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Abstract

Regenerative chatter is a well-known form of self-excited vibration that limits the productivity of machining operations,

in particular for milling. Variable helix tools have been previously proposed as a means of avoiding regenerative chatter,

and although recent work has analysed the stability of such tools there has not always been a strong agreement

with experimentally observed behaviour. Furthermore, the analysis of variable helix tool stability can be tedious and

numerically slow, compared to standard tools. Consequently it has been difficult to gain insight into the potential

advantages of variable helix tools. The present work attempts to address these issues, by first developing an efficient

approach to variable helix tool stability based upon the Laplace transform. Then, this new analysis method is used to

demonstrate the importance of multi-frequency effects and nonlinear cutting stiffness. The work suggests that whilst

variable-helix tools can have more operating regions that are stable, un-modelled behaviour (such as nonlinearity and

multi-frequency effects) can have a critical influence on the accuracy of model predictions.
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Nomenclature

a coordinate along tool axis (m)

axx direction coefficient

axy direction coefficient

ayx direction coefficient

ayy direction coefficient

b depth of cut in coordinate direction a (m)

bc critical depth of cut (m)

ft,j tangential cutting force for tool j (N)

fr,j radial cutting force for tool j (N)

fx force in x-direction (N)

fy force in y-direction (N)

g unit step function

h chip thickness (m)

j tooth number

rt tool radius (m)

st feed per tooth (m)

t time (s)

vj,0 previous instantaneous chip thickness for tool j (m)

vj current instantaneous chip thickness for tool j (m)

x tool position (m)

y tool position (m)

Gc cutting gain (N/m)

Gd delay transfer function

Gtot total transfer function

Gx transfer function in x-direction

Kt tangential cutting force coefficient (N/m2

Kr radial cutting force coefficient (N/m2)

Nt number of cutting teeth

α helix angle (rad)

αxx time-averaged direction coefficient

αxy time-averaged direction coefficient

αyx time-averaged direction coefficient

αyy time-averaged direction coefficient

β variable helix delay coefficient (s/m)

φst angle of tool entry into workpiece (rad)

φex angle of tool departure from workpiece (rad)

φj angular coordinate of tool j (rad)

τ time delay (s)

τr delay per tool revolution (s)
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Figure 1. Milling tool geometry. (a) side view; (b) end view of the tip of the cutting tool

1 Introduction

The productivity of metal removal operations is often limited by the onset of regenerative chatter1.

Consequently, there has been a great deal of research to try to understand, predict, and avoid, the onset of

this unstable self-excited vibration. In recent years, techniques proposed to avoid chatter have included:

active vibration control2, tuned mass damping,3;4 variations in machine spindle speed5, and variable-

helix tools. The present study is concerned with variable helix tools, which are introduced with reference

to Fig. 1.

For regular tools, the time delay between successive teeth is constant and fixed, because the helix and

pitch angles are the same for every tooth. For variable pitch tools the time delay can be different for

each tooth due to changes in the pitch angle. However, for variable helix tools the time delay can change

along the axis of the tool, due to changes or differences in the tooth helix angle. These changes in the

time delays within the system are the key to potentially enhanced stability from the more complex tools

geometries. However, in practice other factors (such as the ability to remove swarth from the flutes of the

tool) are also important in evaluating the performance of the tool. The background literature concerning

variable helix tools will now be briefly discussed.

