

Advances in Addressing Challenges in Complex Control Systems Design

Arun Chakrapani Rao*, Jun Liu**

*Rolls-Royce University Technology Centre in Control and Monitoring Systems Engineering,

Department of Automatic Control and Systems Engineering (ACSE), University of Sheffield, S1 3JD, UK

(Tel: +44(0)114-222-5687; e-mail: A.Chakrapani-Rao@sheffield.ac.uk).

**Department of ACSE, University of Sheffield, S1 3JD UK

(e-mail: j.liu@sheffield.ac.uk).

Abstract: This paper gives an account of various challenges that are faced in the design and development

of complex control systems and software, within the automotive and aerospace domains, in particular,

which are highly relevant to the incorporation of active mechanisms for dynamic systems. It also

analyses what new recent advances are helping some of these being overcome in the research and

engineering environments.

Keywords: Active Mechanisms for Dynamic Systems, Model-Based Design, Systems Engineering,

V&V.

1. INTRODUCTION

Today’s systems, irrespective of the domain, whether

automotive or aerospace, for example, are getting ever more

complex due to a number of factors. In the automotive

domain, a proliferation of electronics and software-intensive

features over the last decade is enabling the implementation

of new requirements in automotive vehicles for achieving

greater comfort, safety, reduced emissions and many others.

In the aerospace domain, aircraft engines are becoming safer,

quieter and more efficient, through the introduction of new

systems involving control systems and software.

Incorporation of active mechanisms for dynamic systems is a

challenging new area which requires the fusion of smart

material based structures with computational designs that are

not only efficient but also of very high quality. Complex

problems can only be solved when such systems are designed

to be adaptable without any decrease in reliability.

Applications in automotive and aerospace include control

systems incorporating smart sensors and actuators. Examples

include the use of a shape memory alloy to activate a brake or

the hood of a car and active louver mechanisms to control the

airflow into the engine compartment without using motors.

Such materials, for example, can change their shape, stiffness

and/or other properties in response to changes in applied

temperature, electric field or magnetic field. Potential future

applications in aerospace include the use of self-healing

composite materials for damage tolerance.

As the introduction of new control systems and software adds

complexity to the overall system, for ensuring that all these

new systems are of high quality, free from all sorts of

potential errors, advances in techniques and tools are ever

more crucial. This paper will touch upon various advances,

including theory and practice, which will together help meet

the challenges of the current state-of-the-art as well as lay the

foundations for further new directions in research and

development.

1.1 Control System Development Lifecycle

Typical control system and software development lifecycles

are illustrated in the form of a V-model, examples of which

are in (Fig. 1). The key stages are Requirements Engineering

and Management, Control System Architecture Design,

Subsystem Design and Development including Software and

various levels of Testing.

Fig. 1. V-model for Control System Development Lifecycle

In practice, engineers usually spend a lot of time going over

the stages in the lifecycle many times. This can be due to

reasons such as incremental development of the artefacts

involved in that stage, defects found in testing or to respond

Proceedings of the Third International Conference on
Advances in Control and Optimization of Dynamical
Systems, Indian Institute of Technology Kanpur, India,
March 13-15, 2014

SaeT5.2

948

to changes in requirements for that stage. Various statistics in

literature including (Chakrapani Rao et al., 2011; Stecklein et

al., 2004) indicate that a large number of defects occur early

in the lifecycle as depicted abstractly in (Fig. 2). Such

defects, if not found early, will be costly to fix later, if at all

found later in testing. Hence it is extremely important to

incorporate numerous types of analyses for verifying that the

artefacts produced at each stage are of high quality.

1.2 Current Challenges in State-of-the-art

Current challenges in control system design involves

increasing complexity of individual systems, integration

aspects concerning incorporation of numerous individual

systems designed separately, communication barriers

between designers involved across disciplines and

departments, gaps arising during successive stages of the

development lifecycle depicted in Fig.1, to name a few.

