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A large class of discrete multipass processes can be
viewed as 2-D systems of the form proposed by Roesser.
It is shown that the criteria_for stability along the
pass is equivalent to Shanks condition for 2-D BIBO
stability. The interplay of ideas between the two
disciplines should make possible the emergence of a
coherent feedback control and systems theory for

multipass processes.




1 Introduction

In a number of recent publications, Edwrardslm3 has examined the
stability of multipass processes. Such processes are characterized
by repetitive operations that can be illustrated by consideration of
machining opérations where the material or workpiece involved is
processed by a sequence of passes of the processing tool. Assuming
the pass length o to be constant, the output vector yk(x), O<x<a
(x being the independent spatial or temporal variable), generated on
the kth pass acts as a forcing function on the next pass and hence
contributes to the dynamics of the new output yk+1(x), 0<x<a.

Edwards .slpproachlm3 to stability analysis is to convert the
system into an infinite length single-pass process described by a
differential/algebrai; delay system and to apply standard scalar
inverse-Nyquist stability criteria. The validity of this approach

5 .
*” who has expressed concern that this

has been discussed by Owens
approach neglects the initial conditions on each pass. An abstract
functional analytic model for linear multipass processes was proposed
and the distinct concepts of uniform asymptotic stability and

. stability along the pass were introduced and necessary and sufficient
conditions derived in‘each casé in terms of conditions on the system
operator.

In this paper it is shown that a large class of discrete multi-
pass processes can be viewed from the viewpoint of the well-developed
theory of 2-dimensional systems which provides an alternative approach
to systems stability analysis. The basis of the paper is a

demonstration that a general model of linear, discrete time-invariant

multipass processes are special cases of the state space model for




2-D systems suggested by Roessere. The main result is that Owens

criterion4 for stability along the pass is equivalent, in this case,
to a well-known 2-D stability criteria. Not only does this result
release many recently .derived stability tests for 2-D systems for
application to multipass processes, it suggests the exciting
possibility that the recently developed concepts of controllability,
observability and minimality of 2-D systems could form the basis

for the development of a control theory for multipass processes.

2. Two-dimensional Systemslﬁ: A review of basic concepts

2.1 Input/output Description

A 2-D linear shift invariant system can be described by the
convolution of the input u(m,n) and the impulse response function
h(m,n) . In the current work interest will be restricted to scalar
systems with input—output relationships of the recursive form

K L

y(m,n) = z Z a(k,%)u(mk,n-2)
k=0 4£=0

I J

&> ] Y b(i,i)y(m-i,n-3) D
i=0 j=0
(i,7)#(0,0)

This difference equation in fact describes a form of 2-D digital

A s 7 :
filter referred to as a quarter—plame filter . It is also termed

spatially causal over the quadrant (m,n)>(0,0) as y(m,n) depends

only on input and output variables at points (i,j) < (m,n).
Taking the 2-D z-transform of eqn (1) leads to the transfer

function relating y to u of the form




A(Zl’ZZ)
H(Zl’z2) = ETEIjE;T _ svi(2)

a(k,l)z. =z
k=0 =0 L

£

]

)

where A(zl,z2

I J = |
Pl s e ey 1 (3)
i=0 j=0

It

B(zl,zz)

and, for notational simplicity, we have taken b(0,0) = 1. The reader
should note that, in contrast to normal control practice, we are
adopting the 2-D system convention of regarding zq and z, as backward
shifts.

Expanding H as a power series yields

(=] o]

H(z,,z.,) = Z Z h(m,n) z W R )
12 bio B 1.2
m=0 n=0
and the system is said to be bounded-input-bounded-output (BIBO) stable

if, and only if,
2] [e]

L 1 |h@w|<+e 38

m=0 n=0

If A and B are mutually prime and H has no nonesssential singularities
of the second kind7 (ie there exists no (21,22) such that
A(El,zz) = B(El,zz) = 0) then a convenient test for BIBO stability
has been presented by Shanks8

B(z,,2,) #0 for ]zll %ol g Izz[ <4y
' i 5:£6)
To check this condition is computationally very involved but can be

simplified by application of the results of Huang9 who has shown that




equation (6) is equivalent to
(a) B(zy,0) #0 V |z
(b) B(ZI’ZZ) # 0 \J ]z

A

IA

1

1] Lo iy |32| f 1 a6

Even these conditions have been simplified and generalizedlO and have
formed the basis of a Nyquist—like stability test11 for 2-D systems.