One of the first studies to propose variable helix tools was the work of Stone6 in 1970. Whilst

variable pitch tools have received a great deal of attention (e.g. Budak7), variable helix tools been more

difficult to understand and exploit in practice. A detailed methodology for analysing the stability of

variable helix tools was described by Sims et al.8. The modelling approach was partly motivated by the

work of Turner et al.9, who developed an averaging-based approach to modelling variable-helix tool

stability. Sims et al.extended the semi-discretisation approach (developed by Stepan and Insperger10;11)

to consider axial discretisation of the cutting tool. As a result, the variations in time delay could be

accounted for within the model. The approach was then used by Yusoff and Sims12 to optimise tool
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geometry and perform experimental comparisons. More recently, Jin et al.13 also explored the use of

semi-discretisation methods. Dombovari and Stepan14 further extended the semi-discretisation method

by applying weighted distributed delays; a technique that allowed them to consider harmonically varying

helix angles. Meanwhile, Khasawneh and Mann15 developed a spectral element approach that could

consider multiple delays in a generic configuration of time-delayed system. Finally, Compean et al.16

applied the Enhanced Multistage Homotopy Perturbation Method to accommodate the multiple delays

within a variable helix tool.

Despite this recent work, it is still difficult to properly understand the potential benefits of variable

helix tool geometries, and to the author’s knowledge there is a lack of experimental validation of the

various modelling approaches that have been proposed. In the present study, an alternative variable helix

model formulation is developed. Whilst this has some additional assumptions, it can provide a useful

insight into the stability improvements by allowing the stability to be visualised using a filter frequency

response function. Furthermore, the approach is hundreds of times faster computationally, compared to

previous work by the author8, which could enable better design and optimisation of the tool geometry.

The present work does not seek to provide new experimental analysis of variable helix tool stability.

However, the potential modelling and validation challenges are explored by comparing the analytical

stability predictions to well-established methods. First, fully-discrete and semi-discretised stability

analysis approaches are compared to the new method. Second, time-domain simulations are used to

illustrate the potential influence of non-linear cutting force coefficients. Consequently, this contribution

illustrates possible reasons why variable-helix tools have more complex stability behaviour that is harder

to predict, compared to regular tool geometries.

The remainder of the paper is organised as follows. First, the background theory (which can be found

in many textbooks1;17 is summarised for completeness. Then, the new modelling formulation is derived.

A visual interpretation of the variable helix stability is presented, before describing the numerical

approach used for stability analysis. Numerical and analytical stability results are then compared, in

order to explore the significance of different modelling assumptions. Finally, following a discussion,

some conclusions are drawn.

2 Theory

2.1 Classical milling dynamics

In the standard approach to modelling regenerative chatter17 (Fig. 2), the total chip thickness h for tooth

j at angle φj is given by:

h(φj) = [st sin φj + (vj,0 − vj)] g(φj) (1)
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where g(φj) is a unit step function:

g(φj) =







1 ← φst < φj < φex

0 ← φj < φst or φj > φex

(2)

This defines when the tool is engaged within the workpiece, i.e. within the angles φst and φex.

Meanwhile, vj,0 − vj is the difference between the previous and current instantaneous chip thickness.

Neglecting the quasi-static component st sinφj in Eq. (1), and rewriting vj,0 − vj in terms of x and y

coordinates gives

h(φj) = [∆x sin φj +∆y cos φj] g(φj) (3)

where

∆x = x(t)− x(t− τ) (4)

∆y = y(t)− y(t− τ) (5)

Here, τ is the time delay between each tooth pass - with a variable helix tool the aim is to replace this

with a distributed delay term that provides improved chatter stability. The cutting forces in the tangential

and radial directions are given by:

ft,j = Ktah(φj)

fr,j = Krft,j

(6)

This assumes that the cutting forces are proportional to the instantaneous chip thickness. Some studies

have suggested that this empirical approximation is inappropriate, and have instead proposed nonlinear

h

New surface

(a) (b)

Previous surface

r,j

Figure 2. Milling model. (a) tool, workpiece, forces, and coordinate system; (b) close-up showing chip thickness h
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(power-law) relationships18. This issue will be revisited later on, using a numerical time-domain model.