Fig. 2. Early stages critical in development lifecycle

Current state-of-the-art in control design testing in the

industries is predominantly focussed on testing to detect

defects in various stages of the development lifecycle,

particularly late in the lifecycle when software code and

hardware parts are available. Therefore, defects are usually

discovered late with the risk of certain defects possibly

missed or undetected. The consequence is that some defects

can be discovered in-service by customers. In the area of

safety-critical control systems, in particular, these challenges

are met by incorporation of various advanced specification

and verification techniques and tools in the development

lifecycle.

2. MODEL BASED APPROACHES

Advances in the development of modelling languages and

tools have now enabled control system algorithms to be

developed and tested using a model-based approach. In this

approach, the implementation comes much later while the

model-based design focuses on a combination of virtual and

physical models to trial out options and come out with a

suitable design more easily and cheaply.

2.1 Model-Based Design (MBD) Paradigm

MBD is the preferred approach to dealing with the

complexity of current control system development. Various

modelling languages are available such as

Simulink/Stateflow, SCADE, ASCET and Statemate

providing a convenient level of abstraction and visualisation

mechanism to develop control systems more conveniently.

2.2 Model-Based Systems Engineering (MBSE) Paradigm

According to INCOSE, “Systems Engineering is an

engineering discipline whose responsibility is creating and

executing an interdisciplinary process to ensure that the

customer and stakeholder's needs are satisfied in a high

quality, trustworthy, cost efficient and schedule compliant

manner throughout a system's entire life cycle”. Model Based

Systems Engineering (MBSE) has similarly been defined as

“..fundamentally a thought process and provides a framework

to allow the systems engineering team to be effective and

consistent right from the start of any project” (Long and

Scott, 2011).

MBSE approaches are now a focus for many companies,

including those in the automotive and aerospace domains, in

order to meet the challenges associated with the development

of systems, including control systems.

3. SPECIFIC ADVANCES IN CONTROL V&V

In this section, we focus on advances that relate to V&V for

control systems, particularly fitting with the MBD and MBSE

approaches.

3.1 Traditional Simulation and Testing

Traditional approach to simulation and testing was ad-hoc

with some simulations and testing carried out at various

lifecycle stages without any relation between these efforts,

for example different test cases being used at different stages.

There is now a better co-ordination of all the testing efforts

during the system development lifecycle. For example, in

Model-In-the-Loop testing, incorporating models, test cases

are written to check if the model implements the

requirements correctly. Test cases test out various scenarios.

These test cases are now usable in different testing

environments, such as Hardware-In-the-Loop, Software-In-

the-Loop and Processor-In-the-Loop environments which

essentially incorporate physical components for the plant,

actual embedded target hardware for the control algorithm

and actual processor respectively. Newer environments

incorporate driver models for Driver-In-the-Loop and pilot

models for Pilot-In-the-Loop testing. All these new advances

help verify the control algorithm and validate that the system

being built is the right one for the application.

In addition, test case development methods have undergone

improvements. For example, all execution paths within the

algorithm can be covered by measuring the coverage

achieved by existing test cases and developing new tests to

cover the missing paths. COTS tools now assist in

949

automatically generating test cases as well in addition to

assessing the coverage of existing test cases.

3.2 Positive Influence from Standards

Previous and new standards, such as DO-178B and ISO

26262 (Conrad et al., 2011), and published industry best

practice information, such as (Murphy et al., 2008) provide

guidance and recommendations on developing systems with

appropriate techniques and tools. In addition, they help

ensure tool standards are high and fit-for-purpose with

respect to the chosen applications.

3.3 Emergence of COTS Formal Methods Tools

This section briefly mentions commercial-of-the-shelf

(COTS) modelling tools that are incorporating formal

methods techniques. A detailed coverage of techniques would

be out of scope for this paper but an outline would be

provided.

Formal methods based languages and techniques involve the

following, for example,

1. Advanced mathematical languages such as

specification languages with precise semantics and

associated techniques, for example Z specification

language (Bowen, 1996).

2. Model-checking algorithms to check a formal

description of a model, such as a control model, for

certain properties (Huth and Ryan, 2004).

3. Static-checking techniques for code, such as a

control algorithm in C code, for run-time errors

without code execution (Chakrapani Rao et al.,

2006).

4. Advanced automatic test case generation techniques

for models, such as a control model in Simulink

(Mohalik et al., 2013).

