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Abstract

Previous results on the feedback control amnalysis of dyadic transfer function
matrices are related to the general concept of modal decoupling and the

techniques extended to cope with the case of unbounded or singular D.C. matrices.

(1) (2,3)

The concept of dyadic approximation has been extended to provide a

systematic approach to the manipulation and compensation of the characteristic
loci of a system described by an NxN transfer function matrix G(s). This letter

usas the concepts and notation of Ref. 3 to extend the definition and analysis

(1

of dyadic transfer function matrices to include the possibility of unbounded

or singular G(o).
For the purpose of this letter, on NxN dyadic transfer function matrix

G(s) takes the form

N
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where the previous requirement(l) that lG(o)\ + o and finite is replaced by the

requirement \G(s)\f#_o. As beforelggj(s)g are rational scalar transfer

i< j<N

functions andl{o(jiiSjsN’gjgjgiﬁjSN are sets of linearly independent vectors

such that if € =9, then @Q =A..

9 The possibility of complex dyads is

allowed mathematically but, if a physical jinterpretation is desired(lz it ds

necessary that the dyadsiﬁijﬁj be real.

+
S 18 j<N

The decoupling matrix (3) of G(s) at any point s=iWl is

s f2)
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which is non— singular real and independent of frequency U%_‘ Moreover
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K (u&) KD(wl) I implies that/%JKD(Wl) e s> OF for every s,

- Lo I~ " S\ .
GOIGE = 3@ e

s0 that%}ijilsjgN and Egj(s)glstN are the eigenvectors and eigenvalues

. ;- (3
respectively of G(s) KD(uﬁ)' Equivalently, lf( )

Tl = T,y 4l
- (4)

then T—l(ui) exists, is independent of frequency and

_r-\(yﬂ\ Gr@ﬂk‘%DGQC)_r(}Gﬁ = dd“ﬁséli\@)\"", %bééa'g
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Consider the unity negative feedback control configuration for the system

G(s) and let the forward path controller transfer function matrix K(s) take

the form(B)

K@3= KZD (L) T (@) Oh‘ou} E k‘@), G e \‘{N@Y% ‘T“‘(w‘j e

where ikj(sj§1<j<N are rational scalar controller transfer fumctions. It

follows directly that
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so that the closed-loop transfer function matrix &f the system takes the form

q.(s) R (5) =
= e (8)

ST+ GOROT GE KO =T () diag
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The choice of controller (eqp (6)) reduces the feedback control amalysis to the
analysis of N classical feedback systemsggj(S)kj(s)/(1+gj(s)ks@3)'§ in
(1)

manner directly  analogous to previous results ’ Note the use of the:

TN

decoupling matrix KD(wl) (egn.S) in the place of G_l(o) (see ref.l) which
makes possible the control analysis of dyadic plants where G(o) is unbounded
or singular.

A more convenient formula for the decoupling matrix can be obtained
by noting that KD(wl) is non-unique. To illustrate this poinﬁ, let gj(s)=

A =\ :
)\jgj (s) andij=)\. Ki, 1€j€N, where 3 A % are non—zero real scalars.

] j  1l<jsN
N A Py + . L ~ +72-1 ¢ .
Then G(s) = =2_ 'gj(s)o(jﬁj and hence § > o jgj 'g is a decoupling
j=1 1=1
matrix for G(s). Let s1 be a real number such that \G(%)\¢=o and finite.

The existance of such an s, is guaranteed by the assumptioﬁ that \G(s)\ #E 0.
It follows that gj(sl)'# 0, 1<jsN and the @bove argument, with )\j =
(gj(sl))—l, indicates that G—1(51) is a decoupling matrix for the system.

A systematic approach to the design of a unity negative feedback
controller K(s) for the dyadic plant G(s) (eqn.(l)) could proceed as follows:-
STEP 1: Choose a real number 81 such that \G(sl)\ﬁﬁ 0 and finite. If the

system is minimum phase and stable then any S0 will suffice. In more

general . situations, trial and error techniques soon yield a
suitable value.
STEP 2: Compute the eigenvectorsé}(jz of G(s) Gpl(sl), the similarity trans-—
formation () : with
T 1) and hence %:gj(s)é 1< <N from equation (5)

-1 .
KD(HE) o (sl). For computational purposes, the calculation of

ﬁijg is best achieved by noting that%}{.g are the eigenvectors of
J




4=
G(sz)G_l(sl) for any real number Sy

STEP 3: Choose N scalar transfer functions {kj(s) so that the

E1sjsN
b} (g)/ 1
subsystems {gj(S;kj\S):(l+gj(s)kj(s))glsjsN have satisfactory

transient response and stability properties.

STEP 4: Setting KD(HE) = Gnl(sl), evaluate K(s) from equation (6).

To illustrate the simplicity of the technique, consider the transfer

function matrix

1 1-s 3s+1
G(8) 5—r—r S anla)
8@ |y gem
Note that G(o) is unbounded so previous results(l) do not apply. Choose
s; = 1.0, then |e(1)] # 0 and
Sy 1 -1+3s  2-2s
GLEIG L Yo s « ++.(10)
s(s+1) e )

Taking $, = 2.0, the eigenvectors of G(Z)G_l(l) arezil =31, liT and

‘12 =580 . l%T. Defining T:=E“1}“2i then

2

-1 ~1 .
T "G(s)G ~ ()T = dlag%-é 1 B

s w1y

Hence G(s) is, in fact, dyadic and the design can proceed in a straight-

forward manner.
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