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Optimality in the frequency domain

with cross-product weighting

Summary

The frequency domain representation of the steady-state matrix
Riccati equation which defines the solution of the linear optimal control
problem is illustrated with a cross-product weighting term included in
the quadratic performance index. Conditions which have been applied to
the magnitude of the return-difference matrix in the complex plane2 are

shown to apply similarly with such weighting.

Introduction The linear optimal control problem with an infinite-time

quadratic performance index is associated with a steady-state matrix
Riccatl equation, and can also be defined in terms of an equivalent
equation in the frequency domainl—&° Conditions imposed by the steady-
state matrix Riccati equation have been given in terms of the magnitude
of the determinant of the return-~difference function in the complex
frequency plane, for both the single—1 and multiple—input2 cases with
quadratic“weighting of the states and inputs. A similar condition is
now investigated with the performance index containing cross-product
weighting of the states and inpuls, which can be associated with the
minimisation of a power function for the physical system4o Similar
weighting also appéars in the model following problem5n It can then
be shown that the previous condition on the magnitude of the return-
difference matrix in the frequency plane applies similarly with cross-

product weighting.
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Linear optimal control with cross-product welghting. Consider the

problem of determining the control vector u(t) in the n-state,; r-input,

m-output linear system

%(t) = Ax + Bu , y = Cx (1)
which minimises the quadratic performance functional
1
" t t k
J = fo(y(t),u(t))dt 5 fo = (yQy + U Ru + 2y Wwu)/2 (2)
t
o

where Q is an mxm positive semi-definite matrix and R is an rxr positive
definite matrix. A scalar product of the state and control variables is
included with the mxr matrix W. In the maximum principle a Hamiltonian

is defined

Hip%m) = pofo +p £ (3}

o

with x = gH/3p , p = ~3HHx

For the linear system with quadratic performance and appropriate boundary
conditions

H = -fo + pt(Ax + Bu) t, = (xtCtQCx + uTRU + 2xtCth)/2 (4)

+.
cQCx + ctuu - Atp (5)

fl

p
Then differentiation of eqn 4 with respect to u gives

Grey e ety = Wi (6)

The optimal Hamiltonian system may be represented in terms of the state
and adjoint variables by the 2n-dimensional differential equations

_(P - e Ntey , mr Bt

i te) ]l x
C (Q-WR~ e ’ »(A _ctur1p )Jx j

| p(t)

J or h(t) = Mn(t)
(7)

The optimally regulated trajectory is then given by the solution of

eqn 7 with the two-point boundary conditions, x(to) = 0, p(Tf} = O.

Including a state-adjoint variable relation p(t) = -Px(t) in egn 7 gives

the nonlinear matrix Riccati disferential equation

P = (PB+C 5)Q 1( t& + wtc) w PA = AtP - ctqc (8)

where the nxn symmetrical matrix P is a unique positive definite solution

for all positive definite matrices Q= Ct(Q - WR—iwt)Co
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A frequency-domain representation of the infinite-time linear
optimal control problem associated with the performance functional of
eqn 2 may now be developed using the steady~-state matrix Riccatl equation
from eqn 8, which may be stated in the form

Y itp + PBR"iatp = 0 (9)

where A = Aw BRflwtC ) Q Ct(Q - WRtlwt)C

1
Then by the usual procedure,

e - - -] t
NPt B & el BOPR = Bos eneUE'P (10)

and multiplying from the left by Bl - i%)~1 and from the right by

(sI - E)” "B gives

Bt(—sI—Et)—lPB + BtP(SI—ﬁ)-iB = Bt(-sI~Kt)"1ct(Q-WRfiwt)c<sI-E)‘18
_ pteeer-atyteertetp(s-R) " B (11)

Now define the 'plant' and dual-system transfer matrices

Bt ot bl w57 0a o Bs) & Btasta RN (12)
and including the centrol-law matrix from eq 5

K = Rfitstp ? wtC} (13}
for eliminating P gives

wit - 4+ i
Bt(-sI - A7) 1(K R - ctw) + (BK = WtC)(sI i) 15 (14)
= Gt(-s)(amefiwt)G(s) - Bt(nsz-ﬁt)"1(KtRmctw)R”1(RK_wtc1(sI-E)”“B
Then
et o vl R o I R
2t oy touwr™ WE)E() 4R = [T + BE(msT-A0) ™ HkEoctur™ IRLBKK Litey(s1-E)" 181
(15)

or stsrq - v WE)E(s) + R = Fr(=s)RF(s) (16)

where F(s) defines a return-difference-type matrix for the optimally
controlled system= Eqn 16 represents the condition for optimality in
the frequency domain and inclules nxx nonlinear algebraic equations which
can, in principle, be used for detarmining the elements of the control

matrix K. However, the solution will usually be difficult and not unigue.

