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Properties of the generalised inverse matrix in

the electrical network problem

Sunmary

A modified form of Roth's transformation diagram for a linear
graph is used to illustrate the solution of the electrical network
problem. The diagram illustrates particularly the significance of the
orthogonal projections of the branch space into the branch voltage and
current subspaces which are defined by Kirchoff's laws, and also the
existence of the constrained matrix inverse which forms a basis for the
solution of the electrical network problem. Properties of the generalised

inverse matrix are also discussed in relation to the network problem.

The electrical network problem includes an algebraic structure
relating the physical variables together with a topological or graph
representing the intercomnection of the network elements. The conjugate
variables of voltage and current are related by Ohm's law, and Kirchoff's
laws constrain the branch voltages and currents to orthogonal complementary
subspaces. The solution of the electrical network problem introduces
properties of a constrained matrix inversel and, in the general case,
includes the concept of a minimum-norm generalised inverse matrix.

The algebraic relationships forming the solution of the network
problem can be represented by means of Roth's transformation diagram_z3
and a modified diagram is developed which illustrates, particularly, the
existence of the constrained inverse matrix and the orthogonal projections
associated with Kirchoff's laws. The transformation diagram has an
important application in illustrating the various forms of solution
available for problems which can be identified with a linear graph, and
is particularly important in an extended form in the study of higher-
dimensional networks.

The general electrical network problem includes the inter-
connection of a set of branches, and with the voltage and current
variables defined as in FIG 1, b-branch equations are specified by2

E+e = Z(I +1i) I+1i = Y(E +e)

(1)
or v = 4J J = YV
where Z, Y represent symmetrical impedance and admittance matrices

respectively for the primitive network.
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FIG 1 rth network branch

The structure of the connected network is defined by the
branch-node~pair matrix A and branch-mesh matrix C, which are related by
the orthogonality condition

Ao = D cfa = o (2)

With m meshes and p node pairs, A and C are of dimension bxp and bxm
respectively, and rank A = p, rank C = m, The branzh variables are

constrained by Kirchoff's voltage and current laws given by
Ce = 0 AL = O (3)

The branch variables e,i and the node-to-datum voltages e' and the currents

in the basic meshes 1' are also related by
e = Ae' i = ci' (4)

in which only p branch voltages and m mesh currents are linearly
independent. With arbitrary sources E,I the equivalent induced mesh-
voltage and nodal-current sources are given by

B' = CTE I' = ATI (5)

Egns 1-5 may now be combined to give the solution for mesh and

branch currents

it = ze) etz - 1) (6)
i = LZ(YE - I) (7)
- b L1 ]
where L = C(CTZC) 1cT = Y - YA(ATYA) lA*Y = Y - YMY (8)

is the branch-admittance matrix (of driving point and transfer admittances)

and

T

Moo= alya) 1T = 2 - ze(cfze) etz = 2 - zLz (9)
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is the branch-impedance matrix. Similarly, the node-to~datum and branch

voltages are given by

e = (ATYA)"IATY(ZI - E) (10)
e = MY(ZI - E) (11)
and MY 4 2L = L (12)

The coil variables may then be specified in the form

v "z z-z1z | [ E]
J J (13)

. wlo
1]

It is of interest to note that the components of the matrix N possess

ks L I-Lz

b m

properties similar to those of the components of the matrix star-product
associated with a scattering process.s’4 It is also significant that a
correspondence exists with the components of the matrix differential
representation of the general scattering process. It may then be possible
to consider conditions of energy dissipation in terms of the inequality
properties of a scattering matrix on the basis of this correspondence.

The algebraic relationships established for the network problem
may be illustrated by means of Roth's transformation diagramz shown in

FIG 2.
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FIG 2 Roth's transformation diagram

The components of eqn 13 relating the coil and source variables may also
be represented by a transformation or signal-flow-type diagram, as in