Prominent modelling tools incorporating formal techniques

include Simulink Design Verifier, Embedded Validator,

SCADE Design Verifier and Reactis Validator. On the

controller code level, tools include PolySpace Verifier and

LDRA. References to further information include

((Chakrapani Rao et al., 2006), (Chakrapani Rao et al., 2008),

(Chakrapani Rao et al., 2011a), (Chakrapani Rao et al.,

2011b), (McMurran et al., 2006)).

3.4 Other advances – Controller Synthesis

As an alternative to formal methods for verification, one can

seek to formally design systems from specifications, known

as correct-by-construction design. In fact, formal verification

is often subject to the criticism that it is usually done after

significant resources have already been put into the

development of the system. As a result, if a problem is

uncovered, it can be costly to fix. The alternative approach

called system synthesis seeks to incorporate system

specifications earlier in the development process, in order to

design a provably correct system. However, this is

challenging issue particularly for control system design. First

of all, control systems, by definition, are systems designed to

interact with other systems or processes. Hence, control

systems are open systems, as opposed to closed systems, that

are required to maintain ongoing interaction with their

environments. The formal synthesis of open systems that are

required to satisfy a given specification against all

environments is, in general, a notoriously hard question and

relies on progress from computer science in this area.

Second, control systems are systems interacting with physical

processes, which are inherently continuous in both time and

space. Algorithmic formal methods are only effective for

finite-state systems. Therefore, the gap between a continuous

control system model and formal methods tools has to be

resolved. This is usually done through a process called

abstraction, which transform a concrete, possibly continuous

model into a finite-state model, while preserving all the

essential properties relevant to given specifications.

There have been recent breakthroughs in the computer

science that, by restricting the class of specifications, the

algorithmic difficulties can be relieved. This has sparked

increased interest in the formal design of control systems

over the last decade among the control community. The

approach is often an abstraction-based, hierarchical design.

The main workflow of these approaches has three steps: (i)

construct finite abstractions of the dynamical control systems

that preserve essential properties, (ii) solve a discrete

synthesis problem based on the specification and abstraction

and obtain a discrete control strategy, (iii) refine the discrete

control strategy, often to a hybrid controller, that renders the

closed-loop control system satisfy the specification. The

approach is outlined in Fig. 3. This appears to a promising

area of research in control systems.

ACS416 Nonlinear Systems
Department of Automatic Control

and Systems Engineering

model + spec

abstraction

synthesis

implementation

H2

H1 H3

τ 21

Fig. 3: An Abstraction-Based Hierarchical Approach to

Correct-by-Construction Control System Design

However, despite the rich theory that has been developed for

control system synthesis, little of this theory has been

transformed into practice. A number of reasons may have

contributed to this (Kupferman, 2012). We discuss a few

here. First, despite the recent breakthroughs, the algorithm

difficulties remain a hurdle to apply the methodology to

950

industry-scale problems. Compositional or distributed

techniques need to be developed to alleviate this issue by

allowing the whole system to be constructed and certified

systems incrementally. Second, current synthesis tools are

mostly designed only for very limited specifications, such as

linear temporal logic (LTL) or computation tree logic (CTL).

For synthesis tools to have a comparable impact as industrial

model checking tools (such as IMB’s RuleBase), they need to

embrace richer formalisms as specification, which may

require further non-trivial research. Third, current synthesis

tools only give a solution that satisfies a given specification,

as opposed to an optimal solution, which is often sought after

when designing a control system using classical tools such as

optimal control theory. In fact, quantitative synthesis is still

in its infancy and may again need further non-trivial research

to make it suitable for practical implementations. Finally, the

reason industry, especially that for safety-critical control

systems where formal synthesis would be of value, is more

willing to embrace formal verification than formal synthesis

for the apparent reason that, formal synthesis requires a

change of design paradigm, whilst formal verification does

not. One approach to do so is of course ensure that ex-post

verification is combined with the formal synthesis approach

to deliver the level of confidence assurance needed, while

allowing potentially significant reduction in costs for design

and testing. Despite its promising aspects, this may take time

to eventually happen for the above reasons.

