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Summary

The scattering formulation characterising the effects of
incident and reflected waves in a physical flow process which includes
a series of obstacles is discussed. Similar concepts can be applied
in the linear optimal control problem which includes terminal constraints,
and the defining linear and quadratic matrix differential equations are
shown to be analogous in both cases. The control problem is also shown
to include a series of 'obstacles' which can be interconnected according
to the properties of the star product which forms the basis of the
scattering representation of the general physical system. The scattering
matrix of electrical network theory and the associated power relations
are also shown to exist analogously in the linear optimal regulator
problems The resulting'incident‘and 'reflected' variables possess
similar properties to the scattering variables of network theory, and
the particular form of scattering matrix is shown to be closely related
to the matrix solution of the steady-state Riccati equations More general
energy considerations are extended to the optimal control problem and
discussed in terms of inequality properties of a scattering-type matrix,
and a particular solution of the Riccati equation is shown to be
associated with the property defining the state of dissipation in the

physical system.




Introduction

Many problems of mathematical physics concerned with propagation
through media containindg obstacles or distributed constants involve
concepts of scattering and can be formulated in terms of a summation of
the effects of incident and reflected waves. The broad basic concepts
of scattering form a unified mathematical structure for a number of
related disciplines, including particularly, circuit and transmission
line theory, probability and neutron diffusione1 The wave concept and
scattering representation would also appear to have application in the
traffic flow problem in which a vehicle stream is represented by a
continuous fluid density. The effect of a sudden change of vehicle
speed or of a traffic signal on the traffic stream, may then be
represented by the properties of an obstacle specified in terms of a
scattering matrix. The flow process including series-connected obstacles
may be characterised in terms of a combined scattering matrix which
defines the incident and reflected coefficients for the overall process
and relates the input and output waves at the system boundary. These
properties lead to functional and differential equations which arise in
many physical system problems and can be identified, particularly, with
the state-adjoint variable relations and the matrix Riccati differential
equation appearing in the linear optimal control problem. Also, in
the dynamic theory of scattering applied to the wave equation, a
scattering operator is defined in terms of forward and reverse wave
operators (S = W+_1W-)2O which may be identified with the solution of
the Riccati equation in the optimal control problem related to 'forward'

and 'backward' transition-matrix componentsn14

The object of the paper is to illustrate particularly how the
properties of the scattering matrix and the associated incident and
reflected variables can be introduced into the linear optimal control
problem which includes a terminal constraint. Problems of energy
dissipation and matching have been studied in detail for the distributed-
constant flow process represented in terms of the scattering matrix, and
it is believed that consideration of similar concepts can give greater

physical understanding of the optimal control problems




The scattering process

The propagation of energy at a given frequency in a physical
system, such as a transmission line, can be studied in terms of a
'disturbance' or 'wave' which propagates through a series of obstacles
or segments specified by the scattering matrices Si & ‘:% é;% y where
t, T and r, p represent complex transmission and refledtion Coefficients
respectivelyoi’2 With two adjacent obstacles, as in FIG 1, the
resultant reflected and incident waves with complex amplitudes v, are

defined by

(1)

FIG 1 Propagation through adjacent obstacles

The scattering representation may be generalised to include
nxn transmission and reflection matrix functions Si(x,y), Ri(x,y),

Ui(x,y), wi(x,y) with spatial coordinates (x,y) and n-vectors V,, which
may be associated with an obstacle containingJZn—terminal pairs°1’3

Thus
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For the two-obstacle system, the overall reflected and incident waves

will be related by the form
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Egn 4 defines the star-product or combined scattering matrix for two
adjacent obstacles. With a series of obstacles the overall scattering

matrix is obtained by the continued star-product

M = M’l*Mz* oo *Mn (5)

In contrast, the transformations (Vzvi)wdb(V4V3)~ﬂh(VéV5) relating input-

output variables across each obstacle are defined by the relations

s w - - 2
v R, =W g =1y 42 W,8 | [V
VZ.I ' S-i” 4 2 ] | g e (6)
1_{ | T 1 L3l bogel
The overall transformation is then defined by the continued matrix
product
L = L_leunoonLn (7)

The star product plays a fundamental role in the scattering
representation of energy transfer in the physical system. It can be
extended to form a set of functional matrix equations in the functions
S(x,z), R(x,z), U(x,z), W(x,z) which then leads to a matrix differential

3,5

system which is analogous to a similar formulation of the linear

optimal control problem.

