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Summary

A correspondence is established between the multimachine power
system, multivariable control system and the classical least squares
problem incorporating a priori information. A transformation diagram is
developed in order to illustrate the relationships between the system
variables which are similar to those associated with a linear graph or

electrical network.

The transformations of linear graph theory exist in the solution
of the multimachine power system problem, consisting of a series of machine
units interconnected with an electrical network. A similar correspondence
is shown to exist also in the solution for the transformed outputs of a
linear multivariable control system under certain conditions, and also in
the solution of the least-squares estimation problem which incorporates a
priori information concerning the estimated state. Each solution can be
associated with a feedback structure and similar transformation matrices
relating ‘conjugate' variables also exist in each problem. This
correspondence can form the basis for the development of a unified
transformation diagram whic'. possesses properties of the Roth-type
transformation diagram for a linear graph. Such a diagram can form a
framework for the linear system problems incorporating implicit feedback
in the system equations. This will permit a physical structure such as
an electrical network, and other properties of the control system problem
such as those associated with the return~difference matrix, to be introduced
into the least-squares estimation problem. Similarly, properties of the
estimation problem may be introduced into the multivariable control system

problem.

Multimachine power system problem. Consider the interconnection of

synchronous generators with an equivalent network containing only

generator nodes represented by

iy = YN vy (L)

where Yo is a symmetrical matrix of driving-point and transfer admittances.
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The machine voltages referred to direct and quadrature rotor axes are

given by

W B & - szlk i=1,2,.m (2)

where Zlk represents the k-machine transient reactance matrix with

components x!' '

1
dk® “qk’
each machine and the common D, network reference axes, machine k terminal

X With load angles Gk between the field axes of

voltage is related to the i-node network voltage by the transformation

jié
B , . k 7
Vi N R e MR = o2 T, my sV Qa. 52
With m machines connected to n network nodes
= )
v AC8) vy (&)

where th@ connectlon matrix A(§) is of order mxn, mdn, with elements
Akl = (e &, 0) if the kth machine is incident or not on the ith node,
and corresponds to the tree-branch~node matrix AT in the electrical
network problem with elements (+1,-1,0). he machine and network

currents are related by
CSntbat. . .
by = AT () i (5)

Combining eqns 1-5 for the connected system gives the solution

for network voltagesl

VN == I?N o+ AT(G)YE-'I A(ﬁ)]-l AT(S)YMe (6)

Then generator voltages
v o= (e Ye (7
where  H(§) = A(8) [¥, + A(OYA] T AT(o) (8)

is a symmetrical mxm matrix, which appears similarly in the general
. 2 ; x .
electrical network problem, For the machine system we may also define

a conjugate transformation matrix L with

2L = I-MY, €))
r T -1
Th L = -~ Y MY = 10
en Y = L, (z,, + AZ A7) (10)
Al Moo= -
so it AR (11)

Now machine current

1 = — = - Y = 12
i T e ~ v) 7, (1 MYM)e Le (12)

The matrix L thus represents a direct transformation between the machine
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current and internal voltage vectors. Also

. T " ~1.
iy o= A"Le v AYML i (13)

A transformation diagram illustrating the relationships between

the machine and network variables may now be developed as in FIG 1.

ls est. s Rfly Rulv SH1;
control system = Cr(s) u(s) y(s)
m/c system - YMe " i T(5 iy
c* MM — s * - "through'
,wfﬂr j ' vars
L(8)|
Y | M(8)Y, L Ly 1z Y
M ///////:?\\\\ﬁuiii\ N N
o —_— — 'across’
o, = 1-Z2,L A(&) vars
m/c system - e v Yy
(machine) (machine) (network)
control system =- 1r(s) Ky(s) y(s)
1s est. -y Hx X

FIG 1 Transformation diagram for the multimachine
power system, multivariable control and

least~squares estimation problems.