The transfer matrices G(s) and &“(-s) may be related to the
conventional plant transfer matrices G(s) = C(sI-A)ﬁiB and
i t 4 :
G'(-s) =B (—sI—At) et by expanding the forms of egn 12 using the matrix
inversion identity, to give ‘
w ey By el & wi ok
8(s) = Cl(sI-A) + (B)E “(W'e)T™B = G(g) ~ G(s)[R+ G(s)] "WGls) (17)

Ste)e ctius) = 6Flesnlr + cF(=smT 168 (-s) (18)




Now the combined optimally regulated system matrix M of eqn 7

has a characteristic equation given by

‘ % ST=A 4 ~BR 18t
gloe Ml = (19)
\ | |I s SI«J&t '

]

: ‘ 6
Then using the result for partitioned determinants

‘ Bl 3 - |p-as'rlis| (20)

we obtain

3 o -—--—‘i. -
|s-M] = | (s1-F) - B B(smAD)T G | s14R"|

s BR‘ist(sI+ﬁt)'1ct(Q~WR"1wt>c(sImE)"1[Hsznﬁl!sz+ﬁt} (22)

(21}

1l

1 T + R Y65 (=s) (QuviR™ ﬁt)G(s)il sI-R !isI+§ti (23)

Then from eqn 16

gsI—Mi

st | Fea || R - s (24)
lsI—A![sI+A [

where L(sg) is a scalar function ¢f the squared complex frequency szo

The eigenvalues of the matrix Mvare symmetrically disposed abgput the
imaginary axis and, for s = jw, the function L is real for all w. Also,
the magnitude idet ?(jm)% is real, thus illustrating the existence of a
zero quadrature compeonent of phase shift in the Hamiltonian system, with
the dual system acting as a phase compensator, as previously discusseda2
The form of the optimally controlled system with cross-product welghting
is shown in FIG 1 which illustrates, particularly, the corresponding roles

of the matrices wt and W in the system and dual system respectively.

System
u R o = T F 7 x Fr v output
l. B P e g 45T | C P e Tl : i
- i J L_MW” |
I
[ I
3 &
T |
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FIG 1. Optimally controlled linear system including cross-product weighting
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Now since det F(s), and alsc det G(s), are complex quantities

det ?(5)]2 = i det F(s) det F (-s)l (25)

For the system without cross-product weighting (¥ = Q), eqn 25 thus leads
i ; B o ;
to the condition that ldet F(jm)!2 (= det[F(jw)F (-jw)]) is always a
" o e ; 1
positive number for all «, and, as in the single variable case ,

et F(jm)f>A1 for all w. T[or the system with W4 O, this condition will al

exict with a positive Jafinite matrix Q. Yor exertile, comsider the syshen
;{ = l O 1 iX + 1 O u
|_O O A “_O T
o % t t :
with V = ﬁ-j (zxx+vnu+2xtuddt , G=Ty R=1; C=T;3 W= diag[wi]
Then 2 ) - 2
-W 1 E g o |
= by 5 = 1 2|
2 O - I 2 i 0 1w
g 2] | 2 |
ol TEIESIY s wden 5 |
? % Sy A5 ?
Etay = (sl—ﬁ)*i . stw, (5+w1)(s+w2) i Gt(_s} “ s=w,
5 " 1 1
5 ’ S+, | ‘~(q—w Y(g=w ) snwE*
S Ky Wy 580, ) ‘.
dats ? I W
1, . S*W, 2(S+m }(S+w )
* k21 s +s(w1+k2,,)+;c21 9%
’ s
S+, (u+w1)(s+w2) J
S o 5D
s=kyq g |
a7 7 e 1)
b e (S B~y S=v,y ;
2
kﬂﬁ—wl—h (s—w ) s -’s(w,l+k?,))+}c21+k22w1 %
3 - i ? = Sioa
' - (= ml)(s WZ) (s wi)( wz) !
z 2 2
det F(S) =] = I + ]
_ [s% + s(k1 ) * Kby * Koy kzlkizj/[(s + wl)(s W, 2]
=t 2
det F — - r, - S Sk e
(-5) = [s (k11 ) # kb + Ry = kg 12J/[(s W, Yis W, )]

Then for the optimally controlled combined system

| 1 1 0 |
- \ o 0 1 ‘
l 1~w O Wy o |
| |

b e} 1~w2? ~1 w2 1

'I..,
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giving the characteristic equation

-1 -1 0
s+w1
0 S+W, O -1
2 _ 4 2 2
| sT-M e, 2_1 0 St 0 =S =25 + 2 - w,1
1 ) 1 |
f (6] w2 -1 1 s~w£

Thus the eigenvalues for the particular combined system are not affected

by the cross~product camponent'wzo Also
- -t
lsI-Al 2 (5+w1)(5+w2), ‘SI+A l = (s~w1)(s-w2)

“ - - - 4 2 2
and det[R + 58 (=s)T6(s)] = det[Ft(ms)RF(s)] = (8 = 258" + 2-w ")/
[(s2~w 2yt %)3
1 e
which checks with eqn 24. Then
= i 2
det[Ft(—jw}F(jm)3 =1 # [w2(2-w12-w22)+(2—w12~w12w22)]/[(m2+w12)(w+w22)]
Thus the magnitude conditionl det F(jw)‘%} 1 will exist for all w with the
elements of W Gripresentexx)$mﬁzdii) ensuring that G is positive definite,
and, for optimality with cross-product weighting, the plot for det F(jw)
does not enter the interior of the unit circle.
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