However, for the present analysis a linear cutting force coefficient is assumed. Resolving the forces into

the x and y directions, and summing for all the Nt teeth of the cutter gives:

fx =
Nt
∑

j=1

−ft,j cos(φj)− fr,j sin(φj)

fy =
Nt
∑

j=1

+ft,j sin(φj)− fr,j cos(φj)

(7)

Further manipulation leads to:

fx =
aKt

2

Nt
∑

j=1

axx [x(t)− x(t− τ)] + axy [y(t)− y(t− τ)]}

fy =
aKt

2

Nt
∑

j=1

ayx [x(t)− x(t− τ)] + ayy [y(t)− y(t− τ)]}

(8)

where the parameters axx, a... are the instantaneous direction factors, that relate the x and y-direction

vibrations to the x and y-direction forces. They are given by17:

axx = −g(φj) [sin(2φj) +Kr(1− cos(2φj))]

axy = −g(φj) [1 + cos(2φj) +Kr sin(2φj)]

ayx = +g(φj) [1− cos(2φj)−Kr(sin(2φj))]

ayy = +g(φj) [sin(2φj)−Kr(1 + cos(2φj)]

(9)

In their pioneering work, Budak and Altintas19 considered the Fourier series expansion of these

coefficients, and discussed the validity of neglecting all but the first term. This is equivalent to taking

the average of each term over one tool revolution. For example, the term αxx, corresponding to the

time-averaged axx coefficient, is:

αxx =
1

2π

∫ 2π

0

−g(φj) [sin(2φj) +Kr(1− cos(2φj))] dφj (10)

Here, the step function g(φ) can be removed and the limits of integration changed:

αxx = −
1

2π

∫ φex

φst

sin(2φj) +Kr(1− cos(2φj))dφj (11)
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This can be repeated for axy, ayx, ayy, leading to:

αxx =
1

4π
[+ cos(2φj)− 2Krφj +Kr sin(2φj)]

φex

φst

αxy =
1

4π
[− sin(2φj)− 2φj +Kr cos(2φj)]

φex

φst

αyx =
1

4π
[− sin(2φj) + 2φj +Kr cos(2φj)]

φex

φst

αyy =
1

4π
[− cos(2φj)− 2Krφj −Kr sin(2φj)]

φex

φst

(12)

which (when the limits are evaluated) become independent of the tooth number j.

These equations form the basis of many stability analyses methods proposed in the literature. In the

next section, the approach is revisited to consider the variable helix case. To simplify the analysis the

case of vibrations in a single direction (the x-direction) are considered; the more general case of x and

y-vibrations is given some thought in Section 7.

2.2 Variable helix formulation

In order to introduce the analysis method, consider a milling tool with two flutes, where the helix angle

difference between the two flutes is α as shown in Fig. 3. Assume that the tool/workpiece system is

flexible in the surface feed direction x, and completely rigid in the mutually perpendicular direction y.

Define the tool rotation period as τr, and define the coefficient β as:

β =
τr tan(α)

rt2π
(13)

The cutting force in the x-direction is therefore:

fx(t) = Kt

a=b
∫

a=0

axx,1(t)(x(t)− x(t− τ0 − βa)) + axx,2(t)(x(t)− x(t− τ0 + βa))da (14)

where axx,i is the time-periodic cutting force coefficient for the ith tooth. Accounting for this time-

periodic behaviour allows the prediction of period-one and period-two instabilities20;21. Accounting for

each tooth i individually enables the influence of the twisted flutes to be considered22. In this work, we

neglect both of these effects and use the time-averaged cutting force coefficient, αxx. This simplification

gives:

fx(t) = Ktαxx

a=b
∫

a=0

x(t)− x(t− τ0 − βa) + x(t)− x(t− τ0 + βa)da. (15)

The continuous delay terms can now be rewritten using the Laplace transform:
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angular position φ

axial depth a

circ. position

delay τ

φ00 2π

φ0rt0 2πrt

rt (φ0 + b tan(α))

τ00 τr

τ0 + bβ

tooth 1 tooth 2 tooth 1

b

Figure 3. Schematic representation of a variable helix tool

L(fx(t)) = Fx(s) =

t=∞
∫

t=0

e−stKtαxx

a=b
∫

a=0

x(t)− x(t− τ0 − βa) + x(t)− x(t− τ0 + βa)dadt. (16)