The transformation diagram includes the characteristics of the
corresponding Roth-type diagram for the general electrical network
problem3g with the impedance- and admittance~type operators M(§) and
L(8) respectively directed across the diagram between the conjugate
'through' and "across' variables. The matrix L(S) defines the effect
of feedback introduced by the machine-network interconnection, and
possesses properties of a return-difference matrix associated with the
multivariable control problem.

In the multimachine power system problem the concepts of a
generalised inverse matrix are not evident, and the transformation
operators do not possess an orthogonality property, as in the general

electrical network problem4, with

Z g, # 0 (14)




-4 -

and the matrix MYM is not idempotent. This results from the conditions
imposed by the form of the inverse matrices in M(§) and L({(§), which are
determined by the implicit feedback effects in the defining system

equations.

Multivariable control problem. The linear multivariable control system

includes transfer function matrix coantrollers C(s), K(s) of orders (mxn),
(nxn) respectively and a process G(s) of order (nxm) a2s in the general
feedback structure of FIG 2. The transformed reference input variables
r(s) specify the required behaviour of the output variables y(s). The
solution for network voltages in the machine system problem is

similarly represented by the form of FIG 2, with feedback introduced by
the voltage~current relationship of eqn 2. The diagram illustrates the
particular difficulties of the multivariable control problem, in which
the dynamics are immersed within the structure of the system compared to
the machine problem in which the units exist extermal to the structure
of the network, together with a diagonal machine admittance matrix

comparaed to the more general forward controller matrix C(s).

Lyt o i i N v
- Z
e(s) . Al uls) |4 (I’i)_____}_r_(;_s_,l_,‘__.\ N :
s eGP () i 1 et
m/c input - e v L R v gt S "x S vy ~ network
ref input - r(s) R y(s) = output
observ. ot éiﬁlqﬂ ) x - ls est,
v K(s)
Ky (s) L
Hx
FIG 2 Basic feedback structure representing multimachine power
system, multivariable control and least-squares
estimation problems.
The feedback control system of FIG 2 has a closed-loop respomse
given by

y(s) = (1_+ ack)t 6o r(s) (15)

A direct correspondence exists between the solution of the multimachine
power system and the multivariable control system problems if the feedback

controller is defined by K(s) = GT(s), with m reference inputs. The
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solution of egn 15 can then also be associated with a least-squares
estimation problem.2 We may now define, as in the machine system

problem, the transformation matrices

M(s) = K(I_+ ack) e (16)
L(s) = C-CHMC = C(I + kee) b = cFt (17)
where F(s) = In + KGC (18)

represents a return-difference-type matrix. Also from eqn 18

¥ M e 4 (19)

The transformation diagram of FIG 1 may now be used to illustrate
the solution of the multivariable control system problem and the inter-
relationships between the variables based on the correspondence in Table 1.
The matrices M(s), L(s) again possess properties of 'impedance'- and
'admittance'~type operators respectively, compared to the dimensionless
properties of the return-difference matrix F(s), which will be directed
horizontally in the transformation diagram.

The state-adjoint variable relationships in the linear optimal
control problem incorporating a terminal constraints possess properties
which can also be illustrated in a Roth—type transformation diagram.

The problem is defined by the matrix differential equations

G P ~ear 18T-aTyG, -cTqc-pA-ATP+PBR 1P
2 v - el (20)
NS sBR™18lG | (R ' BTP-4)
together with the state-adjoint variable and terminal constraint
relationships given by
(2 I B e N Y0
- = _ (21)
p(t) oo et , en | |z
RS cTre[ A
= (22)
z 0 yAY
X _ LX(tl)_J

The terminal constraint is defined by the vector z and A is a vector
multiplier used to incorporate the terminal constraint in the transversality
condition. Eqns 21, 22 are also associated with a scattering-type

|4
representation of the optimal control problem.” It is now of interest
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to find that the same relationships can be illustrated in a time~domain

transformation diagram, as in FIG 3.

