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Abstract  
Rock Filters are an established technology for polishing waste stabilization pond effluents. 
However, they rapidly become anoxic and consequently do not remove ammonium-nitrogen. 
Horizontal-flow aerated rock filters (HFARF), developed to permit nitrification and hence 
ammonium-N removal, were compared with a novel vertical-flow aerated rock filter (VFARF). 
There were no differences in the removals of BOD5, TSS and TKN, but the VFARF consistently 
produced effluents with lower ammonium-N concentrations (<0.3 mg N/L) than the HFARF 
(0.8−1.5 mg N/L).      
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INTRODUCTION 
Rock filters (RF) are a well-established technology for ‘polishing’ maturation pond effluents to 
provide high-quality effluents in terms of BOD and total suspended solids (TSS) (O’Brien et al., 
1973; Martin and Weller, 1973; Swanson and Williamson, 1980; Middlebrooks, 1988, 1995; 
Saidam et al., 1995; Neder et al., 2002; US EPA, 2002).  However, these RF rapidly become anoxic 
and there is no (or very little) removal of ammonia. To remove ammonia the RF must be aerated 
and it is better to treat facultative (rather than maturation) pond effluents in aerated RF so as to 
remove the need for maturation ponds and thus save land; aeration also improves BOD and TSS 
removals (Johnson 2005; Mara and Johnson and Mara 2006). Johnson and Mara (2007) found that 
an aerated RF outperformed an unaerated subsurface horizontal-flow constructed wetland (SSHF-
CW) and Mara (2006) showed that the combination of a primary facultative pond and an aerated RF 
produced a better quality effluent, required less land, and was cheaper, than a septic tank and SSHF-
CW. [Aeration has also been proposed for SSHF-CW by Davies and Hart (1990), Cottingham et al. 
(1999), Maltais-Landry et al. (2007) and Ouellet-Plamondon et al. (2007).]  
 
In this paper we report results obtained from two pilot-scale aerated RF of very different 
geometries. Both received the same volumetric hydraulic loading and air flow rates, but one had a 
depth of 0.5 m (as in the original work by Johnson, 2005) and the other a depth of 2 m. 
 
 
MATERIALS AND METHODS 
 
Pilot-scale units 
The facultative pond was loaded at 80 kg BOD/ha day (Abis and Mara, 2003) using a variable-
speed peristaltic pump (Watson Marlow model 505S pump fitted with a model 501RL pump head). 
A vertical-flow aerated RF (VFARF) and a horizontal-flow aerated RF (HFARF) were operated in 
parallel at our experimental station at Yorkshire Water’s Wastewater Treatment Works at Esholt, 
Bradford. The dimensions and operating conditions of the two RF are given in Table 1 and they are 
shown in Figures 1 and 2.  
 



The rock filters were filled with 40–100 mm limestone aggregate and aerated using an oil-free Jun-
air compressor (model OF302-25B) at an air flow rate of 20 L/min. The 12-mm reinforced plastic 
pipework, used to convey the facultative pond effluent to the RF, was heated during winter using a 
T-type thermocouple (model DTC 410 with temperature control) and a heating cable (Flexelec 
model FTP). A flow meter was installed at the inlet of the VFARF to monitor the flow to it and 
airflow meters were installed for both RF.  The RF effluents were discharged by gravity to the 
nearest drain.  
 

Table 1. Dimensions and operating conditions of the aerated RF 
 

 

Parameter VFARF HFARF 
 

 

Height  (m)                               2.0 0.5 
Width (m) − 0.5 
Length (m) − 4.0 
Internal diameter (m)                            0.3 − 
Filter bed depth/ Liquid depth (m)        1.8 / 1.5 0.6 / 0.5 
Rock volume (m3) 0.12 1 
Wastewater flow (ml/min) 50 420 
Velocity (m/s) 1.18×10−5 2.8×10−5 
Hydraulic retention time (d) 1.6 1.6 
Hydraulic loading rate (m3/m3 d) 0.6 0.6 
Airflow rate (L/min) 20 20 
Sampling points (m below surface) 0.25, 0.5, 0.75, 1.0,1.25, 1.5 − 

 

 
 

 
 

Figure 1. The HFARF (unit on the right). 
 

Figure 2. The VFARF. 
 
Wastewater sampling and analysis 
Grab samples of the influent and effluent of the two RF were collected and analysed weekly, 
following Standard Methods (APHA, 1998), for BOD (method no. 5210 B), ammonia (4500-NH3 
D), TKN (4500-Norg C) and TSS (2540 D).  Dissolved oxygen (DO), pH, and temperature were 
measured in situ using a sonde probe (YSI model 610-DM), and nitrate was analysed weekly by an 
ion analyser (DIONEX model DX500).  All laboratory analyses were conducted in the Public 



Health Engineering Laboratories, School of Civil Engineering, University of Leeds (16 km from 
Esholt).  
 
 
RESULTS AND DISCUSSION 
 
BOD5 removal 
Generally BOD5 removal was slightly higher in the VFARF than in the HFARF. The BOD5 
removal efficiency of the VFARF varied from 67 to 90% and in the HFARF from 48 to 84%. As 
shown in Figure 3, the BOD5 concentration in the RF influents was in the range 21–80 mg/L; in the 
VFARF effluent it was 7−9 mg/L and in the HFARF effluent 9−14 mg/L (these effluent ranges are 
not significantly different − student t test: p = 0.14).  Both effluents complied with the BOD5 
requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (Council of the 
European Communities, 1991). 
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Figure 3. VFARF and HFARF influent and effluent BOD5 concentrations and removal efficiencies. 
  
TSS removal 
Figure 4 shows that the HFARF performed slightly better than the VFARF but the effluent TSS 
concentrations were not significantly different (t test: p = 0.37); both complied with the 
requirements of the UWWTD.  
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Figure 4. VFARF and HFARF influent and effluent TSS concentrations and removal efficiencies. 
 
 



Nitrogen removal 
Ammonium. Influent ammonium-N concentrations ranged from 4 to 11 mg NH3-N/L during this 
monitoring period. The VFARF performed much better than the HFARF system: the NH3-N 
concentrations in the VFARF effluent were consistently <0.3 mg/L, whereas in the HFARF effluent 
they ranged from 0.8 to 1.5 mg/L; removal efficiencies were significantly higher in the VFARF 
(94−100%) than in the HFARF (77−89%) (t test: p = 0.001), as were the effluent nitrate 
concentrations (Figure 5).  
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Figure 5. VFARF and HFARF influent and effluent NH3-N concentrations and removal efficiencies 

(left), and nitrate concentrations in VFARF and HFARF effluents (right).   
 
 

Total Kjeldahl nitrogen. The concentrations of TKN in the influent of VFARF and HFARF ranged 
from 12 to 19 mg/L NH3-N/L. The TKN removal efficiency in the VFARF was ~99% but less in 
the HFARF (79−86%), although there was no significant difference between these values (t test: p =  
0.021).  
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Figure 6. VFARF and HFARF influent and effluent TKN concentrations and removal efficiencies 
 
 

CONCLUSION 
The VFARF achieved a higher ammonium-N removal efficiency than the HFVRF. It requires less 
land than the latter and thus should be investigated further to optimize its design. 
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