4. FUTURE DIRECTIONS

There are substantial opportunities for further research and

development and subsequent technology transfer to industry.

Areas of research include the integration of multiple

disciplines and multiple physics early in the design lifecycle.

In the area of testing, some of the key areas include

scalability of formal techniques to meet more complex

designs, automatic test case generation from various model

artefacts, including requirements, utilisation of HPC and

making formal techniques transparent to the wider user

community including especially users in the industry.

5. CONCLUSIONS

A short survey of state-of-the-art in research, development

and engineering relating to complex control design and

testing has been attempted, applicable to the design of active

mechanisms for dynamic systems, based on authors’ previous

experiences. A brief indication of research that needs to be

done is also indicated.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. V. Kadirkamanathan, Head

of Department of ACSE at The University of Sheffield, for

encouraging us to write and submit a paper to this

conference. Additionally, we wish to acknowledge the

support of a UKIERI (UK-India Education and Research

Initiative) grant: Integrated Sensing, Monitoring and Healing

for Autonomous Systems.

REFERENCES

Bowen, Jonathan. (1996). Formal specification and

documentation using Z: a case-study approach. ISBN 1-

85032-230-9, International Thomson Computer Press,

International Thomson Publishing, USA.

Chakrapani Rao, Arun, McMurran, Ross, Peter Jones, R,

Anthony Smith, Michael, Tudor, Nick and Burnard,

Andrew. (2006). Assessing the real worth of software

tools to check the healthiness conditions of automotive

software. In proceedings of The IET Automotive

Electronics Conference, IEEE, Coventry, UK.

Chakrapani Rao, Arun, McMurran, Ross and Peter Jones, R.

(2008). A critical analysis of model-based formal

verification efforts within the automotive industry. SAE

Technical Paper 2008-01-0220, SAE International,

Detroit, USA.

Chakrapani Rao, Arun, Rajeev, A.C. and Yeolekar, Anand

(2011a). Applying design verification tools in

automotive software v&v. SAE Technical Paper 2011-

01-0745, SAE International, Detroit, USA.

Chakrapani Rao, Arun, Dixit, Manoj and Sethu, Ramesh

(2011b). Formal requirements analysis techniques for

software-intensive automotive electronic control

systems. SAE Technical Paper 2011-01-1002, SAE

International, Detroit, USA.

Conrad, Mirko, Sandmann, Guido, Munier, Patrick. (2011).

Software tool qualification according to ISO 26262. SAE

Technical Paper 2011-01-1005, SAE International,

Detroit, USA.

Huth, M. and Ryan, M. (2004). Logic in computer science:

reasoning about systems. ISBN-13: 978-0521543101,

Cambridge University Press, UK.

Kupferman, Orna. (2012). Recent challenges and ideas in

temporal synthesis. SOFSEM 2012: Theory and Practice

of Computer Science. Springer Berlin Heidelberg, 88-98.

Long, David, Scott, Zane. (2011). A primer for model-based

systems engineering, ISBN 978-1-105-58810-5, 2
nd

edition, Vitech Corporation, USA.

McMurran, Ross, Chakrapani Rao, Arun and Peter Jones, R.

(2006). Model based validation techniques for complex

control systems. In Proceedings of the Hybrid Vehicle

Conference, Coventry, UK.

Mohalik, Swarup, Gadkari, Ambar, Yeolekar, Anand, K. C.,

Shashidhar, S., Ramesh. (2013). Automatic test case

generation from Simulink/Stateflow models using model

checking. Software Testing, Verification and Reliability,

DOI: 10.1002/stvr.1489, Wiley Online Library.

Murphy, Brett, Wakefield, Amory and Friedman, Jon.

(2008). Best practices for verification, validation, and

test in model-based design. SAE Technical Paper 2008-

01-1469, SAE International, Detroit, USA.

Stecklein, Jonette M., Dabney, Jim, Dick, Brandon, Haskins,

Bill, Lovell, Randy, Moroney, Gregory (2004). Error

cost escalation through the project life cycle. In

proceedings of the 14
th

 Annual International Symposium

of International Council on Systems Engineering, USA.

951