®(ty LY A B p(t,)
o N "G e CZ 4__(; 1
;
P-GN ™ LG* } Nt c'rc
]
L. ’
{
‘ - O
p(t) et ” ZC =(ty)
(optimal tra;.? (terminal constraint)

FIG 3 Transformation diagram representing the
trajectory and terminal constraint
relationships in the linear optimal control

problem.

The diagram illustrates particularly the signal flows from the state

x(t) and x(tl) to the adjoint variable p(t) and p(tl), with the terminal
constraint introducing a feedback-type path in the right-hand section.
The horizontal operators define transmission components and the operators
directed vertically between the corresponding conjugate variables
represent reflection components in the 'scattering' matrices of eqns 21

and 22.

Least-squares estimation problem. The solutions of the linear system

problems which can be associated with a linear graph suggest the
possibility of introducing a physical structure, such as an electrical
network or machine system, into the abstract least-squares estimation
problem. In a statistical framework the estimation problem is associated
with a measurement process represented by

y = Hx + v (23)

where y is an observed m—vector, x is an unknown parameter or state

n-vector and v is an uncorrelated random error m-vector defined with
zero mean E[ﬁ] = 0 and with a covariance matrix ErﬁiV.T] = RGi.a

By W Sk 17 : -
ij 0 i#j

With a priori information concerning the vector x, represented by

, where R is a positive definite symmetrical matrix.

wits . . . .
uLxx ] =s, E[vij = 0, the linear estimate associated with

min gly - mx||® 4 flx|?

R S




is given by

x = (st + a7ty laTrly = ealrly (24)
and g = HX = MR %y (25)
where M = H(Sm1 + HTR 1H) l * (26)
We also define

L = Bt -aww?t & (moe msED) (27)
then M = R ~ BLR (28)
or BE b MR e (29)
and o= 5t en ™t - g - sEiias (30)

The matrix RL represents a transformation between the residual vector y-y
and the measurement y with

A

y =y = BRly (31)

The least-squares solution of eqn 24 may be represented in the
block diagram form of FIG 2, based on the correspondence of variables in
Table 1. The problem solution also fits within the framework of the
transformation diagram of FIG 1 with the matrix operators M,L defined by
eqns 26 and 27.

Table 1 - correspondence of variables

m/c system control system least squares
Y I gt
™ “ T
AT (8) G(s) H
A(S) K(s) 51
&1
YM C(s) R
Vi y(s) fl
iy v(s) §o%
e r(s) v
v K(s)y(s) Hx
i e Rty
Z 1 e(s) v
T T Tl - AF =LA
i Z 1+VN YNVN e Ce+y'y VR vix S x

Table 1 includes also the potential function or performance criterion

associated with the defining system equations.
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A comparison of the solution for each system problem indicates
that in the machine system problem the network admittance matrix YN
introduces a priori information concerning the 'estimate' for network
voltages, and appears as an inverse post—operator in the system structure
of TIG 2. It is of interest to note that such operators may be similarly
introduced into the multivariable control problem to effect a certain
measure of uncoupling and diagonal dominance. It may also be
significant to note that the controller matrix C(s) may be associated
with reciprocal covariance properties of the error signal by comparison
with the estimation problem. The basic properties of a linear graph
incorporating a topological and algebraic structure can be associated
naturally with the formulation of the multimachine power system problem.
The solution of the machine problem, including the signal flows from
source to response variables, and the inherent constraints of the
connecting network can then be illustrated in a Roth-type transformation
diagram. The multivariable control system and least—-squares estimation
problems have been shown to possess similar structural and algebraic
properties which permit the problem solution znd the associated
transformation operators to be represented by a transformation diagram.
Such a diagram defines particularly the interrelationships between
conjugate sets of variables and appears to have an important role in
illustrating the available forms of solution for system problems which
can be associated with a linear graph. An understanding of the properties
of such diagrams is of fundamental importance for extending the concepts

to higher-dimensional network problems,
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