They are also interchangeable in terms of zq and Zye

2.2 State-space Model for 2-D Systems

6
Roesser has presented a 2-D state-space model for systems
recursive in the positive quadrant of the form (using Roessers

original notation)

xh(i+1,j) = Alxh(i,j) # Azxv(i,j) * Blu(i,j) s (:8)
x (1,3+1) = Ax-(1,3) + Ax (1,5) + Byu(d,j) e (9)
y(i,3) = €% (1,3) + C,x (i,§) + Du(i,i) .+ (10)

where i,j are positive integer valued horizontal and vertical
i g
coordinates, thER % xVGER are vectors which propagate information
; ; S s ; : L
in the horizontal and vertical directions respectively, u&R’ and
m ; .
vy ER are vector inmputs and outputs respectively and Al’ AQ’ A3, A&’

Bl’ BZ’ Cl’ C, and D are matrices of the appropriate dimensions.

2
Applying the 2-D z—-transform to eqns (8)—-(10) gives the

following 2-D transfer function matrix

H(zl,zz) = [01,82] 1 “I + D s Gl

which can be computed by known algorithmslz. Applying the ideas of

section 2.1 to each element in turn, the BIBO stability of the system




(as expressed by the Shanks or Huang test) is dependent on the roots
of the characteristic polynomial
I =—z.K -z A

i n, 11 1
p(zl,zz) : 1 S (12)

2,44 Inz'zzAA

which (applying Schurs formu1a13) can be expressed in the alternative

form

i ;s : - 1 s =1
p(zl,zz) = [Inl z1A1| |In2 ZZA4 leZAB(Inl zlAl) A2[ 13

We now prove the following theorem:

Theorem 13

The Shanks (or, equivalently, the Huang) stability test for the
2-D Roesser model is equivalent to the conditions

(a) Al is a stability matrix

(b) A4 is a stability matrix

(c¢) All eigenvalues of the transfer function matrix
-1, A = '
) = A, ¥ A3(zl Inl Al) A, ... (14)

with |zll = 1 lie in the interior of the unit circle in

Q(z1

the complex plane.

Proof

Applying the Huang test (7) (a) to p(zl,zz) requires that
p(zl,O) = lInl—zlAll # 0 for |z1| < 1 and, by interchanging the roles
of zy and Zys p(O,zz) = IIn2—22A4l # 0 for [z2| < 1. It follows
that A1 and A4 are stability matrices and, using (13), condition
(7) (b) reduces to

?(zl,zz) 4 ]In - ZZQ(Zl_l)l #0 , |21| ol |Zz| <1

2
s 5 (13}




It follows immediately that all eigenvalues of Q(zl—l), [21[ =1
lie in the interior of the unit circle in the complex plane.
Conversely suppose that (a)-(c) above hold. We see immediately
that p(zl,O) # 0 for all |zl|fl and hence that (7)(a) is wvalid.
Also p(zl,zz) = p(zl,O)T(zl,zz) # 0 for |zll ol [22| < 1 as the

eigenvalues of I—zzQ(zl-l) are non—zero in this domain.

This theorem is, in its own right, a new form of stability test
for the Roesser model. Its primary purpose in this paper however
is as a convenient link to the natural form of multipass stability

criteria.

3is Multipass Processes as 2-D Systems

(3

This section explores the connection between multipass process
models and the Roesser model. We begin with an example to motivate

the discussion. A general treatment is given in section 3.2.

3.1 An Illustrative Scalar Example

Consider the simplified model of a multipass steel-rolling process

(x) = .Kyk(x) + u (%) e (16)

Y41 k+1

where x is the distance along the pass and k is the pass index.

