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Article highlights: 

 Types of ALS and the recent genetic discoveries.  

 No effective treatment for ALS is available. 

 Gene therapy approaches to modulate mutant ALS genes by using siRNA or antisense 

oligonucleotide (ASO) therapy.  

 AAV or LV-based vectors driving the expression of neurotrophic factors to support 

motor neuron survival. 

 A summary of the previous and the ongoing gene therapy clinical trials for ALS. 
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Abbreviations 

 

Acetylcholinesterase enzyme (AChE) 

Amyotrophic Lateral Sclerosis (ALS) 

Antisense Oligonucleotide (ASO) 

Blood-Brain Barrier (BBB) 

Central Nervous System (CNS) 

Double stranded RNA (dsRNA) 

Fused-in-sarcoma (FUS) 

Granulocyte-Colony Stimulating Factor (G-CSF) 

Hepatocyte Growth Factor (HGF) 

Human Mesenchymal Stem Cells (hMSC) 

Induced Pluripotent Stem Cell (iPSC) 

Insulin-like Growth Factor 1 (IGF-1) 

Intracerebroventricular (ICV) 

Lentiviral (LV) 

Mesenchymal Stem Cells (MSCs) 

Motor neuron disease (MND) 

Recombinant Adeno-Associated Virus serotype 9 (rAAV9) 

Repeat-associated Non-ATG (RAN) 

RNA interference (RNAi) 

RNA-induced Silencing Complex (RISC) 

Short hairpin RNAs (shRNAs) 
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Small interfering RNAs (siRNAs) 

Superoxide Dismutase 1 (SOD1) 

TAR DNA-binding Protein (TARDBP) 

Vascular Endothelial Growth Factor (VEGF) 

Zinc Finger Protein Transcription Factor (ZFP-TF)
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Abstract 

Introduction: Amyotrophic Lateral Sclerosis (ALS) is a devastating adult neurodegenerative 

disorder characterised by motor neuron degeneration and death around 3 years from onset. 

So far, riluzole is the only treatment available, although it only offers a slight increase in 

survival. AL“͛ ĐŽŵƉůĞǆ ĂĞƚŝŽůŽŐǇ͕ ǁŝƚŚ ƐĞǀĞƌĂů genes able to trigger the disease, makes its 

study difficult. 

Areas covered: RNA-mediated or protein-mediated toxic gain-of-function leading to motor 

neuron degeneration appear to be likely common pathogenic mechanisms in ALS. 

Consequently, gene therapy technologies to reduce toxic RNA and/or proteins and to 

protect motor neurons by modulating gene expression are at the forefront of the field. Here 

we review the most promising scientific advances, paying special attention to the successful 

treatments tested in animal models as well as analysing relevant gene therapy clinical trials.  

Expert opinion: Despite broad advances in target gene identification in ALS and advances in 

gene therapy technologies, a successful gene therapy for ALS continues to be elude 

researchers. Multiple hurdles encompassing technical, biological, economical and clinical 

challenges must be overcome before a therapy for patients becomes available. Optimism 

remains due to positive results obtained in several in vivo studies demonstrating significant 

disease amelioration in animal models of ALS.  
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 Introduction 1.

Amyotrophic lateral sclerosis (ALS), also commonly known as motor neuron disease (MND) 

Žƌ LŽƵ GĞŚƌŝŐ͛Ɛ disease, is a progressive, relentless and unfailingly fatal neurodegenerative 

disorder. ALS most commonly presents as a late-onset adult disorder and death from 

respiratory failure typically occurs around 3 years from onset of symptoms.  

Although primarily characterised by the degeneration of upper and lower motor neurons, 

ALS displays wide phenotypic heterogeneity amongst patient populations and a significant 

number of patients (~10-15%) will develop fronto-temporal dementia in addition to 

widespread, debilitating muscle atrophy and weakness [1, 2]. 

The majority of ALS cases (90%) are sporadic, with the remaining 10% having an identifiable 

hereditary component (familial ALS) [3]. Beginning in 1993 with the discovery of the first 

mutations in the gene encoding superoxide dismutase 1 (SOD1) [4], the genetic aetiology of 

ALS has expanded dramatically to include more than 20 different genes [3, 5] (Figure 1). 

Advances in technology combined with the concerted efforts of ALS researchers to identify 

new pathogenic genes have led us to the point where it is now possible to identify the 

underlying genetic cause of approximately 60% of familial ALS cases and 11% of sporadic 

cases [6].  

The only treatment currently available to patients, other than symptomatic care, is the drug 

Riluzole. Approved in 1996, Riluzole offers only a modest increase in lifespan of 

approximately 3-4 months and subsequent clinical trials for a number of therapeutic agents 

have failed to show any significant benefits for ALS patients [7].   

Gene therapy, the process of delivering genetic material to correct a faulty or missing gene, 

shows great promise for the treatment of several forms of ALS. In humans, gene therapy is 
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still in its infancy and currently (not taking into account antisense oligonucleotide therapies) 

there are no FDA/CBER-approved gene therapy products available in the US and only one 

gene therapy product has been granted market authorisation by the European Medicines 

Agency: Glybera®, in 2012. However, a number of early phase clinical trials for a small 

number of diseases have shown that gene therapy can be both a safe and effective 

treatment for patients [8-10]. 