2.1 The differential representation of a scattering process

A Riccati-type differential system can be associated with the
complex matrix elements of the scattering matrix S(x,y) and the star
product S(x,z) = S(x,y)*S(y,z)q1 The results can then be extended by
relating arbitrary complex nxn matrices A(y), B(y), C(y), D(y) to the
matrices S(x,y), R(x,y), U(x,y), W(x,y) which can be shown to be

solutions of the matrix differential equations

s U
¥ N
W R
Y Y

(D+UC)S , A + DU + UB + UCU"}

| ‘Res, R(B + CU) P ®
e -l

S = 385/d (8)
y = ¥

[

with initial conditions M(x,x) = I2n° IF D 3 -B then A, C, U, W are

symmetric, and S== RT corresponding to equivalent 'transmission' properties
and conventional linearity. It is of interest to note that, as in the
scalar c:ase,"L the differential system of eqn 8 may be represented as a
single matrix Riccati-type equation

e A'i ["D 07 i"o o] Io J

o ol*lo o“lM*Ml_o gl tH = =

M
1 .C O]

Y




w 5 o

and the off-diagonal reflection-type components of eqns 8 and 9 are of

quadratic forme.

Reeds also considers a linearisation of egn 8 which is obtained

by a change of variable associated with the transformation (V4V3)~-w(V2V1)
of eqn 6. Thus define the 2nx2n matrices
L ~B - |
Hix,¥)==1 = " a1 3y = (10)
{UR"~ , S=UR 1wJ A i ap
Then H is a solution of the linear matrix differential equation
Hy = GH, Hix;x) = I2n (11)

Also Y o« - (12)

Linear optimal control with quadratic criterion and linear terminal

constraints

The quadratic differential equation for Uy in eqn 8 can be
identified with the matrix Riccati differential equation in the linear
optimal control problem. The linear differential equations for Sy’ RY
can also be shown to be analogous to similar sets of equations associated
with the optimal tracking problem and with the optimal regulator problem

incorporating a terminal constraint.

Thus consider the linear optimal control problem for the system

described by the equations

x(¢) = Ax+Bu, y = Cx, x(to) = (13)
with performance index £
3 T T T T
Ju) = 3 (yQy + uw"Ru + 2y Wuldt + Ly (ti)Fy(tl) (14)
£
o

and terminal constraint7

z = Zy(ti) (15)

where 1:,l is specified, and x is the n-state vector, y the m-output vector
(m £ n), u the r-control vector (r £ n) and Z,z represent a wxm—matrix
and w-vector (w= m) of known constants respectivelys Q is an mxm
positive semi-definite matrix and G is an rxr positive definite matrix.

A scalar product of the state and control variables is included with the
mxr matrix W, which may be required to represent, say, the power functions

of an electromechanical system as in Section 7. Similar cross-product
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weighting also appears in the model following problem and in the optimal
control problem for the linear system containing input d.erivativeso8 It

also appears inherently in the general variational problemo6

Direct correspondence of the scattering process with the optimal

control problem follows by considering the Hamiltonian form
H = %(yTQy £ GTRY 4 2yTWu) + pT(Ax + Bu) (16)

The optimal trajectory of the state (x) and adjoint (p) variables is
then given by

x(t) = Bx-Bp , A=A~ BR W'c , B = BN H (17)

Blt) = cacx-Ep, @ = Q- wE ' (18)
with an optimal control law

wiE) = Wi [BIp(E) = Wente)] (19)

The optimal trajectory is also required to intersect the terminal

hyperplane of eqn 15.