Assuming proportional control action of the form

uk+1(x) = c(rk+1(x) - yk+1(x—X)) P G )

where X is the sensor delay, c is the controller gain and rk+1(x)
is the reference on the (k+1)th pass, yields the closed-loop model
of algebraic-delay form

yk+1(x) = Kyk(x) + c(rk+l(x) - yk+l(x—X)) ...(18)




Discretizing this system for the purposes of stability analysis by

introducing the 'along-the-pass' index i by x = iX and defining

the variables y(k,i) = yk(iX), r(k,i) = (iX) yields the relations

k

y(k+1,i) = Ky(k,i) - cy(k+l,i-1) + cr(k+l,i) ... (19)

which can be regarded as a 2-D system with transfer function

H(z s i(020)

1’22) g K22 + cz

with numerator polynomial A(ZI’ZZ) = ¢ and B(zl,zz) = 1—K22+czl.

The Huang test for BIBO stability requires that 1+cz1 # 0 for all

lz 1 (and hence that Ic| < 1) and that 1-Kz

1A

+cz1 # 0 for all

1 2

lz.| = 1, ’zzl < 1. This second condition is equivalent to the

p |
requirement that the .circle {z : |z-1] < c} should not intersect
with the circle {z : |z| < K} ie Huang's BIBO stability test reduces

to the requirement that

le] <1 - |K] set2l)

This condition is equivalent to that obtained by Edwardsl using
inverse Nyquist frequency domain analysis and also to the condition
for stability along the pass derived by Owens4. It is clear
therefore that there is some equivalence between 2-D BIBO stability
tests and the multipass ideas of stability along the pass in this
case. This is explored in the next section by considering the

multipass equivalent to the 2-D system model due to Roesser.

3.2 Discrete Linear Time-invariant Multipass Processes

Consider a general discrete multipass process obtained by
discretizing the general continuous model proposed by Owensé. The

process is described by the equations




x (141) = Ax (i) + B,y, (1) +B,r(i) x (o) = x_ L sam(22)

Y4y (D) = Cx (1) + Dy, (1) v (23)

where xk(i)EiRn, yk(i)E:Rm, k>0 and O<i<I<+=, TFor the purposes of
consistency we have retained the notation of Owens4, although it does
clash somewhat with that of Roesser. Despite these notational
differences it is easily seen that the multipass process of equations‘
(22) and (23) takes the form of a 2-D system. More precisely it is

a Roesser model with eqn (22) playing the role of equation (8) (and
hence with x playing the role of 'horizontally transmitted' information)
and equation (23) plays the role of equation (9) (with y representing
'vertically transmitted' information). The multipass process above
has no analogue to equation (10), although one could envisage the
introduction of other algebraic measurement equations that would play

the same role.

Proposition 1: The 2-D stability test of Shanks and Huang in the form
of theorem 1 requires that

(a) A is a stability matrix

(b) D is a stabiiity matrix

(c) All eigenvalues of the transfer function matrix

2],
1

) 8D+ C(zl-lln—A)"lB : uXahy

G(z 1

with |z = 1 lie in the interior of the unit circle in the

.|

complex plane.

Consider now the form of the multipass stability criteria.
Following Owens4 the problem can be considered in the context of the

Banach space E_ of mappings from the finite integer set 0<i<I into

I




m ;
the vector space C of complex m-vectors with norm

Iy Il

max ||y(i) I | e l28)
o<ix<I

Writing equations (22), (23) in the equivalent form

() = Cx (0) + Dy, (0)

Yi+1

1.
ot ¥ 1(Blyk(£)+B2r(E))

It

; i-
p i ;
yk+l(1) CA = Dyk(l) + EZO

f2dx1 1(26)

and defining the bounded linear map in EI by the relations

A Dy (i) :i=0
(LIY) (1) = i-1 {01
Dy(i)+ ) CA B,y () @ 1gi<T weni2T)
=0

and the constant vector bIEEEI by

A Cxo :1=0
b (i) = i-1
I ==l .
Cx + ) CA B.r(L) : 1l<i<I el 2B)
° =0 4 T

then the multipass process takes the standard form

Lka + bI i k>0 ...(29)

T+l

This system is said to be uniformly asymptotically sta‘ole4 13

and only if, given any initial profile yOGEEI and known disturbance

bs the sequence of pass profiles {yk} converges to an equilibrium
profile y_ satisfying y_ = Lyw+bI and that this property is also

possessed by operators L' sufficiently close to L.  Necessary and

i g s ; § o 4
sufficient conditions for uniform asymptotic stability are that




= b =

the spectral radius rw(LI) of LI satisfies

r (L) <1 | .. (30)

Proposition 2: The multipass process of equations (22)-(23) is

uniformly asymptotically stable if, and only if, all eigenvalues of

D lie in the open unit disc in the complex plane.