Furthermore, as our knowledge of the genetic causes of ALS continues to grow and the 

pathogenic mechanisms underlying ALS continue to be unravelled, new therapeutic targets 

for gene therapy will undoubtedly begin to emerge. 

Gene therapy for ALS has become a very exciting topic in the last few years. Published 

review articles, for instance Federici et al. and Nizzardo et al. in 2012 summarised the most 

promising advances at that point [11, 12]. Here, we will seek to summarise and critically 

evaluate current developments in gene therapy targeting ALS by examining the main 

techniques that are being utilised, with attention to the potential for their future clinical 

application. 

 

 Genetics and pathophysiology of ALS 2.

As previously stated, over 60% of fALS cases and 11% of sALS cases may now be explained 

by mutations in various genes (Figure 1). Four of the most prominent genetic subtypes of 

ALS are summarised below (C9orf72, SOD1, TDP-43 and FUS), along with current hypotheses 

as to the possible pathogenesis of each genetic variant. In addition to these prominent 

genes, mutations in many other genes have been associated with ALS, including: VCP, OPTN, 

UBQLN2, SQSTM1 and PFN1 [3]. This is by no means an exhaustive list of the genes involved 
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in ALS but is intended to serve as an indication of both the diversity of ALS genetics and to 

provide a context in which the challenges of treating ALS can be appreciated. 

Since the topic of this review is not the in depth analysis of ALS pathophysiology, we will 

briefly summarize the most relevant aspects relating to ALS pathophysiology published so 

far. Some recent papers broadly review this topic [5, 13, 14]  

 

 C9orf72 2.1.

Although its function is unknown, it is believed that the C9orf72 gene encodes a protein 

homologous to a DENN (differentially expressed in normal and neoplastic cells) protein 

structure, which is likely to regulate membrane traffic in conjunction with Rab-GTPase 

switches [15]. In 2011, it was discovered that the most common genetic cause of both fALS 

(~40%) and sALS (~7%) is the large intronic GGGGCC-hexanucleotide repeat expansion in the 

C9orf72 gene (Figure 1) [1, 6]. Along with ALS, C9orf72 expansions are found in 25% of 

familial frontotemporal dementia (FTD) cases [16]. Unaffected individuals can carry up to 30 

GGGGCC copies, while up to several thousand repeat expansions have been found in ALS 

patients [1, 5, 6].  

The pathogenesis of C9orf72-linked ALS is currently unknown, although a number of causal 

mechanisms have been suggested, including a loss of function due to haploinsufficiency 

caused by reduced C9orf72 expression or a gain of function prompted by the sequestration 

of RNA-binding proteins by toxic RNA species resulting from the expanded repeat and toxic 

dipeptide proteins formed as a result of repeat-associated non-ATG (RAN) translation [2, 5, 

17-19]. 
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The levels of C9orf72 transcripts in the central nervous system (CNS) are downregulated in 

patients carrying the expansions in comparison to healthy controls [1, 17]. Although C9orf72 

haploinsufficiency still remains to be elucidated in mammalian models, studies in zebrafish 

have already shown how loss of C9orf72 transcripts causes behavioural deficits and 

cytopathological changes as well as major morphological abnormalities [20].  

 Aberrant RNA foci, which accumulate due to the deficient transcription of the GGGGCC 

expansion, have been found in the brain of C9orf72 repeat expansions carriers [1, 5]. These 

abnormal transcript accumulations contain stable guanine quadruplexes which could 

sequester essential RNA-binding proteins triggering nucleolar stress and other downstream 

effects [21, 22].  A gain of toxic function hypothesis is also supported by the presence of 

repeat-associated non-ATG dependent translation (RAN translation) to generate dipeptide 

repeats (DPRs), which have been detected in C9orf72-ALS/FTD tissue [18, 23]. It is known 

that RAN translation of the intronic GGGGCC C9orf72 repeat expansions in both sense and 

anti-sense directions can generate up to five different DPRs, which can be toxic [18, 23-26]. 

Although it is not fully understood yet how C9orf72 DPRs potentially lead to toxicity, some 

mechanisms have been proposed. Poly-PR and poly-GR seem to impair the biogenesis of 

ribosomal RNA [26] and poly-GA mediates cytotoxicity by endoplasmic reticulum stress, 

increased release of lactate dehydrogenase and caspase-3 activation [25]. A recent study 

has shown the arginine-rich DPRs are neurotoxic causing nuclear and nucleoli disruption, 

reduction in the number of processing bodies and formation of granules [24]. 

It is unclear whether both mechanisms - loss and gain of C9orf72 function - can exert 

neurotoxic effects independently or whether they have to act in tandem to trigger 
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neurodegeneration. The pathophysiological evidence suggests that both mechanisms are 

relevant and, therefore, a contribution of both is likely to generate cytotoxicity.   

 

 

 SOD1 2.2.

