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Abstract: This paper gives an account of various challenges that are faced in the design and development 

of complex control systems and software, within the automotive and aerospace domains, in particular, 

which are highly relevant to the incorporation of active mechanisms for dynamic systems. It also 

analyses what new recent advances are helping some of these being overcome in the research and 

engineering environments. 
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1. INTRODUCTION 

Today’s systems, irrespective of the domain, whether 

automotive or aerospace, for example, are getting ever more 

complex due to a number of factors. In the automotive 

domain, a proliferation of electronics and software-intensive 

features over the last decade is enabling the implementation 

of new requirements in automotive vehicles for achieving 

greater comfort, safety, reduced emissions and many others. 

In the aerospace domain, aircraft engines are becoming safer, 

quieter and more efficient, through the introduction of new 

systems involving control systems and software. 

Incorporation of active mechanisms for dynamic systems is a 

challenging new area which requires the fusion of smart 

material based structures with computational designs that are 

not only efficient but also of very high quality. Complex 

problems can only be solved when such systems are designed 

to be adaptable without any decrease in reliability. 

Applications in automotive and aerospace include control 

systems incorporating smart sensors and actuators. Examples 

include the use of a shape memory alloy to activate a brake or 

the hood of a car and active louver mechanisms to control the 

airflow into the engine compartment without using motors. 

Such materials, for example, can change their shape, stiffness 

and/or other properties in response to changes in applied 

temperature, electric field or magnetic field. Potential future 

applications in aerospace include the use of self-healing 

composite materials for damage tolerance. 

As the introduction of new control systems and software adds 

complexity to the overall system, for ensuring that all these 

new systems are of high quality, free from all sorts of 

potential errors, advances in techniques and tools are ever 

more crucial. This paper will touch upon various advances, 

including theory and practice, which will together help meet 

the challenges of the current state-of-the-art as well as lay the 

foundations for further new directions in research and 

development. 

1.1 Control System Development Lifecycle 

Typical control system and software development lifecycles 

are illustrated in the form of a V-model, examples of which 

are in (Fig. 1). The key stages are Requirements Engineering 

and Management, Control System Architecture Design, 

Subsystem Design and Development including Software and 

various levels of Testing. 

 

Fig. 1. V-model for Control System Development Lifecycle 

In practice, engineers usually spend a lot of time going over 

the stages in the lifecycle many times. This can be due to 

reasons such as incremental development of the artefacts 

involved in that stage, defects found in testing or to respond 
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to changes in requirements for that stage. Various statistics in 

literature including (Chakrapani Rao et al., 2011; Stecklein et 

al., 2004) indicate that a large number of defects occur early 

in the lifecycle as depicted abstractly in (Fig. 2). Such 

defects, if not found early, will be costly to fix later, if at all 

found later in testing. Hence it is extremely important to 

incorporate numerous types of analyses for verifying that the 

artefacts produced at each stage are of high quality. 

1.2 Current Challenges in State-of-the-art 

Current challenges in control system design involves 

increasing complexity of individual systems, integration 

aspects concerning incorporation of numerous individual 

systems designed separately, communication barriers 

between designers involved across disciplines and 

departments, gaps arising during successive stages of the 

development lifecycle depicted in Fig.1, to name a few. 

 

Fig. 2. Early stages critical in development lifecycle 

Current state-of-the-art in control design testing in the 

industries is predominantly focussed on testing to detect 

defects in various stages of the development lifecycle, 

particularly late in the lifecycle when software code and 

hardware parts are available. Therefore, defects are usually 

discovered late with the risk of certain defects possibly 

missed or undetected. The consequence is that some defects 

can be discovered in-service by customers. In the area of 

safety-critical control systems, in particular, these challenges 

are met by incorporation of various advanced specification 

and verification techniques and tools in the development 

lifecycle.  

2. MODEL BASED APPROACHES 

Advances in the development of modelling languages and 

tools have now enabled control system algorithms to be 

developed and tested using a model-based approach. In this 

approach, the implementation comes much later while the 

model-based design focuses on a combination of virtual and 

physical models to trial out options and come out with a 

suitable design more easily and cheaply. 