Changing the order of integration leads to:

Fx(s) = Ktαxx

a=b
∫

a=0

t=∞
∫

t=0

e−st(x(t)− x(t− τ0 − βa) + x(t)− x(t− τ0 + βa))dtda. (17)

Writing L(x(t)) as X(s) and applying the shift theorem gives:

Fx(s) = KtαxxX(s)

a=b
∫

a=0

2− e−s(τ0−βa) − e−s(τ0+βa)da (18)

which can finally be integrated with respect to a:

Fx(s) = KtαxxX(s)

[

2a−
e−s(τ0−βa)

sβ
+

e−s(τ0+βa)

sβ

]a=b

a=0

. (19)

Evaluating the limits of the integration leads to:

Fx(s) = KtαxxX(s)

(

2b−
e−s(τ0−βb)

sβ
+

e−s(τ0+βb)

sβ

)

. (20)

As an aside, it should be noted that the equivalent equation for a non-variable-helix tool can be

obtained as:

lim
β→0

Fx(s) = KtαxxX(s)b(2− 2e−sτ0) (21)
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which can be found in many textbooks, e.g.1.

Eq. (20) allows the cutting process to be written as two transfer functions: a zero-order orientation and

scaling coefficient, referred to as the cutting gain, Gc, and a delay term Gd(s).

Gc = 2Ktαxxb (22)

The delay transfer function for the variable helix tool is:

Gd(s) = 1−
e−s(τ0−βb)

2sβb
+

e−s(τ0+βb)

2sβb
(23)

whilst for a regular helix tool it becomes:

Gd(s) = 1− e−sτ0 . (24)

Eq. (24) is the transfer function for a rotating unit vector, as described by Tlusty1, whilst Eq. (23) is the

equivalent transfer function for a variable helix tool. To the author’s knowledge, previous studies have

not been able to obtain this transfer function for variable helix configurations. This is one contribution

of the present study, and it should be reiterated that the key to the approach is the use of the Laplace

transform and the shift theorem, in order to simplify the analysis of the continuous delays.

This paves the way for both (a) frequency domain solution of the variable helix stability problem; and

(b) visual interpretation of the variable helix effect as a filter.

3 Visual interpretation for regular helix tools

A block-diagram representation of the regenerative chatter effect is shown in Fig. 4. Here, the system

input R (which would ordinarily represent the forced vibration of the system) is set to zero, in order to

perform a stability analysis of regenerative chatter. Assuming a harmonic response at frequency ω, and

noting that Fig. 4 is a positive feedback system, the transfer function that governs the stability of the

system is:

Gtot(jω) = −Gx(jω)Gd(jω)Gc (25)

and from the Nyquist stability criterion

Gtot(jω) = −1 (26)
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Gx(jω)

Gc Gd(jω)

R = 0 X(jω)
Structural dynamics

Cutting

gain Chip delay

+

+

F (jω)

Figure 4. Block diagram for regenerative chatter instability

The consequence on stability is best explained using the bode diagrams depicted in Fig. 5, for the case

of a regular helix tool (Eq. (24)). This approach is not new, but it is helpful to recap the concepts

before extending them to the case of variable helix tools. In Fig. 5, Only the Gx(jω) and Gd(jω)

transfer functions are shown, along with the total transfer function Gtot(jω). The depth of cut is chosen

arbitrarily as 1mm, and two spindle speeds are chosen.

At the stability boundary, the phase must be −180◦ to partially satisfy Eq. (26). At these points the

‘critical’ frequency is denoted ωc. The points are shown with solid markers on the bode diagrams. For

each marker, the corresponding magnitude term can be used to determine the stability of the system, i.e.

if |Gtot(jωc)| < 1 (or < 0dB), then the system is stable.