Cu/Zn SOD1 is a homodimeric, ubiquitously expressed, primarily cytosolic protein that 

serves to protect cells from toxic free-radical superoxide species produced during oxygen 

metabolism. Cu/Zn SOD1 catalyses the dismutation of two superoxide radicals (O2
-
) into 

hydrogen peroxide (H2O2) and oxygen (O2). Eleven missense mutations in the gene encoding 

SOD1 were the first to be linked to fALS [4] and since then more than 140 other mutations 

have been identified in the gene and linked to ALS [27]. SOD1 mutations account for ~12% 

of fALS and ~1-2% sALS cases (Figure 1). SOD1-linked ALS displays broad phenotypic 

heterogeneity.   After two decades of investigation, the current consensus is that multiple 

pathophysiological mechanisms contribute to motor neuron injury in the presence of 

mutant SOD1.  The most prominent of these are briefly summarised below. 

 

 Loss of Dismutase Activity 2.2.1.

Currently, the pathogenesis of SOD1-linked fALS is generally believed to be a toxic gain of 

function [28]; however studies in SOD1 null mice have suggested the possibility of loss of 

dismutase activity to be a potential modifier in ALS [29].  

 

 Oxidative Stress 2.2.2.
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It has been suggested that mutant SOD1 may generate toxic products due to the enhanced 

accessibility, and subsequent reaction of aberrant substrates with the Cu/Zn active site of 

the enzyme.  Other contributors to oxidative stress in SOD1 beyond the enzymatic activity of 

SOD1 include disruption of redox-sensitive Rac regulation of NADPH oxidase [30] and 

dysregulation of the Nrf2-anti-oxidant response signalling pathway [31].   

 

 Protein Misfolding and Aggregation 2.2.3.

Misfolded SOD1 accumulates as aggregated protein inclusions in both human fALS patient 

tissue [32] and astrocytes and motor neurons of ALS mouse models expressing human SOD1 

containing SOD1-linked fALS mutations [32-35]. Although most often associated with SOD1-

linked fALS mutations, wild-type SOD1 immunoreactive inclusions have also been found in 

motor neurons, microglia, oligodendrocytes and astrocytes in sALS patients [36-38] and 

motor axons of non-SOD1 linked fALS patients [38]. Whether or not the aggregates 

themselves are a major contributor to disease is contentious, as some studies have shown 

that large aggregates appear only after transgenic mice begin to display signs of motor 

dysfunction [39], and others have shown that SOD1 protein complexes can be detected in 

the spinal cord of SOD1-G93A mice at P30, a pre-onset stage [35]. The mechanism behind 

aggregate mediated toxicity is unknown but may be due to sequestration of essential 

proteins, such as HSC70, a chaperone protein involved in endocytosis, and KAP3, which is 

involved in the axonal transport of ChAT [40, 41]. It also remains to be determined exactly 

what triggers misfolding in SOD1, which is an inherently stable protein in its native state.  

 

 Excitotoxicity 2.2.4.
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Glutamate is the primary excitatory neurotransmitter in the CNS. Despite the role of 

glutamate role in neurotransmission, it is itself highly toxic to neurons. Elevated levels of 

glutamate have been observed in the CSF of ALS patients, suggesting a role of excitotoxicity 

in ALS pathogenesis [42]. Further evidence implicating excitotoxicity in ALS is the fact that 

the drug riluzole acts to ameliorate excitotoxicity at least in part through reduction in pre-

synaptic glutamate release [43]. Excitotoxicity in ALS may be exacerbated by a number of 

potential mechanisms. SOD1 fALS mutations have been shown to inhibit the glutamate 

uptake function of excitatory aminoacid transporter -2 (EAAT2 or GLT1 in rodents) [44]. 

Aberrant release of glutamate from pre-synaptic vesicles has been identified in the SOD1-

G93A mouse model, where increased glutamate release appears to be an early event in the 

disease course of the model [45]. Studies in the SOD1-G93A mouse model have also shown 

that metabotropic glutamate receptors are highly expressed compared to wild-type mice 

and can induce abnormal glutamate release [46]. Further to this, knockdown of 

metabotropic glutamate receptor 1 in SOD1-G93A mice reduced astrogliosis and 

microgliosis, extended survival and increased the numbers of motor neurons surviving in the 

spinal cord [47]. 

 

 Mitochondrial Dysfunction 2.2.5.

Mitochondria exhibiting abnormal morphology such as vacuolation, swelling and membrane 

degeneration can be seen in the dendrites and axons of motor neurons in SOD1-G93A and 

SOD1-G37R ALS mouse models [48, 49]. Damage to mitochondria has also been linked to 

the accumulation of aggregated mutant SOD1, where the presence of the mutant protein 

correlates with an increase in mitochondrial volume and increased production of toxic 

superoxide free radicals [50] as well as potentially promoting apoptosis [50, 51]. 
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 The Role of Non-neuronal Cells 2.2.6.

Non-neuronal cells have been also implicated in fALS.  In an attempt to identify which cell 

types contributed to the ALS phenotype, mutant SOD1 was selectively expressed solely in 

the neurons [52, 53] or astrocytes [54] of mice. None of the models developed motor 

neuron disease and demonstrated the need for mutant SOD1 to be expressed in multiple 

cell types to generate a phenotype i.e SOD1-linked fALS is non-cell autonomous.  

 

 Cytoskeletal Elements and Axonal Transport 2.2.7.

