLTTITR 2 , e (il2)

Moreover, the unbounded solutions of (11) have the form of (4) but
where, in particular, the parameters ljr’ 1Erfdj’ 1<j<q, are replaced

by the real, strictly positive parameters Ajr’ 1§r§dj, 1<j<q. The
=~ 2k,

real, strictly positive numbers Ajr J, 15r§dj, are the eigenvalues
of
(2k.) (2k.)
p i i
: = L 2 I 5 et 13)
QJ J QJ J
1<jzq.

Proof: The first part of the result follows from the definition of
G and G, bearing in mind lemma 1. Equation (10) then implies that

G satisfies lemma 2 with M and Qj’ 1<j<q, replaced by M and

(2) then indicate that the

éj = LjTQjL, 1<j<q. Standard results

general characterization of equation (4) remains valid with (lemma 3)
2k,

A._s l<r<d., replaced by the eigenvalues of lim s jL.TQ.(S)L. = L.TQ.

s g sl vt ke

The theorem provides an explicit method for manipulation of the
asymptotic directions of the optimal root-locus. For example, suppose

that a given choice of Q and R yield infinite zeros with, in particular,

(2kj)

BRI
J




parameters_Ajr, lfrfdj, 1<j<q. These can be obtained by

application of known numerical algorithms(2’7) to compute (amongst
(2k.)
other things) the matrix T1 and the Markov parameters Q. s ST,

and subsequent application of lemma 3. Suppose that it is desirved

that the parameters {Ajf} be replaced by Ajr’ lfrfdj, 1<j<q. Write,

(2k,) 2k, -

Q. J = u, diag {n, N} U g (185

J 3 Jjr 1<r<d. J

=
(2k.)
where Uj is the orthogonal eigenvector matrix of Q. and set

» kj kj i

Lj = Uj diag {Ajr /hjr }lfrfdjwj 5 - ASHEG S cLE)

where KE is a real orthogonal matrix, 1<j<q. It is trivially

verified that

wr; GAkR) - 2R T
Q. J = w. diag {r. I} W." , lsisq..e(16)
J ] jr 1<r<d, J R
==
and hence, by the theorem, that the desired objective has been

achieved.
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