At t = ti’ the boundary conditions are defined by the trans

versality condition

0 T T
p(ti) = EE?EZT 5'% y (tl)Fy(ti) + [Zy(ti) - z] l}

i

ECTFCx(ti) + cTsz] (20)

where A is a w-vector of constant multipliers. A state-adjoint variable

relation is then considered of the form

It

plt) P(t) x(t) + G(£)A (21)

wikh P(t,) = cTre Glt,) = cTzt (22)

Combining egns 13, 17, 18 and 21 then gives the matrix differential
equations

-cTac - PA - ATp + pBP (23)
(PB - AT)G (24)

o
I

Do
Il

Eqn 23 may also be written in the form

T

P = (PB+ CW)RHB™ + wic) — pa - TP - cTqc (25)

which is equivalent to the 'Legendre' form of matrix differential equation

associated with the general variational problema6 The solution of egqn 13




s

with eqns 19 and 21 can now be used to define the terminal constraint

in terms of the state x and multipliers A Thus

Z

S{tlx(t) + N(EIA S(ti) = ZC , N(ti) = ' (26)

Then k= N tdE - N oleiais)eds) (27)

il

and from eqn 21 we then obtain the adjoint-state variable relation

Pix(t) + g(t) , g = oz (28)

1l

plt)

where p* P GN—';S (29)

The optimal control law of eqn 19 will then be given by

ult) = —R_iBTGN_lz s R_i(BTP* + ch)x (30)

and is related to the state x,; terminal constraint z and to the time-
varying solution matrices P*(t), G(t) and N(t). Relations for § and N
can be obtained by differentiation of egn 26. The optimal control
problem including a linear terminal constraint can then be defined by

the set of matrix differential equations

G P | (PB-A1)G ; ~c'gc ~ PE - A'p + PBP [ (31)
a ° ; ; 1
LN s - SEG , S(Bp - &) 4
with terminal conditions
6lt,) P(t, ) | Tzt cTre g
o = (32)

| N(E) s(t)) ¢ BE |

T T e
Also, S(t) = G'(t). A similar set of differential equations for P, g,
n results by using the Hamilton-Jacobi-Bellman equation with the assumed

0
form of performance index1

J(x,t) = %XTPX + gT(t)x + n(t) 7 (33)

The matrix P* of egqn 29 will also satisfy the Riccati equation

T

P* - —cTGC - P¥E - Alp* + prEpe (34)

Substitution of eqn 29 in eqn 34 then illustrates that any solution P
is related to P* by the form of eqn 29, where the matrices G and N
satisfy the differential equations of egn 31a9 The optimal tracking
problem without terminal constraint also introduces a matrix

differential set of the form of egn 31:.11
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Concepts of scattering in the linear optimal control problem

The scattering formulation for propagation in the physical system
is based on concepts of incident and reflected waves appearing at the
boundaries of an obstacle. The overali effects produced by the inter-
connection of adjacent obstacles can then be characterised by the star
product of the associated scattering matrices, which leads to a set of
linear and nonlinear matrix Riccati-type differential equations. The
existence of such similar sets of differential equations suggests that
concepts of scattering and a star product representation of interconnected
'obstacles' occurring in the time domain may also be relevant in the

formulation of the linear optimal control problem.

The differential equation components of eqns 8 and 31 are
directly analogous, with the space argument (x,y) corresponding to the
time interval (tD,t)n Similar symmetrical properties also apply to the
coefficient matrices. Also, by analogy, the matrix G(y) of egn 10
associated with the linearisation of egqn 8 can be identified with the
coefficient matrix defining the optimal trajectory in egns 17 and 18.
The differential equations of egn 31 may then be transformed to the

equivalent linear set

) i (6T, —(ET)N

H = l H , H 2 (35)
i
B

N —cGe, AT} < * _P(GT)_i, G—P(GT)-iN_

1'121}1,11-1 in both the scattering and optimal
control problems defines the solution of the corresponding matrix Riccati

Note that the relation P== U =

differential equation.