Aberrant accumulation of neurofilaments in the soma and axons of motor neurons are 

pathological hallmarks in both sporadic and familial ALS, as well as animal models of ALS 

[55-57]. A possible mechanism for neurofilament involvement in ALS is that accumulation of 

neurofilaments disrupts axonal transport of essential proteins in motor neurons [58]. 

 

 TAR DNA-Binding protein (TARDBP) and Fused-in-sarcoma (FUS) 2.3.

The TAR DNA-binding Protein (TARDBP) gene encodes the 43kDa protein TDP-43, a nuclear 

protein involved in multiple aspects of RNA processing including a major role in the splicing 

of genes relevant to the functioning of the CNS. Mislocated ubiquitinated wild-type TDP-43 

is the major component of cytoplasmic aggregated protein inclusions seen in the CNS of 

>95% ALS patients (both sporadic and familial) and ~45% FTD patients [59, 60]. Mutations in 

TDP-43 are also the cause of ~4% of fALS cases and ~1% of fALS cases (Figure 1), although 

whether this is due to a toxic gain-of-function,  loss-of-function or both mechanisms is 

unclear [3, 61, 62].  
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Mutations in the gene Fused-in-sarcoma (FUS) are responsible for 4% of fALS cases and 1% 

sALS cases (Figure 1) [3, 63, 64]. FUS is predominantly a nuclear protein but it is also found 

in cytoplasmic inclusions in some cases of ALS and FTD, where it is aggregated and 

sequestered [65].  

 

 RNA-mediated therapy for ALS/MND 3.

Current developments in RNA-mediated therapy for ALS fall into two major categories: RNA 

interference (RNAi) and antisense oligonucleotide (ASO) therapy. 

RNA interference (RNAi) is an endogenous mechanism of post-transcriptional gene 

regulation. RNA transcribed from nuclear DNA can form double stranded RNA (dsRNA) 

molecules and hairpin structures which are then cleaved by enzymes to produce short 

dsRNA duplexes of ~21nt. The dsRNA duplexes are then loaded onto the RNA-induced 

silencing complex (RISC), a complex of proteins which preferentially retains one of the RNA 

strands (termed the guide strand) whilst the other strand (termed the passenger strand) is 

degraded. Binding of the RNA guide strand-loaded RISC complex to mRNA transcripts of 

partial complementarity results in repression of gene expression due to blocking of the 

translational machinery or, in the case of full complementarity, directs degradation of the 

mRNA transcript. 

This mechanism has now been engineered to provide a powerful tool for selective gene 

repression. RNAi can be achieved either by direct delivery of therapeutic RNA duplexes 

called small interfering RNAs (siRNAs) or by expression of hairpin structures that are then 

processed in a similar way to endogenous microRNA transcripts, often termed short hairpin 

RNAs (shRNAs). Exogenous si- and shRNAs can be engineered to be fully complementary to 
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the mRNA of a target gene, resulting in degradation of the transcript and a robust gene 

knockdown effect. 

A“O͛s are single-stranded oligonucleotides which are designed to interact with 

complementary RNA transcripts. Binding of the oligonucleotides to pre-mRNA regulates 

gene expression through a number of different mechanisms including DNA-RNA duplex 

degradation by endogenous enzymes such as RNaseH, inhibition of correct splicing of pre-

RNA and inhibition of translation of mRNA [66]. Therapeutic ASOs have been approved by 

the FDA, as for example Fomivirsen and Mipomersen, which are used to treat 

cytomegalovirus retinitis and homozygous familial hypercholesterolemia respectively. 

 

 

 RNAi for SOD1-linked fALS 3.1.

As previously mentioned, over 150 ALS causing mutations in SOD1 have been discovered to 

date and these account for ~12% of fALS cases (Figure 1) [3].  RNAi mediated reduction in 

the level of both wildtype and mutant SOD1 protein by lentiviral (LV) delivery of shRNA 

targeting human SOD1 has been shown to delay disease progression and extend survival in 

mice carrying the SOD1-G93A mutation [67, 68]. This finding has been confirmed by Foust et 

al., (2013) who exchanged the lentiviral vectors for a recombinant adeno-associated virus 

serotype 9 (rAAV9) vector [66]. The group succeeded in slowing disease progression in the 

SOD1-G37R mouse model with treatment post- disease onset. Lifespan was extended by up 

to 39% when treatment was initiated at birth in G93A mice and SOD1 protein levels in 

motor neurons and glial cells were significantly reduced in non-human primates treated 

with the therapeutic shRNA construct. The group also demonstrated the ability of AAV9 to 
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efficiently transduce motor neurons and astrocytes in vivo, a property essential to any viral 

gene therapy delivery system aimed towards translation into human trials [69]. 

These findings suggest a strong potential for translation of AAV9 delivered shRNA-mediated 

SOD1 knockdown to the clinic, although undoubtedly the safety profile of this therapy will 

need to be extensively investigated before human clinical trials. 

 Antisense oligonucleotides in SOD1-linked fALS 3.1.1.