2.1  Model-Based Design (MBD) Paradigm 

MBD is the preferred approach to dealing with the 

complexity of current control system development. Various 

modelling languages are available such as 

Simulink/Stateflow, SCADE, ASCET and Statemate 

providing a convenient level of abstraction and visualisation 

mechanism to develop control systems more conveniently. 

2.2  Model-Based Systems Engineering (MBSE) Paradigm 

According to INCOSE, “Systems Engineering is an 

engineering discipline whose responsibility is creating and 

executing an interdisciplinary process to ensure that the 

customer and stakeholder's needs are satisfied in a high 

quality, trustworthy, cost efficient and schedule compliant 

manner throughout a system's entire life cycle”. Model Based 

Systems Engineering (MBSE) has similarly been defined as 

“..fundamentally a thought process and provides a framework 

to allow the systems engineering team to be effective and 

consistent right from the start of any project” (Long and 

Scott, 2011). 

MBSE approaches are now a focus for many companies, 

including those in the automotive and aerospace domains, in 

order to meet the challenges associated with the development 

of systems, including control systems. 

3. SPECIFIC ADVANCES IN CONTROL V&V 

In this section, we focus on advances that relate to V&V for 

control systems, particularly fitting with the MBD and MBSE 

approaches. 

 

3.1 Traditional Simulation and Testing 

Traditional approach to simulation and testing was ad-hoc 

with some simulations and testing carried out at various 

lifecycle stages without any relation between these efforts, 

for example different test cases being used at different stages. 

There is now a better co-ordination of all the testing efforts 

during the system development lifecycle. For example, in 

Model-In-the-Loop testing, incorporating models, test cases 

are written to check if the model implements the 

requirements correctly. Test cases test out various scenarios. 

These test cases are now usable in different testing 

environments, such as Hardware-In-the-Loop, Software-In-

the-Loop and Processor-In-the-Loop environments which 

essentially incorporate physical components for the plant, 

actual embedded target hardware for the control algorithm 

and actual processor respectively. Newer environments 

incorporate driver models for Driver-In-the-Loop and pilot 

models for Pilot-In-the-Loop testing. All these new advances 

help verify the control algorithm and validate that the system 

being built is the right one for the application. 

In addition, test case development methods have undergone 

improvements. For example, all execution paths within the 

algorithm can be covered by measuring the coverage 

achieved by existing test cases and developing new tests to 

cover the missing paths. COTS tools now assist in 
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automatically generating test cases as well in addition to 

assessing the coverage of existing test cases. 

3.2  Positive Influence from Standards 

Previous and new standards, such as DO-178B and ISO 

26262 (Conrad et al., 2011), and published industry best 

practice information, such as (Murphy et al., 2008) provide 

guidance and recommendations on developing systems with 

appropriate techniques and tools. In addition, they help 

ensure tool standards are high and fit-for-purpose with 

respect to the chosen applications.  

3.3  Emergence of COTS Formal Methods Tools 

This section briefly mentions commercial-of-the-shelf 

(COTS) modelling tools that are incorporating formal 

methods techniques. A detailed coverage of techniques would 

be out of scope for this paper but an outline would be 

provided. 

Formal methods based languages and techniques involve the 

following, for example, 

1. Advanced mathematical languages such as 

specification languages with precise semantics and 

associated techniques, for example Z specification 

language (Bowen, 1996). 

2. Model-checking algorithms to check a formal 

description of a model, such as a control model, for 

certain properties (Huth and Ryan, 2004). 

3. Static-checking techniques for code, such as a 

control algorithm in C code, for run-time errors 

without code execution (Chakrapani Rao et al., 

2006). 

4. Advanced automatic test case generation techniques 

for models, such as a control model in Simulink 

(Mohalik et al., 2013). 

Prominent modelling tools incorporating formal techniques 

include Simulink Design Verifier, Embedded Validator, 

SCADE Design Verifier and Reactis Validator. On the 

controller code level, tools include PolySpace Verifier and 

LDRA. References to further information include 

((Chakrapani Rao et al., 2006), (Chakrapani Rao et al., 2008), 

(Chakrapani Rao et al., 2011a), (Chakrapani Rao et al., 

2011b), (McMurran et al., 2006)). 