The equations relating the state and adjoint variables, and the
equations including the terminal constraint and constant multipliers in
the optimal control problem may now be used to form an analogy with the
scattering representation of a physical system. The terminal conditions
in the regulator problem can be associated with a spatial boundary or
obstacle containing (m+w) terminal pairs in the flow process which is
characterised by a scattering matrix. Similarly,; the conditions existing
at time t in the control problem may be associated with a scattering
matrix, and properties of the star product may be used to interconnect the

time-variant 'obstacles'. Thus, we may define a scattering representation




using egns 27 and 28 and egns 15 and 20 to give

"% heeTw), vl ([l ()]

P : = M ! (36)
Hp(t)J PE(t) » G(t)N~ €)=z | z | '
[ p(t,)) cz", cTrei| a | [a ]

[ = J = M, ‘ é (37)
Loz ] Lo oz jix(e) | %)) |

It is of interest to note that the components of egns 36 and 37 possess
similar symmetrical properties which can be identified with the trans-
mission and reflection coefficients and vectors in the scattering matrices
of egn 2. The 'reflection' coefficients are symmetric and the 'transmission'
coefficients possess dual-type properties as in the general scattering
representation which is analogous to the bilateral property of objects
satisfying the reciprocity theorem with t = . The composite objectalso

possesses similar properties.

The star product of egqn 4 may now be used to obtain a relation
between the external 'reflected' and 'incident' variables in the control

problems Thus

—

p(t,) | x(t) |
! = MM | (38)
- p(t) | kg(tit
| <2 eeT ) , i Le)z)e
where M,l*M2 & 4 (39)
P*(t) s G(EIN ~(t)zc

The variables associated with the scattering representation and the

existence of two adjacent 'obstacles' may be illustrated in the form of
FIG 2.

X(t)wy//" - . L 3
p(t)*_m//,; ; \\\ \

terminal
constraint

e p(t,)

4

[ e X(ti)

FIG 2. Adjacent 'obstacles' in the optimal control problem
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A star-product decomposition of egns 36 and 37 may also be

used to illustrate the existence of a series of adjacent 'obstacles'.

Thus
— i _— - i =3
t‘l oi 26T, 21z | et Tre
M *M_ = * (40)
12 p 1) [-av¥%®, vz 0 ¢
= " »
= BT, NN

where the scattering matrices are associated with the variables

%(t)] ]' x(t)
. N1 (41)
_p(t)] lvp(t) - Px(t)
ZTK I x(t) T
= N2 | (42)
p(£)-Px(t) | Ly (t) ]
[t )] ) [
. : (43)
--Y(ti) x(t )}

The interconnection of adjacent 'cbstacles' may then be illustrated in the
form of FIG 3, in which the state variables are seen to act as 'incident'
variables in the forward direction to the left of the obstacle and the

adjoint variables act as left reflected variables in the reverse direction.

N N i
1 2 N3 i

= e !
xft)~—~**~4ﬁééézi::;/ ““;?ET—Ph\\\\tK:E ‘—jgj—4> ,:// ~——~m_§hpﬂt1) i
Z
ZHINE

FIG 3. Decomposition of 'obstacles' in the optimal

LS

plt) -e— i e (£ ) |

AN

control problem

Additional decomposition will produce the continued star-product

T o] Vefer o fN‘i(t) i 2 o]
M‘l*M2= » '

LP I_l e G(t)l N_l(t) N_'l(t)__h o Z
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The reflection properties are seen to be assoclated with the off-diagonal
components P, N_’l and CTFC, and P*, CT(F+ZTN-1Z)C define the overall
reflection in the composite representation. The terminal scattering
matrices of eqn 44 which affect the matching properties of the star
product exhibit zero right- and left-hand reflections in the variables
x(t) and Y(ti) respectively, and are analogous with the matching properties
of lossless tuners in transmission line theoryo2 In the infinite-time
regulator problem, without terminal constraints, the matched scattering
formulation simply defines the reflection-type properties of the matrix P.
In the transmission line problem, a length of line x separating
two obstacles can be represented by a scattering matrix diag (ejij,ejkzx)

where ki’ k., represent propagation constants in the forward and reverse

2
directions respectively. In the optimal control problem, the matrix

function G(t) may be related to terminal conditions by
G(t) =‘1)_1(t1,t)G(t,l) =‘{«’-1(t1,t)CTZT (45)

where w(ti,t) represents the fundamental matrix associated with the matrix
— =T
(PB=A").  Then

GT(t) o}

? wH o E e o] [= 97
|

" " (46)
| o CTJ i 0 zT

e G(t) | LB

may thus be considered as an
Ts ")_'i) Which,

in concept, is analogous to the scattering representation of the obstacle-

The intervening time interval t - t1

'obstacle' represented by the scattering matrix diag((?—i)

free transmission line.