A therapeutic ASO targeting SOD1 has previously been shown to increase survival in a SOD1-

G93A mouse model from 122 ± 8 days to 132 ± 7 days, despite having no effect on disease 

onset or early disease (defined as the peak animal weight and the point at which the 

animals had lost 10% of their peak weight, respectively) [70]. The therapeutic 

oligonucleotide - ISIS 333611 - was the focus of a phase I human clinical trial completed in 

July 2012 (Table 1). The study, registered in Clinicaltrials.gov as NCT01041222, 

demonstrated that intrathecal delivery of ISIS 333611 to the CNS was well tolerated by 

patients and produced no adverse effects beyond those experienced by patients receiving   

placebo [71]. Measured concentrations of ISIS 333611 in both the CSF and plasma post-

injection were in agreement with predicted values determined by pharmacokinetic studies 

in Rhesus monkeys, allowing future doses to be selected based on body weight scaling and 

CSF volume.  SOD1 protein concentrations measured in the CSF of patients did not decrease 

dramatically as a result of the treatment, however the authors identify the intentionally low 

dose administered during the initial phase 1 safety study as the cause of this. Further to this, 

the authors predict that reduction of SOD1 mRNA and protein in the spinal cords of patients 

would necessitate 4 days continual administration of the highest dose of ISIS 333611 used in 

the study [71]. Despite the preliminary nature of these results, they do provide encouraging 

evidence that ASOs delivered intrathecally in patients is a tolerable and effective route of 
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delivery for ALS therapy, an important point to consider as ASOs are unable to cross the 

blood-brain barrier, in contrast to viral vector delivery of RNAi molecules. The absence of 

adverse effects when using ASOs could therefore be seen as a positive aspect of this 

approach. 

 

 Antisense oligonucleotides in C9orf72-linked ALS 3.1.2

ASOs have been used in a number of in vitro studies in an attempt to rescue pathological 

features of the C9orf72 expansion. Donnelly et al., (2013) showed that ASOs targeted 

towards different regions of C9orf72 mRNA were able to mitigate RNA toxicity in induced 

pluripotent stem cell (iPSC) -differentiated neurons from C9orf72 ALS patients through 

several mechanisms. ASOs targeted towards the expansion region were predicted to either 

disrupt the expansion region by preventing the formation of stable G-quadruplexes or to 

target the expansion for RNase-H-mediated cleavage. Neither of these approaches result in 

a reduction in cellular C9orf72 mRNA [17]. ASOs were also targeted to the coding region of 

C9orf72, resulting in RNase-H mediated cleavage and a reduction in both wildtype and 

expanded C9orf72 RNA. Treatment with these ASOs reduced the number of GGGGCC-RNA 

foci in the cells, normalised dysregulated gene expression for a number of candidate 

biomarker genes and rescued the glutamate excitotoxicity that had been observed in the 

iPSC cells [17]. Lagier-Tourenne et al., (2013) were also able to develop ASOs that selectively 

reduced GGGGCC (i.e. sense) RNA foci in C9orf72 ALS patient fibroblasts without affecting 

the overall level of C9orf72 encoding RNA [72]. The reduction in sense RNA foci however did 

not correct the observed pathological gene expression RNA signature described in patient 

fibroblasts by the group. The authors speculated that this may be a result of pathogenic 

CCCCGG (i.e. antisense) transcripts forming foci which were not degraded by the sense-
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targeting ASOs. Lagier-Tourenne et al., (2013) also contrast their work with the finding that 

siRNA targeting C9orf72 mRNA resulted in a reduction in non-pathogenic RNA but no 

corresponding reduction in the number of nuclear RNA foci [72].  

Both of these studies suggest a future role for ASOs in the treatment of C9orf72 mediated 

ALS, although a deeper understanding of the pathogenesis underlying the disease is needed 

to enable ASOs to be targeted against the most relevant mechanisms. 

 

 Other potential targets for antisense oligonucleotide therapies  in ALS 3.1.3

The acetylcholinesterase enzyme (AChE) has been implicated in motor neuron injury and 

denervation of muscle in ALS [73-75]. It is known that the sera of ALS patients show 

elevated levels of AChE [74, 76], and this protein could potentially represent a new 

therapeutic target for ALS. Indeed, ASO therapy against AChE mRNA in SOD1-G93A pre-

symptomatic mice was shown to slightly prolong their lifespan, with an attenuation of 

motor neuron loss [74].  

Dysregulation of RNA processing is emerging as a major pathophysiological mechanism in 

ALS [Insert Hautbergue ref].  There is also increasing evidence for dysregulation of miRNAs 

in this disease [77].  In 2013 it was reported that endogenous miRNA-155 is significantly 

upregulated in the spinal cord tissue of both ALS rodent models and human ALS patients 

[78, 79]. In this study, specific ASOs designed to decrease the levels of miRNA-155 in SOD1-

G93A mice prolonged survival in this murine model in comparison to scrambled control anti-

miRNA [78].  

AAV and LV-based vectors show strong potential for delivering shRNA to knockdown SOD1 

mRNA in ALS mouse models [67-69]. Briefly, AAV vectors provide long-term transgene 



 19 

expression, show minimal pathogenicity, low immunogenicity and are easy to manufacture 

at high titers in large-scale production for research. These features, along with their high 

capacity to transduce neurons, glial and ependymal cells, make them the most promising 

vehicle to carry out gene therapy in the CNS. The potential toxicity associated with LV-based 

vectors is also low, although there is a potential risk associated with genomic integration 

and insertional mutagenesis. However, LV provides a long-term transgene expression, a 

moderate scalable production of pure virus and can infect post-mitotic cells in the CNS 

efficiently as well as glial cells. These characteristics make them the second most commonly 

used viral vector for gene therapy in the CNS [80].  