Proof: As EI is finite dimensional, A is a spectral value of LI iE,
and only if, it is an eigenvalue of LI' Consider the equation
LIY = Ay, y # O.ie

x(i+l) = Ax(i) + Bly(i) 7 x(0) =0

Ay (i) = Cx(i) + Dy(i) . O<i<I s s 31)
If X is not an eigenvalue of D then the equations take the form,

x(i+1) = (A + BI(AI—D)“IC)X(i) ., x(0) =0

y(i) = (AI-D) lex(i) 0<i<I ¢+ (323
which has the unique solution y = 0. It fellows that the spectrum

of LI is a subset of the eigenvalues A, ,A ,..,Am of D, that

12
pm(LI) < max |Ai| and hence that the conditions of the result are
i
sufficient. Necessity follows directly by taking X, = 0 and noting
; _ .k .
that yk+1(0) = Dyk(O) or yk(O) =D yO(O). In particular we must

have

rm(LI) =  max [A.I — b

An immediate consequence of this result is tha: uniform asymptotic
stability of the process is not equivalent to BIBO stability of the
process regarded as a 2-D system. This is a consequence of the
assumption of a finite pass length I. The situation changes if

we let I++o and consider stability along the pass.




- 11 =

The multipass process of equation (29) is said4 to be stable
along the pass if, and only if there exists real numbers M >0 and

0<lm<1 such that

I 1l <M\ k20, 120 Sy

where “LI ”I is the induced operator norm in E_. Necessary and

I

sufficient conditions for this to hold are that4

B E sup rm(LI) <1 e €35)
130
and that
A =1
M = sup sup "(nI-LI) "I < @ a2 2.(36)
I>0 |n|=A

for some real number A in the range rw<K<1.
Applying these conditioms to the discrete multipass process,

note from eqn (33) that (35) reduces to the requirement that

r, = max ]l.[ <. 1 e A L)
l<i<m i+
and hence that D must be a stability matrix. Consider now the

solution of the equation {nI—LI}y i 7 for some arbitrary yOGEEI ie

x(i+1) = Ax(i) + By .,  x(0) =0

ny(i) = Cx(i) + Dy(i) + yo(i) , 0<i<I ...(38)

But ln|>r00 implies that tnI—Dl # 0 and hence that y is obtained from
the relationms,
LR e {A+Bl(nI—D)_lc}x(i)+Bl(nI—D)_1yc(i)

y(i) = (nI-D) {ox(i) +y (D)) .. (39)

The boundedness requirement of equation (36) is equivalent to the

requirement that the system (39) is asymptotically stable for all




|n| = X for suitable choice of A in the range r_<i<l. Noting4

that we can replace (36) by the requirement that

M' 4 sup sup “(nI—LI)_l ” < e (1(0)
I>0 |n|>A I
indicates that (39) must be stable at the point |n| = = and hence

we require that A be a stability matrix.

Finally, writing the characteristic polynomial

-1
|pIn - A - Bl(nIm—D) cl

luz_ - 4

-I—TI—ITD—I— . [nIm = G(]—i) I e (41)
m

The stability condition hence reduces to

Int_-cw] #0 | = x, Ju 21 oo (42)
which, noting that 1im G(p) = D, and considering the case of