The matrix of coefficients obtained from egqns 17 and 18 also
illustrate properties of a scattering matrix. The relations may be used
to relate 'reflected' and 'incident' variables, provided Bis nonsingular,

by the form
=1

i’p(t)’“ '—E“'lz , | x(t)J

-.i

(47)

L) ~(cTac+3 ) ,ﬁTﬁ‘lJ R(t)

However, although eqn 47 may suggest properties of a scattering matrix,
the component forms will not permit a star-product decomposition. Thus
the concepts of scattering and the existence of 'obstacles' in the
optimal control problem would appear to be relevant only to the constraint
and state-adjoint variable relations. Similar concepts do not appear

to exist in the equations defining the optimal trajectory.
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Eqn 38 will, however, permit a continued-matrix decomposition of egns

17 and 18 of the form

2y ) y 17z 0 T Mxte)
fa(t)J i x(t,l)J

It is a remarkable fact that the equations defining the state-

(48)

“e7Be, _KTA Pe , GUEIN “(t)zC

T

adjoint relations and the terminal constraints can be formulated according
to the properties of the scattering matrix and related star product which
are associated with the propagation of energy in the physical system.

On this basis it may be considered appropriate to extend the associated
mathematical principles of energy dissipation and matching to the linear

optimal control problem.

The scattering matrix of electrical network theory in the linear

optimal requlator problem

The scattering parameters of an electrical network are related
to a transformation between linear combinations of network voltages and
currents, and have an important application in the definition of energy

12,13 e parameters

constraints and power transfer in passive networks.
are analogous to the reflection and transmission coefficients used to
describe wave propagation in transmission line theory- Parameters with

similar properties can also be established in the linear optimal regulator

problems

For the n-port passive network N of FIG 4, a scattering matrix

S is defined by the transformation

L Svi or (v = 1)/2 = S(v+i)/2 (49)
where vr, vy represent vectors of normalised 'reflected' and 'incident!
voltages or scattering variables at the network ports.

1
v—.‘————""‘:‘ﬂ
¥, T Vi
- N FIG 4. n-port network
-2 ]
in E =
v I""."'-———'—.—_‘
L PP
The normalised voltage and current variables v,1 are related to actual
voltage and current vectors v, i by
- i
v = R _2_V 9 i = R 2;[__ 9 E = 7 ._:i-_. (50)
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Combining eqﬁs 49 and 50 gives the scattering matrix related to the

-1 =
normalised impedance matrix Z(= R Z R, N

s (o ™ mex ) (2T YzsT J1 (51)
n n n n

and Z

(T —S)_i(I +5) (T +8¥{T -s)"1 (52)
n n n n

The total network power is defined by

" ® * #mp *
P=P+jQ=vT§._=(y_Ti__4-_j:_T_y_)/2+(_g i-—;i._Ty_)/z (53)

bl i * L]
P,=P, =B =¥ v, eV Ty =¥ °P,F1 wils (54)
d i r i i r r i i n
and reactive power
* * * *
jQ=v T F v_T v = v,T v, , L =328 e S (55)
r i 1. r i i

where F is a nonsingular positive hermitian dissipation matrix, and L is

a skew -hermitian matrix. For the reactive lossless network Pd = 0 and
= i
S5 - =S5 , as a unitary matrix. For maximum delivered power, S = O,
:a:T
P = A, L5 & e X Z =R i th T i
d vl vl, ~ x where Pd is equal to e sum of the awvailable

powers at the network ports with the network matched to the source
impedance ROo The coefficients of S thus measure the deviation of the
circuit impedance or load from the normalising number RO or from matched

maximum power transfer conditions.