The characteristics of viral vectors mentioned above are important when comparing virally 

mediated RNAi therapies with ASO therapies. Virally mediated RNAi is advantageous due to 

the long term, stable expression that can be achieved at high efficiency in motor neurons 

and other cells of the CNS with a single delivery of virus. ASOs, however, must be delivered 

directly to the CNS and require multiple rounds of administration. More investigation into 

methods that could increase the stability of ASOs, as well as determining the impact of 

potential long-term toxicological issues, would be highly advantageous for future ASO 

therapies. 

 

 Delivery of neurotrophic factors for ALS 4.

Neurotrophic factors are a diverse group of proteins that are responsible for encouraging 

growth and maintaining survival of neurons.  A number of neurotrophic factors have been 

proposed as being a promising avenue for gene therapy in light of their beneficial effects on 

animal models of ALS. Among the factors which have shown promise in facilitating 
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neuroprotection in animal models are vascular endothelial growth factor (VEGF) [81-84], 

hepatocyte growth factor (HGF) [85], glial-derived neurotrophic factor (GDNF) [84, 86, 87], 

insulin-like growth factor 1 (IGF-1) [88-90] and granulocyte-colony stimulating factor (G-CSF) 

[91, 92]. The delivery of these neurotrophic factors can be carried out by using different 

approaches, with emerging viral vector-based and cell-based therapies among some of the 

most promising techniques. 

 

 Viral delivery of neurotrophic factors 4.1.

In this section we will focus on the ability of AAV and LV vector systems to deliver 

neurotrophic factors, since these viruses have been the most used in the majority of studies 

published so far. Engineering AAV viruses to drive neurotrophic factor expression has been 

successfully tested in ALS mouse models. In the early 2000s it was reported that the 

intramuscular delivery of GDNF or IGF-1 to SOD1-G93A mice delayed the disease onset, 

improving behavioural tasks and prolonging lifespan [87, 90]. Vascular endothelial growth 

factor (VEGF) is another promising candidate which has been used as a therapeutic tool in 

ALS. In 2004, Azzouz et al. reported that the injection of LV driving the expression of VEGF 

into various muscles delayed ALS onset, improved motor function and increased survival in 

SOD1-G93A mice [81]. Targeting the expression of ectopic neurotrophic factors to the CNS 

could enhance the efficiency of transduction, as well as avoiding undesirable side effects 

resulting from the expression of neurotrophic factors in peripheral tissues. This can easily be 

achieved by using injections to directly affected areas of the diseased CNS. This approach 

has been already successfully tested, for instance IGF-1 delivered by AAV vectors injected 

into the CNS showed a beneficial effect in SOD1-G93A mice, increasing survival and partially 

rescuing the phenotype [88, 89, 93]. Neuroprotective effects were also observed in male 
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SOD1-G93A rats after intraspinal injection of AAV1 driving IGF-1 [94]. In 2010 it was 

reported that the delivery of IGF-1 and/or VEGF by intracerebroventricular (ICV) injection 

also prolonged lifespan in the mice, delaying the failure of motor functions. However, the 

authors of this study did not find a synergistic effect when both neurotrophic molecules 

were delivered at the same time, which could mean that IGF-1 and VEGF participate in the 

same signalling pathway [89]. Finally, beneficial effects from administration of an uncovered 

neurotrophic factor, G-CSF, were reported a few years ago. The intraspinal injection of AAV 

driving the expression of G-CSF in SOD1-G93A mice partially recovered their phenotype and 

increased lifespan [91].  

 

 

 Delivery of neurotrophic factors using mesenchymal stem cells 4.2.

Mesenchymal stem cells (MSCs) are multipotent stem cells which can be isolated from bone 

marrow, or other mesenchymal tissue such as adipose tissue. Some studies have reported 

the efficacy of using MSCs to overexpress different neurotrophic factors, which can be used 

as an ex-vivo gene therapy tool in ALS models [84, 86, 95]. A major milestone was reached 

in 2009 when Suzuki et al. demonstrated the efficacy of this method [86]. In this study, 

human MSCs (hMSC) isolated from neonatal bone marrow and transduced with LV encoding 

GDNF were transplanted into the skeletal muscle of a SOD1-G93A rat model. This work 

showed a neuroprotective effect, with an increase by 18 days in the lifespan, as well as a 

reduction in both degeneration of motor neurons in the spinal ventral horn and denervation 

of neuromuscular junctions [86]. The same research group reported in 2013 that the 

engineering of hMSCs to ectopically express both VEGF and GDNF could delay the onset of 
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the disease by 6 days and more relevantly could prolong the lifespan of SOD1-G93A rats by 

28 days, with the dual neurotrophic factors showing a synergistic effect in the maintenance 

of spinal motor neurons and neuromuscular junctions [84]. 

 

 Neurotrophic factors being tested in clinical trials 4.3.

 

Although much success has been observed in animal models, therapeutic delivery of 

neurotrophic factors has yet to be translated to success in human clinical trials. Most often 

delivered systemically as a drug, gene therapy techniques delivering neurotrophic factors 

have been subjected to clinical trials and will be summarised here. 