[t

|lu| = 1 implies that eigenvalues of G(u) with |u] = 1 lie in the
jnterior of the unit circle in the complex plane. The Shanks/Huang
conditions for BIBO stability (as expressed by Proposition 1) are
_ hence necessary for stability along the pass. They are also sufficient
as, if D is a stability matrix, then (equation (37)) r _<l. Also, if
A is a stability matrix and all eigenvalues of G(u) with lu] = 1
lie in the open unit circle in the complex plame, it is possible to
choose rm<h<1 such that both sides of (41) are non-zero for
In[ = X and |u| = 1 and such that all eigenvalues of A have modulus
<A. . Considering the unit contour {u:|u| = 1} traversed in a

clockwise manner and applying standard encirclement theorems to




_13_

equation (41) indicates that all roots of the characteristic
polynomial (equation (41)) lie in the interior of the circle
lz]<1 for all InI = A ie the system (39) is asymptotically stable
fér all |n| = X which verifies equation (36). We have therefore
proved the following theorem demonstrating the equivalence of the

two—dimensional and multipass stability concepts:

Theorem 2
The discrete multipass process of equations (22)-(23) is stable
along the pass if, and only if, when regarded as a 2-D Roesser

model, it is BIBO-stable in the sense of Shanks and Huang.

The important conclusion to be drawn from this result is that

7alh for checking the BIBO stability

any of the many tests available
of Roesser models can be applied to linear discrete multipass
processes. More precisely, following the development of section 2,
taking the 2-D z-transform of the multipass equations (22) and (23)
provides a 2-D z-transfer function matrix defining process dynamics
and, in particular, the characteristic polynomial

i -zlA vooo=z. B

p(zl,zz) g = e.o (43)

_ZZC ImmzzD

It follows that, for example, the following 2-D stability tests are

applicable to linear discrete multipass processes:

Corollory 1 (Shankss): The discrete multipass process of equations
(22)~(23) is stable along the pass if, and only if, p(zl,zz) #0

for all Izll 21 ]zz| < 1.




- 14 _—
Corollory 2 (Huangg): The discrete multipass process of equations
(22)-(23) is stable along the pass if, and only if, p(zl,O) # 0 for

all lz < 1 and p(zl,zz) # 0 for all ]zll = 1 and |zz| < 1.

1

Corollory 3 (Strintzislo): The discrete multipass process of equations
(22)-(23) is stable along the pass if, and only if, there egists a,b
such that |a| < 1, |b] = 1 and (i) p(a,zz) # 0 when |22| i &

(ii) p(zl,b) # 0 when Izll < 1 and (iii) p(zl,zz) # 0 when

l2‘.1| = |22| 1.

11 415

Corollory 4 (De Carlo et al ): The discrete multipass process

of equations (22)-(23) is stable along the pass if, and only if,

p(zl’ZZ) # 0 for all zZ, =z, =z whenw[zl < 1 and p(zl,zz) # 0 for

PARNEA S

Graphical tests similar to the above together with techniques based
on diagonal dominance, Schur-Cohn matrices and 2-D co-prime

factorization of the transfer function matrix are described elsewhere ’

4. Discussion and Conclusions

Motivated by problems in image enhancement and filtering, the
topic of 2-D systems theory has developed extensively in the past
decadele. In independent work on qualitative stability problems for
systems performing repetitive operations Edw:—mdsl“3 has identified
an important class of physical processes for which a useful control

2 has provided a rigorous approach

4
theory is lacking, although Owens |
to stability analysis based on abstract functional analytic models.

i




The present work has identified similarities in the dynamic

models of 2-D systems and linear discrete multipass process models.
More precisely, it has been shown that the general discrete linear
model for multipass processes is identical in general structure to
the 2-D system model proposed by Roesserﬁ. The result demonstrating
the equivalence of the apparently distinct 2-D BIBO stability tests
and stability along the pass is particularly important as it

releases a large number of 2-D stability tests for application to
multipass processes and suggests a strong connection between stability
and the denominator polynomial of the 2-D z-transfer function matrix.
This in turn suggests that it may be possible to develop 2-D transfer
function matrix and consequent block diagram algebra methods as a
basis for the development of a rigorous feedback control theory for
multipass processes. Moreover the related 2-D concepts of stability,
observability, controllability and minimality developedl7 in recent
years could be used to form the foundation of a systems theoretical
approach to the analysis of multipass process dynamics. These

topics are under consideration at the present time.

Finally the above interplay of ideas, concepts and applications
should enrich both subject areas whilst retaining their own
individuality and differences. For example, it seems unlikelyAthat
2-D system theory will be of direct use in multipass process

applications involving continuous integral smoothing operations.
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