In fact, for regular helix tools the magnitude response |Gtot| is directly proportional to the depth of cut

b, since b only appears in the cutting gain Gc. Consequently it is straightforward to compute the stability

boundary directly as:

bc =
b

|Gtot(jωc)|
(27)

These results are shown on Fig. 5e, along with a traditional stability lobe diagram. It can be seen

that for each spindle speed there are multiple candidate chatter frequencies ωc and that one of these

candidates will govern the overall stability since it leads to the lowest possible value for bc. Note that

Fig. 5 only shows two potential chatter frequencies at each spindle speed, for clarity.

The behaviour at 1280 rpm (Fig. 5c&d) is particularly interesting because this demonstrates how

aligning the tooth passing frequency with the natural frequency leads to increased stability. In other

words, in Fig. 5c the delay transfer function has a very low magnitude, which reduces the overall
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magnitude response Gtot at the natural frequency of the structure. This is well known in the machining

dynamics literature, but not normally considered in the context of Bode diagram stability analysis.
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Figure 5. Schematic representation of stability analysis. (a) & (b) Bode diagram for b = 1mm, 1100 rpm; (c) & (d) Bode diagram for

b=1mm, 1280 rpm. Structure Transfer Function Gx(jω) (mm/kN); Delay transfer function Gd(jω);
Negative feedback transfer function Gtot(jω). Markers show the magnitude at critical frequencies where the phase is −180◦. (e)

Stability boundary. boundary for each critical frequency; overall stability boundary. Markers show the critical

widths of cut corresponding to the scenarios in (a)-(d). Note that αxx and Gc are negative for this example.
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4 Visual interpretation for variable helix tools

Having summarised the Bode diagram stability analysis of regular helix tools, it is now possible to

illustrate the implications of using a variable helix tool. To recap, the Laplace transform approach

has shown that the difference between variable helix and regular helix tools can be entirely captured

by the delay transfer functions shown in Equations 24 and 23. For regular helix it can be seen that

the delay transfer function is a simple unit vector rotating around (1,0) on the Nyquist plane. This

is reiterated in Fig. 6a; where the phase and amplitude responses are identical to those observed in

Fig. 5, and the rotating unit vector is illustrated by the Nyquist plot. In Fig. 6, the frequency axes

are non-dimensionalised by scaling by the tool rotation period τr. Low magnitude responses occur

at dimensionless frequencies of 2,4,..., corresponding to the tooth passing frequencies. The transfer

function is similar to a comb filter; in the previous section it was shown that the low amplitude

frequencies can be harnessed to achieve high stability of the machining process.

For variable helix tools, the delay transfer function takes on a different form (Eq. (23)), which involves

the depth of cut b. The transfer function frequency response is shown in Fig. 6b. As the depth of

cut increases, the behaviour changes substantially compared to the comb filter observed in Fig. 6a. In

particular, as the dimensionless frequency increases, the comb filter effect is diminished and the response

tends toward unity. This could be shown more formally by inspection of Eq. (23). This behaviour is more

pronounced for deeper depths of cut b. At intermediate dimensionless frequencies (e.g. 5-10) there are

still regions of low-amplitude response, but the low amplitudes occur at different frequencies compared

to the regular helix tool. On the Nyquist plane, the response appears as a spiral that winds towards the

(1,0) coordinate as the frequency increases. This is in contrast to the regular helix behaviour, which

exhibits a unit circle that continuously rotates around the (1,0) coordinate.

The behaviour illustrated in Fig. 6 can be directly interpreted to consider the implications for chatter

stability and machining process design. This is in contrast to many previous studies on variable helix

stability8 which have not offered direct insight due to the numerical methods (e.g. eigenvalue analysis)

employed. The most significant observation from Fig. 6b is that the response tends toward unity as the

dimensionless frequency or depth of cut is increased. In contrast for a regular helix tool the magnitude

will always alternate between 0 and 2, leading to strong patterns of stable (magnitude near 0) and

unstable (magnitude near 2) behaviour as illustrated in Fig. 5. Meanwhile, the variable helix phase

response tends towards zero, so that the delay transfer function has a very small influence on the total

phase response.