 

 VEGF clinical trials 4.3.1.

SB-509 is a plasmid developed by Sangamo BioSciences for intramuscular injection that 

encodes a zinc finger protein transcription factor (ZFP-TF) which acts to upregulate 

endogenous VEGF. SB-509 showed an acceptable safety profile in a 2010 Phase II clinical 

trial (NCT00748501), where delayed deterioration in ankle and toe muscle strength was 

observed in 40% of treated subjects compared to 23% of baseline matched historical 

controls and 27% of the global control population [96, 97] (Table 1). Despite these results, as 

of 2014 Sangamo BioSciences appear to have pulled back from SB-509 in order to focus on 

ZFP-TF therapies for HIV/AIDS, with SB-ϱϬϵ ŶŽƚ ĂƉƉĞĂƌŝŶŐ ŝŶ ƚŚĞ ͞PƌŽĚƵĐƚ PŝƉĞůŝŶĞ͟ ƐĞĐƚŝŽŶ 

of their website. 

 HGF gene therapy 4.3.2.
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A phase I/II safety study (NCT02039401) is currently recruiting for the purpose of testing the 

tolerability and safety of VM202, an intramuscularly delivered plasmid expressing multiple 

isoforms of HGF (Table 1). Developed by ViroMed Co., Ltd, VM202 was granted Orphan-

Drug designation by the FDA on 14
th

 February 2014 and the trial is being conducted at 

Northwestern University, Illinois [98]. In addition to ALS, VM202 is also being investigated as 

a treatment for critical limb ischemia and painful diabetic peripheral neuropathy. 

 

 Gene therapy to mitigate the ALS cell response 5.

One of the main problems in treating ALS is its complex pathophysiology. As previously 

mentioned, the course of the disease can be strongly affected by different 

pathophysiological mechanisms including excitotoxicity, mitochondrial and endoplasmic 

reticulum stress, defects in RNA processing, defective axonal transport, protein 

misfolding/aggregation and oxidative stress. Some gene therapy studies have focused on 

trying to reverse or mitigate these pathophysiological elements of motor neuron injury.  

To decrease oxidative stress, Nanou et al., in 2013 [99] showed promising results after 

delivering antioxidant genes, such as PRDX3 and NRF2, into cellular models of ALS using an 

LV vector system. However, the intramuscular delivery of these genes driven by AAV 

serotype 6 failed to rescue the SOD1-G93A mice phenotype. Low levels of transduction were 

observed in the CNS and the poor efficiency of AAV-6 in crossing the blood brain barrier 

could explain the disappointing lack of efficacy in vivo [99]. However, a better strategy to 

deliver these antioxidant genes may open a new therapeutic option in vivo.  

A gene therapy strategy to block misfolded SOD1 protein has recently been published.  AAV 

vectors were engineered to deliver a single chain fragment variable of the D3H5 antibody, 
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which is able to block the toxic misfolded SOD1 protein produced in the SOD1-G93A mouse 

model [100, 101]. The increase in lifespan was up to 40 days with an average of 16, and the 

levels of misfolded SOD1 protein in the spinal cord were decreased, along with a reduction 

in neuronal stress [101].  

Inflammatory responses are upregulated in the spinal cords of ALS patients as well as in 

SOD1-G93A mice. The use of anti-inflammatory molecules to protect injured motor neurons 

was recently tested. In a study published in 2015, intraspinal injection of AAV driving the 

expression of murine interleukin 10, an anti-inflammatory cytokine, in newborn SOD1 G93A 

mice prolonged their expected lifespan [102]. 

One of the most relevant clinical consequences of ALS is muscle weakness and eventual 

paralysis. Recently, Jackson et al demonstrated rescue of TDP43-induced forelimb paralysis 

in rats by viral delivery of human upframeshift protein 1 (hUFP1), a protein involved in 

nonsense-mediated decay of mRNA transcripts containing premature stop codons [103].      

The cause(s) of many cases of sporadic ALS (sALS) is currently unknown (Figure 1). Although 

the variability between cases can be broad, it seems that the presence of typical TDP43 

positive cytoplasmic inclusions in motor neurons is a common pathological hallmark in the 

majority of sALS cases [104]. TDP43 pathology can correlate with a reduction in the levels of 

ADAR2, a pre-mRNA editing enzyme which is involved in the Ca2+ entry through AMPA 

receptors channels [105]. In 2013, Yamashita et al., engineered AAV to drive the expression 

of ADAR2 in ADAR2 knockout mice, a mechanistic mouse model for sALS. In this study, 

motor neurons were rescued by normalizing the expression of TDP43 and the progression of 

motor dysfunction was prevented, which may be considered in the future as a new gene 

therapy approach for the treatment of sALS [106]. 
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 Expert Opinion 6.

The delivery of therapeutic molecules to spinal motor neurons and glial cells remains a 

major challenge. The lack of effective neuroprotective therapy for ALS can be attributed to  

a combination of five key challenges: (1) Poor understanding of the molecular pathogenesis 

of ALS; (2) Delivery of therapeutically attractive agents has been hampered by inefficient 

delivery methods and other factors like the blood-brain barrier (BBB); (3) Ineffective 

targeting of therapeutic agents specifically to the diseased CNS site and/or cell type; (4) The 

fast progression of the neurodegenerative process in this condition leading to a very short 

window for therapy administration; (5) Existing animal models of ALS failed to translate 

apparently efficacious therapies into clinic. These problems must be overcome to develop 

fully effective treatments for ALS.  