FIG 3.
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FIG 3 Transformation diagram relating

coil and source variables

The transformation diagram of FIG 3 includes the basic
characteristics of Roth's diagram, with the impedance~ and admittance-
type operators directed across the diagram between the conjugate 'through'
and 'across' variables, and with the dimensionlesz or connection-type
operators directed horizontally between similar variables., The diagram
illustrates particularly the properties of the matrices L and M
representing the branch—admittance and branch~impedance matrices
respectively, and also the contribution of the intermal sources E,I to
the coil variables J,V via the transformed variables LE and MI. The open
transformations E+V, I»J appear as dual operators based on the property
of eqn 12, and can be identified with the existence of a 'residual’'-type
component. A coil power function may also be defined in terms of scalar
products obtained directly from the transformation diagram.  Thus

P = VTJ = (MI + ZLE)T (YMI + LE)

(14)
ITMI + E'LE

The solution of the electrical network problem given by eqn 13
includes properties of the constrained matrix inverse.l The matrix M
of eqn 9 represents the constrained inverse Y. of Y with respect to the
subspace &jto which all branch voltages (e) satisfying Kirchoff's voltage
law of eqn 3 are constrained. It represents a transformation into ﬁ
and MY is the identity in é. The admittance matrix L similarly represents
the constrained inverse Z% with respect to the subspacefj of all branch

currents (i) which satisfy Kirchoff's current law of egn 3. Yirchoff's
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laws define the orthogonal complementary volt%ge and current subspaces
é;:? of the b-dimensional vector space U; and the vectors e,i are
orthogonal with eTi = 0. According to a theorem of Bott and Duffin,1
using the notation of FIG 1, the equation

§ow Ry omly i 0 - T ol 187 ¢15)

where h is an arbitrary vector of U, has a unique solution given by

[42]
u

-Mh = MI - MYE (16)

hi

i (L -¥)h = LZh = LE - LZI (17)
Eqns 16, 17 then correspond directly with the branch variable components

of eqn 13. Properties of the constrained inverse matrix have also been
associated with a system of connected elastic shafts,

The solutions of eqn 13 also include properties of the generalised

inverse of a singular matrix. Thus the equations
V = HI + {Ib - MY)E
(19)
J = LE + (Ib - LZ)1
correspond directly with the sclution of the problem
y = Ax (20)
where A is a matrix of order mxn and rank r(<n), defined bys
X = Afy + {In ~ ATA)z (21)

where AT is the generalised inverse matrix of order nym satisfying AATE = £
and z is an arbitrary n-vector. The correspondence of eqns 18,19 with
eqn 21 suggests that the coil voltage V includes a 'main' component MI
obtained as a transformation of the branch current source I by the
branch-impedance matrix M which may be compared with the generalised
inverse matrix AT. A component (Ib -~ MY)E also exists as a ‘residual-~
type contribution resulting from the arbitrary voltage source E, which
compares with the component (In - ATA)z in the general solution of egn 21.
A similar correspondence may be established with the component
contributions to the coil current J in eqn 19. The matrices M,L are
significant in many linear system problems, and possess properties

similar to those of the generalised inverse matrix with
LZLu = L MM = WM (22)
and the matrices (Ib ~ ZL) and (Ib - MY) are symmetric and idempotent with

MYMY = MY 121 = ZL (23)




and ZIMY = MYZL = ML = O _ : (24)
The residual vector in the minimum-norm solution of eqn Z0 is given by6

y - ax = (1_-aahy (25)
which by comparison with eqn 18 corresponds to

(I, - I = LZI (26

which can be identified with a 'residual’ component of the branch current
of eqn 7. Also in the generalised inverse problem, the sum of the

squared residuals is a minimum given by

P o= y(r_-ahy (27)
and a similar form exists in the network problem with
T T .
P = TLZI or P = EMYE (28)

A direct correspondence has been shown to exist between the
general electrical network problem and the generalised-inverse matrix
problem, the general solution of which will fit within the framework of
the transformations associated with a linear graph. Other aspects of
this correspondence have been discussed previously,7_10 including
particularly the relationship between the constrained and the generalised
inverse matrix.7 The solution of the electrical network problem has
also been illustrated by means of a.modified form of transformation
diagram which highlights, narticularly, the decomposition of the
solutions for coil voltage and current into 'main' and ‘residual’~type
components and also the significance of the properties of the constrained
inverse matrix. It would appear appropriate to associate a linear graph
with the constrained or generalised inverse matrix problem, and the
construction of an appropriate network and corresponding transformation

diagram may have application in developing possible forms of solution.
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