Since this interpretation is a key feature of the present work, the approach is further illustrated in Fig. 7.

Here, the analysis presented in Fig. 5a-b is repeated for a variable helix configuration. At low depths
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Figure 6. Chip transfer function. (a) regular helix tools, Eq. (24); (b) variable helix tool, Eq. (23), two flute tool with 25◦ helix angle

difference, Black to cyan shows increasing depth of cut.

of cut (Fig. 7a-b) the behaviour is very similar to the regular helix case. There is some ‘smoothing’

of the delay transfer function, but the response is unstable as the magnitude is greater than 0dB at

ωc = 173Hz. When the depth of cut is increased (Fig. 5c-d), the delay transfer function is substantially

different. The comb filter effect is almost negligible, and so the overall transfer function Gtot is governed
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by the structural dynamics and cutting gain. The system is stable, because the magnitude is less than

0dB for all critical frequencies (ωc = 187, 244, ...)Hz.

In Fig. 7e, the overall stability of the system is shown. This is obtained by repeating the bode

diagram stability analysis for permutations of spindle speed and depth of cut. The two example results

are shown superimposed. Finally, it is important to note that small ripples in the chip delay transfer

function (Fig. 7d, green dashed line) can still have an influence on stability. In Fig. 7d the effect is to

slightly increase the phase response near the structure’s natural frequency. This has increased stability.

However, at other spindle speeds the effect can be reversed, so that a critical frequency occurs close to

the structure’s natural frequency. This leads to islands of instability shown in Fig. 7e.

5 Implementation and validation

This section summarises the numerical procedures required for the new stability analysis method, and

compares the results to alternative analysis methods.

The new method involves the following computational steps, which are straightforward to implement,

as well as being computationally inexpensive:

1. Obtain the numerical frequency response function for the structural dynamics, Gx(jω), from

analysis or experiment.

2. Obtain the numerical value for the chip gain, Gc, from the cutting parameters of the system

(Eq. (22)).

3. For each required spindle speed 60
τr

(revolutions per minute);

(a) For each depth of cut b

i. Evaluate Gd(jω) numerically (Eq. (23)).

ii. Combine with measured values of Gx(jω) and Gc to obtain Gtot(jω) (Eq. (25))

iii. Identify frequencies ωc where ∠(Gtot(jω)) = −180◦.

iv. Determine the corresponding value of |Gtot(jωc)|.

v. Choose the highest value of these |Gtot(jωc)|.

vi. If the gain is less than unity then the system is stable.

The solutions for this approach are now compared to those for the semi-discretisation method

described by previous work8. The numerical parameters are summarised in Table 1, and these are

chosen to be similar to Table 2 and Figure 14 in the previous study8, although a higher spindle speed

is considered in order to improve convergence of the semi-discretisation method, and to illustrate

behaviour of interest.
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Figure 7. Schematic representation of stability analysis. (a) & (b) Bode diagram for b = 3mm, 1100 rpm; (c) & (d) Bode diagram for

b=10mm, 1100 rpm. Structure Transfer Function Gx(jω) (mm/kN); Delay transfer function Gd(jω); Negative

feedback transfer function Gtot(jω). Markers show the locations of critical frequencies where the phase is −180◦. (e) Overall

chatter stability. Markers show stability boundaries obtained from the gain margins of (a) (•, unstable) and (c) (�, stable). Shading

shows unstable regions.

The time-averaged semi-discretisation approach8 was based upon the semi-discretisation method,

but the cutting force coefficients were time-averaged, rather than accounting for their periodicity.