3.4  Other advances – Controller Synthesis 

 

As an alternative to formal methods for verification, one can 

seek to formally design systems from specifications, known 

as correct-by-construction design. In fact, formal verification 

is often subject to the criticism that it is usually done after 

significant resources have already been put into the 

development of the system. As a result, if a problem is 

uncovered, it can be costly to fix. The alternative approach 

called system synthesis seeks to incorporate system 

specifications earlier in the development process, in order to 

design a provably correct system. However, this is 

challenging issue particularly for control system design. First 

of all, control systems, by definition, are systems designed to 

interact with other systems or processes. Hence, control 

systems are open systems, as opposed to closed systems, that 

are required to maintain ongoing interaction with their 

environments. The formal synthesis of open systems that are 

required to satisfy a given specification against all 

environments is, in general, a notoriously hard question and 

relies on progress from computer science in this area.  

Second, control systems are systems interacting with physical 

processes, which are inherently continuous in both time and 

space. Algorithmic formal methods are only effective for 

finite-state systems. Therefore, the gap between a continuous 

control system model and formal methods tools has to be 

resolved. This is usually done through a process called 

abstraction, which transform a concrete, possibly continuous 

model into a finite-state model, while preserving all the 

essential properties relevant to given specifications. 

There have been recent breakthroughs in the computer 

science that, by restricting the class of specifications, the 

algorithmic difficulties can be relieved. This has sparked 

increased interest in the formal design of control systems 

over the last decade among the control community. The 

approach is often an abstraction-based, hierarchical design. 

The main workflow of these approaches has three steps: (i) 

construct finite abstractions of the dynamical control systems 

that preserve essential properties, (ii) solve a discrete 

synthesis problem based on the specification and abstraction 

and obtain a discrete control strategy, (iii) refine the discrete 

control strategy, often to a hybrid controller, that renders the 

closed-loop control system satisfy the specification. The 

approach is outlined in Fig. 3. This appears to a promising 

area of research in control systems. 
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Fig. 3: An Abstraction-Based Hierarchical Approach to 

Correct-by-Construction Control System Design 

However, despite the rich theory that has been developed for 

control system synthesis, little of this theory has been 

transformed into practice. A number of reasons may have 

contributed to this (Kupferman, 2012). We discuss a few 

here. First, despite the recent breakthroughs, the algorithm 

difficulties remain a hurdle to apply the methodology to 
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industry-scale problems. Compositional or distributed 

techniques need to be developed to alleviate this issue by 

allowing the whole system to be constructed and certified 

systems incrementally. Second, current synthesis tools are 

mostly designed only for very limited specifications, such as 

linear temporal logic (LTL) or computation tree logic (CTL). 

For synthesis tools to have a comparable impact as industrial 

model checking tools (such as IMB’s RuleBase), they need to 

embrace richer formalisms as specification, which may 

require further non-trivial research. Third, current synthesis 

tools only give a solution that satisfies a given specification, 

as opposed to an optimal solution, which is often sought after 

when designing a control system using classical tools such as 

optimal control theory. In fact, quantitative synthesis is still 

in its infancy and may again need further non-trivial research 

to make it suitable for practical implementations. Finally, the 

reason industry, especially that for safety-critical control 

systems where formal synthesis would be of value, is more 

willing to embrace formal verification than formal synthesis 

for the apparent reason that, formal synthesis requires a 

change of design paradigm, whilst formal verification does 

not. One approach to do so is of course ensure that ex-post 

verification is combined with the formal synthesis approach 

to deliver the level of confidence assurance needed, while 

allowing potentially significant reduction in costs for design 

and testing. Despite its promising aspects, this may take time 

to eventually happen for the above reasons. 

 

4. FUTURE DIRECTIONS 

There are substantial opportunities for further research and 

development and subsequent technology transfer to industry. 

Areas of research include the integration of multiple 

disciplines and multiple physics early in the design lifecycle. 