Additionally, while allele-specific targeting of certain genes in some heritable diseases is 

both an achievable and preferential approach (e.g. targeting of mutant huntingtin in 

HƵŶƚŝŶŐƚŽŶ͛Ɛ ĚŝƐĞĂƐĞͿ͕ ƚŚĞ ǁŝĚĞ ǀĂƌŝĞƚǇ ŽĨ ďŽƚŚ ALS-linked genes and the multiple mutations 

within these genes associated with ALS makes this approach difficult. The pre-clinical 

development and safety profiling required for each allele-specific construct would be 

extremely time-consuming and prohibitively expensive. This, coupled with the reluctance of 

pharmaceutical companies to commit large amounts of resources to therapies that may be 

of benefit to only a small number of patients, further hinders the development of gene 

therapies in ALS. Forms of ALS in which a single gene is implicated, such as SOD1-linked 

familial ALS, are a very attractive target for gene therapy. Investigations in SOD1-null mice, 

demonstrating that complete ablation of endogenous wildtype SOD1 is non-lethal and does 
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not lead to an ALS phenotype, lend weight to the approach of non-allele specific gene 

knockdown in this ALS subtype. 

Several proteins including neurotrophic factors have been reported to be potential 

therapeutic options and have been tested in clinical trials in ALS patients. Unfortunately all 

of these trials failed to show efficacy prompting us to believe that inappropriate delivery 

approaches of these agents is part of the problem. A further confounding factor in the 

translation of these therapies from animal models to human trials is the use of potentially 

unsuitable animal models of disease. Although rigorously studied and defined, commonly 

used disease models may prove problematic if results generated in them cannot be 

replicated in patients. Complex diseases such as ALS may require significant improvements 

in in vitro and in vivo models before therapies are able to make a successful transition from 

the bench to the clinic. Major advances in multiple technologies, including gene therapy and 

recent discoveries of new ALS genes, offer a window of opportunity and optimism to 

substantially change the pace of translational research in the field of motor neuron diseases. 

Viral vectors have been refined to the highest level of safety and efficiency. Multiple animal 

studies have now been undertaken with viral vectors and major effects, in terms of 

amelioration of disease models, have been obtained. These studies provide great optimism 

for the future utility of viral vector delivered gene delivery as a therapeutic strategy for ALS 

in man. However, translating these strategies into human clinical trials remains a challenge 

due to factors including the lack of specific targeting of CNS tissue. Another major hurdle is 

the manufacture of the large quantities of therapeutic vectors required for clinical 

applications which, though achieved in several trials of viral gene delivery, remains both 

extremely expensive and so far only attempted in studies using a limited number of patients 

in early stage trials. The amount of virus needed for gene therapy trials is of course affected 
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by a number of factors. For example, i.v. delivery for systemic treatments requires larger 

quantities of virus than sub-retinal injections to treat macular degeneration. The 

assumption that ALS patients will be treated during adulthood rather than as children would 

also necessitate a greater viral dose. As it stands, the scaling-up of vector manufacturing for 

Phase II/III trials and potentially to the point of commercial viability remains a challenge. 

The hope is that as viral vector-based delivery becomes a more commonplace gene therapy 

technique, the burden of large-scale viral vector production and manufacturing design will 

be taken up by existing or developing biotechnology companies. 

Of the mentioned clinical trials, it will be interesting to see the development of the SOD1 

targeting ASO study (NCT01041222), as any beneficial effects seen in patients by knocking 

down SOD1 protein levels will also lend credibility to efforts at achieving similar results by 

RNAi mediated knockdown of SOD1. Positive results stemming from the ASO study will also 

increase confidence in the safety of this technique, which is likely to be beneficial for studies 

targeted towards the treatment of other forms of ALS as well as other neurodegenerative 

diseases using ASOs.  

The study involving plasmid delivery of hepatocyte growth factor is still in the recruiting 

phase but it will be interesting to see if this study manages to generate the positive results 

that previous neurotrophic factor studies have so far failed to deliver.  

Finally, the main achievements in gene targeting for ALS reviewed in this paper have been 

summarized in table 2, where the studies have been categorized based on the gene therapy 

system used in each case.  

 



 28 

Acknowledgements  

MA and SHM are supported by an ERC Advanced Investigator Award. JMS is supported by 

University of Sheffield studentship. ARA is supported by scholarship from King Abdulaziz 

University. PJS is supported as an NIHR Senior Investigator.   

  



 29 

 

Figure legends 

Figure 1: The diagram shows the prevalence of familial and sporadic ALS cases, as well, the 

percentage of ALS explained by each gene in populations of European ancestry [3]. Adapted 

from Renton et al., [3] by permission from Nature Publishing Group. 

Table legends 

Table 1: Summary of gene therapy clinial trials carried out or ongoing in ALS. 

Table 2: Summary of  the main gene therapy studies performed so far in ALS models. 
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