Consequently, this method is most similar to the new Laplace approach presented in this work. The

comparison is shown in Fig. 8a, and it can be seen that there is good agreement between the two methods.
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parameter value

modal mass (kg) 6.4363

modal natural frequency (Hz) 169.3090

modal damping ratio (-) 0.0112

cutting stiffness Kt (N/mm2) 550

cutting stiffness Kr (-) 0.3636

tool radius (m) 0.0095

number of teeth 2

tooth pitch at tool tip 180◦-180◦

tool helix angle difference 25◦

cutting radial immersion full slot milling

Table 1. Numerical parameters for validation study.

The differences can be attributed to the numerical challenges associated with each method. In the new

Laplace solution, the stability margin is calculated based upon discrete data points on the numerical

frequency response function Gtot(jω). Although the accuracy of this could be improved using linear

interpolation, the present study simply used a nearest-neighbour data point. In the time-averaged semi-

discretisation method, the accuracy of the stability boundary depends strongly on the discretisation step

size. In the present study 400 discretisation points per tool revolution were used, leading to an eigenvalue

problem of a similar order. Accuracy can be improved by increasing the number of discretisation points,

but this can drastically increase the computational effort.

In Fig. 8b, the new method is compared to the semi-discretisation approach. The time-averaged semi-

discretisation method took 75 minutes to solve on a desktop pc, whilst the new Laplace solution took

just 22 seconds. However, it is clear that there are substantial differences between the time-averaged and

multi-frequency methods at this range of spindle speeds.

This behaviour is explored in more detail by using a time-domain simulation, based upon the model

described in previous work23. The model was computed for 100 simulated tool revolutions with 2048

time steps per revolution. Stability was determined by analysing the variance of once-per-revolution

samples of the simulated vibration. For clarity, only the stable solutions are shown on Fig. 8b; it can

be seen that these agree reasonably with the semi-discretisation solution at low spindle speeds (< 3000

rpm). At higher speeds the time-domain and semi-discretisation results differ from one-another: this

could be due to differences in their convergence behaviour.

Further work is needed to investigate this behaviour in more detail, but given the close agreement

between the two time-averaged methods (Fig. 8a) it is reasonable to conclude that the variable helix

stability prediction is more susceptible to multi-frequency effects, compared to regular helix tools, for

the parameter range considered.
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Figure 8. Validation against the semi-discretisation, fully discretised, and time domain methods. (a) New Laplace solution,

Unstable discretised solution; (b) New Laplace solution, Unstable semi-discretisation solution; • Stable

linear simulation.
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6 Influence of nonlinear cutting stiffness

The influence of nonlinear cutting force coefficients is less straightforward. In the present study, this

phenomenon is demonstrated with the aid of a time-domain simulation, again based upon the model

described in previous work23. Following Stepan18, the cutting force coefficient is rewritten as

ft,j = KtK1ah(φj)
3/4. (28)

The new coefficient K1 was chosen so that the linearised cutting force coefficient is unchanged at

the mean chip thickness. The time domain results are compared to the Laplace solution, and the semi-

discretisation solution, in Fig. 9. It can be seen that there are significant differences between the three

results. This also suggests that the variable helix stability prediction is susceptible to un-modelled effects

such as nonlinear cutting stiffness, compared to the behaviour of regular helix tools.

However, it should be noted that for the non-linear scenario it is not straightforward to compare

time-domain simulations with analytical stability methods. For example, the analytical methods imply

linearisation around an operating condition (e.g. the mean chip thickness used for Eq. (28)), and the

nonlinearity may cause sensitivity to the choice of initial conditions.
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Figure 9. Validation against the semi-discretisation, fully discretised, and nonlinear time domain methods. Laplace solution; •

Stable nonlinear simulation; � Unstable nonlinear simulation; Unstable multi-frequency solution.
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7 Discussion

Before drawing conclusions, a number of points are worthy of further discussion.

7.1 Two-direction formulation

One drawback with the approach presented here is that the formulation has only been presented for

vibrations in a single degree of freedom. However, the main focus of the present study was to offer a

new means of visualising variable helix stability, and to illustrate some of the inaccuracies that can occur

when well-established assumptions are used for the special case of variable helix tools. The points have

been illustrated without resorting to the more cumbersome formulations needed for vibrations in x and

y directions. Despite this, it is useful to briefly consider whether, and how, the new Laplace approach

could be extended to the two-direction formulation.