In the area of testing, some of the key areas include 

scalability of formal techniques to meet more complex 

designs, automatic test case generation from various model 

artefacts, including requirements, utilisation of HPC and 

making formal techniques transparent to the wider user 

community including especially users in the industry. 

 

5. CONCLUSIONS 

A short survey of state-of-the-art in research, development 

and engineering relating to complex control design and 

testing has been attempted, applicable to the design of active 

mechanisms for dynamic systems, based on authors’ previous 

experiences. A brief indication of research that needs to be 

done is also indicated. 

 

ACKNOWLEDGEMENTS 

The authors wish to thank Prof. V. Kadirkamanathan, Head 

of Department of ACSE at The University of Sheffield, for 

encouraging us to write and submit a paper to this 

conference. Additionally, we wish to acknowledge the 

support of a UKIERI (UK-India Education and Research 

Initiative) grant: Integrated Sensing, Monitoring and Healing 

for Autonomous Systems. 

REFERENCES 

Bowen, Jonathan. (1996). Formal specification and 

documentation using Z: a case-study approach. ISBN 1-

85032-230-9, International Thomson Computer Press, 

International Thomson Publishing, USA. 

Chakrapani Rao, Arun, McMurran, Ross, Peter Jones, R, 

Anthony Smith, Michael, Tudor, Nick and Burnard, 

Andrew. (2006). Assessing the real worth of software 

tools to check the healthiness conditions of automotive 

software. In proceedings of The IET Automotive 

Electronics Conference, IEEE, Coventry, UK. 

Chakrapani Rao, Arun, McMurran, Ross and Peter Jones, R. 

(2008). A critical analysis of model-based formal 

verification efforts within the automotive industry. SAE 

Technical Paper 2008-01-0220, SAE International, 

Detroit, USA. 

Chakrapani Rao, Arun, Rajeev, A.C. and Yeolekar, Anand 

(2011a). Applying design verification tools in 

automotive software v&v. SAE Technical Paper 2011-

01-0745, SAE International, Detroit, USA. 

Chakrapani Rao, Arun, Dixit, Manoj and Sethu, Ramesh 

(2011b). Formal requirements analysis techniques for 

software-intensive automotive electronic control 

systems. SAE Technical Paper 2011-01-1002, SAE 

International, Detroit, USA. 

Conrad, Mirko, Sandmann, Guido, Munier, Patrick. (2011). 

Software tool qualification according to ISO 26262. SAE 

Technical Paper 2011-01-1005, SAE International, 

Detroit, USA. 

Huth, M. and Ryan, M. (2004). Logic in computer science: 

reasoning about systems. ISBN-13: 978-0521543101, 

Cambridge University Press, UK. 

Kupferman, Orna. (2012). Recent challenges and ideas in 

temporal synthesis. SOFSEM 2012: Theory and Practice 

of Computer Science. Springer Berlin Heidelberg, 88-98. 

Long, David, Scott, Zane. (2011). A primer for model-based 

systems engineering, ISBN 978-1-105-58810-5, 2
nd

 

edition, Vitech Corporation, USA. 

McMurran, Ross, Chakrapani Rao, Arun and Peter Jones, R. 

(2006). Model based validation techniques for complex 

control systems. In Proceedings of the Hybrid Vehicle 

Conference, Coventry, UK. 

Mohalik, Swarup, Gadkari, Ambar, Yeolekar, Anand, K. C., 

Shashidhar, S., Ramesh. (2013). Automatic test case 

generation from Simulink/Stateflow models using model 

checking. Software Testing, Verification and Reliability, 

DOI: 10.1002/stvr.1489, Wiley Online Library. 

Murphy, Brett, Wakefield, Amory and Friedman, Jon. 

(2008). Best practices for verification, validation, and 

test in model-based design. SAE Technical Paper 2008-

01-1469, SAE International, Detroit, USA. 

Stecklein, Jonette M., Dabney, Jim, Dick, Brandon, Haskins, 

Bill, Lovell, Randy, Moroney, Gregory (2004). Error 

cost escalation through the project life cycle. In 

proceedings of the 14
th

 Annual International Symposium 

of International Council on Systems Engineering, USA. 

951