The linear optimal regulator problem, without terminal constreinto,
may also be formulated in terms of a transformation matrix S which is
analogous to the scattering operator of electrical network theory. Thus
we may consider defining new 'state' (incident) and 'adjoint' (reflected)

variables related by a transformation or 'scattering' matrix S,

X, = (x+p)/2 = (I+P) x/2 , %= (x=p)/2 = (I-P)x/2, X, = Sx, (56)
Then

B m {F GUE +«BT° (57)

P = (T+ 8 Nr-8) (58)

Thus the P-matrix of the Riccati solution in the optimal regulator
problem may be considered to possess properties analogous to the
scattering matrix of electrical network theory. Similarly, the assumed
transformation or symmetrical 'scattering' matrix in the control problem
corresponds with the normalised network impedance matrix Z. The form of
eqn 58 can also be associated with the standing-wave ratio in the study

of lossless objects defined by S = (1+Ir|)/(1~lrl)150 Similar forms




- 14 -

also play a basic role in operator theory and represent a Cayley
transformu16 With asymptotic stability (t1~rno ) a solution of the

algebraic matrix Riccati equation is given by

-1
P = U21 Ui (59)
where U21’ U11 represent partitioned eigenvector components associated with
the stable modes of the Hamiltonian matrix of eqn 35. Then
§ e (. -0 MY a0 )3 (60)

11 2171t 21
Other scattering variables may be defined using combinations of the state
and control variables together with an interrelating transformation matrix.
By analogy with the network problem, a 'power' function may also be defined

by the product

B= pr = x.Tx. - X Tx B x,T(I - STS)x. = x.TFx. (61)
1 i B o i i LT
and'injected power'
P, = * By = x.T(STﬁs - B)x, i K82)
i i i

The free system is then associated with the condition 8 = I. A concept
of maximum 'delivered power' may be considered with the condition S = O,
P = I. Thus it may be possible to relate the coefficients of S to a
deviation from matched or maximum 'power transfer' conditions. From the
algebraic matrix Riccati equation such a condition would define the

relation
Q = (B+WEXB + W) - (A +AD) (63)

and is associated with an incident variable X, =X and zero reflected
variable X e In general, the solution of the algebraic matrix Riccati
equation for a positive-definite matrix P requires an assumed positive-
definite Q matrix. Thus Q must be constrained to be a positive-definite
form, which may not always exist in egqn 63. For example, such a
condition is not ensured for the system represented in companion matrix

form with a single non-zero B-matrix element, as illustrated in Section 7.

If the variables X, are constrained by the condition xiTxi =1
then the power function of eqn 61 will be bounded by the inequalities

Am' (F)SsPg A i (F)e This follows, as in the electrical network

17,18

problem, using the transformation F = T?\T, where T is a real

orthogonal matrix and A is a diagonal matrix of eigenvalues. Then

T 4 2
91 = (Txi) A(Txi) - J%(Txi)j hj(F) (64)
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The 'injected power' function of eqn 62 will possess similar properties.

The optimal regulator problem may also be formulated in terms
of the 'incident' and 'reflected' variables of egqn 56. Thus from eqn

17 and 18,

%7 AR-BcTac , RA+B-clac| [x,7
off TR B L oo St (65)
:Ttr A+A"-B+C7QC , A=A +B+C QC | X

This representation retains the same form as previously with symmetrical
off-diagonal components. The overall system may also be associated

with a matrix Riccati differential equation

]

28 = _smizs - SM11 + M228 + Mzi (66)

where Mij represent the matrix components of eqn 65- It is interesting
to note that the Riccati differential eqn 66 may now be decomposed
directly into components associated with skew-symmetrical and symmetrical

matrices.