Returning to Eq. (14), it is clear that for the two-direction case there will be two simultaneous

equations, describing forces in the x and y directions, and coupling introduced by the axy and ayx

coefficients (Eq. (9)). Time averaging of these coefficients will lead to corresponding simultaneous

equations replacing Eq. (15). Now, the Laplace transform can be applied separately to each of the terms

in the simultaneous equations, because the transform is linear and follows the principal of superposition.

Continuing with this approach will lead to the coupling terms being collected in a 2× 2 matrix of gains

Gc, along with a scalar transfer function Gd(jω).

In order to perform a stability analysis, the multi-input-multi-output coupled system can be

transformed into two uncoupled single-input-single-output systems. In the general case this requires

an eigenvalue solution for each frequency ωc, but since the system is 2× 2, the solution can be achieved

analytically.

Consequently, it seems feasible that the approach can be extended to the case of mutually

perpendicular vibrations with a relative straightforward development of the approach, and only a small

increase in computational cost. This should certainly be considered for further work, but in practice the

need for further experimental validation of behaviour is probably a more urgent step.

7.2 Multi-frequency formulation

An alternative to the time-averaged approach is to consider the Fourier series expansion of the direction

factors shown in Eq. (12). In this case, a frequency domain solution could be achieved by following the

detailed methodology described by Wereley24. However, in this case the stability analysis becomes

much more cumbersome, as the formulation is likely to involve higher-order matrices of transfer
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functions. It remains to be seen whether this approach would offer any advantages compared to the

semi-discretisation method, in terms of computational cost or visualisation/design aids.

7.3 Other helix geometries

A final concern with the new Laplace approach is the assumption that the helix angles are constant for

each tooth. This can be overcome in two ways. First, it could be possible to rewrite Eq. (16) to describe

other geometries in an analytical fashion. An example would be sinusoidal variations in the tool delay.

However, solving this analytically is probably not possible and so Eq. (19) could not be written using

such an approach. The alternative approach is to consider the helix angles as piecewise constant. In this

case, it should be possible to write Eq. (19) as a summation of terms, leading to a more complicated but

otherwise useful expression for Gd(jω).

7.4 Role of structural damping

Before drawing conclusions, it is useful to consider one nuance of the bode diagrams presented in Fig. 7.

The examples suggest that at higher depths of cut the critical frequencies are more sensitive to the

phase of the structural dynamics Gx(jω), because the variation in the delay transfer function Gd(jω) is

smaller. This raises the question of whether variable helix tools are more likely to benefit from damping,

compared to regular helix tools. This damping could be in the form of structural damping (inherent,

or intentionally added), or un-modelled damping mechanisms (such as process damping25;26). Further

work could explore this experimentally.

8 Conclusions

In this contribution, a new formulation for predicting the chatter stability of variable helix tools has been

described. The following conclusions can be drawn:

1. The Laplace formulation provides new insight into the stability of variable helix tools as it allows

the distributed delay parameters to be visualised as a filter. This can be contrasted with the comb

filter effect that is well-known for regular helix tools.

2. The formulation is compatible with numerical frequency response function data, and consequently

does not require modal models to represent the structural dynamics of the system. This offers some

convenience compared to previous formulations. In addition, the new formulation is hundreds

of times faster than some other methods for variable helix stability analysis. Consequently the

approach is potentially convenient for industrial application.
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3. A major issue with the formulation is that the stability prediction appears to be highly sensitive

to the un-modelled effects of nonlinear cutting stiffness. In addition, the time-averaging of the

cutting force coefficients appears to have a dramatic effect on the stability. Both of these issues

have been illustrated on a specific scenario. Further work is needed to explore the relevance of

these on practical machining problems.
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