General energy concepts

Energy dissipation in the physical system, such as a trans-
mission line, has been discussed in terms of inequality properties of

the scattering matrix°1’3’5

_ C; Thus, the system specified by the matrix
= i T
[w R !w1th D(y) = B (y) and A(y), C(y) symmetric is considered to be

dissipative if the hermitian form

Alysr,q) = g*(D+D*)q + g*(A+C*)r + r*(A*+C)q + r*(B+B*)r (67)

is non-positive for all n-vectors r,q, where * denotes the conjugate

transpose. In terms of the notation of Section 2, if the scattering

matrix is dissipative, then
2 2 2 2
v l? + v )2 s v )2 « L]

Egqn 67 may also be considered in the form

vy D A
A = (V3*V4"')(M+M‘")( , M = (68)

By analogy with the linear optimal control problem, we

consider the quadratic form

T o - - Ay i
Lfl(t;r,q)EE.— (q (A+AT)q + qT(CTQC—B)r + rT(CTQCuB)q + rT(A+AT)r} (69)

{
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The system will then be dissipative if

D+D*, A+C* AL, cTge-B |
R . £ 0 (70)
A*+C, B+B* CQC-B , A+A

The non-positive condition of the hermitian form Vl(yjr,q) for all n-vectors
r,q is, by analogy with the general variational problem6 and from the
Legendre form of egn 25, equivalent in the control problem to the positive-

and negative-definite conditions
B- (AA)g CGC € B + (B+ED) (71)

-1, T T

- 48]
or (B+cTIRHBT ) = (anaD)g cfac « (wBecTnIR (-

B +WTC)+(A+AT}

which is associated with the <conditions

K[I] = (E+ET) + (cTac -8l D (72)
K[-I] = -(R+A") + (cTac - B)g O (73)
where k[Pl = P+ cTEc + PR + AP - PEP (74)

For the self-adjoint system A is skew=symmetric (= —AT) and the inequality

conditions will simplify accordingly.

In the optimal control problem, thie quadratic form of eqn 69 is
equivalent to the difference of the 'active'! incident and reflected powers,
or to the difference of the rate of change of 'stored' incident and
reflected energy. Thus with the n-vectors r,q identified with the state

and adjoint variables,

S Exp) = = é%-(xTx - pr) (75)

Egqn 75 may also be considered to represent the active power transferred
from left to right across the system state-adjoint 'boundary', and is
analogous to the form of power transfer across boundaries in the electrical
network problem. In the regulator problem, without terminal constraint,

we have

Jl(t,x) = ad? [xT(I - PP)x] (76)

which corresponds with the form of the network power forms of Section 5
related to the scattering matrix. Similarly, with the condition P = I,
the incident and reflected powers will be equal. Egqn 75 may also be
stated in the form

M2 = xtax o« X By - pTﬁ = P_+P, - pTﬁ (77)




which includes components of 'absorbed power! Pa and ‘injected power' p,
i

which have been considered with reference to energy exchanges between a

system and its controlleru21

The existence of the inequality conditions and the quadratic
power fbrﬂn/Lthus illustrate the significance of the Riccati equation in
establishing energy concepts in the linear optimal control problem. The
condition of maximum 'delivered power' which resulted from introducing the
scattering matrix of electrical network theory into the optimal control
problem in Section 5 now appears as a particular condition of the above
inequality constraints. In this case,; the welghting matrix Q is defined
with P = I which is directly associated with a matching condition and also
forms a basis for the definition of the state of dissipation in a physical

system.

6.1 Power concepts in an electromechanical system

A separately excited dc motor connected to a variable voltage
supply and driving an inertia load with damping, as represented in FIG 5,

is considered for illustrating power forms in the optimal regulator problem.

R : R
S + m
& A/ - N/ - inertia
variable em4 _ "B- -El !/
voltage esft) o)
dc supply _ damping Td

FIG 5 Electromechanical system with damping and inertia loading

System equations: es(t) = (RS+Rm)i t e neglecting field inductance (78)
e = ko y, k constant (79)
T=ki=J9+7T, 0, Tis developed motor torque (80)

State variable representation:

67 o 1 ifoe7 o |
= + e , %X = Ax + Bu (81)
® 0 a w b B
4 & 20410 ] 7
2
where a8y, = -[Td + k /(RS + Rm)]/J y by = k/J(RS + Rm)



















