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ABSTRACT

In a practical situation, the control engineer may have experience
with his system and have some insight into its dynamic behaviour. This
paper suggests a theoretical method for making use of this background
knowledge in the feedback control design process by manipulating the
frequency response information available in the plant transfer function
matrix H(s) into a form suitable for physical interpretation. The approach
used is that of dyadic expansion of H(s). The technique represents an
extension of the dyadic approximation method used in the analysis of
nuclear reactor spatial control systems to include a description of
interactions in a general case. However, under stated conditions,
the representation given in this paper is exact. As the aim of the
paper is to enable frequency response data to be interpreted physically,
the method described does not generate a complete design technique.
Examples indicate however that, if used with physical intuition, the
procedure can provide guidelines to practical controller structures for

highly interacting systems.
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1 INTRODUCTION

The problem of the analysis and design of multivariable feedback control
systems has been the subject of a large research effort over the past few
decades, and many contributions have been made to a general mathematical

(1)

theory of linear multivariable feedback control in particular. A

method currently receiving a lot of attention is the vector frequency response

(L)

or transfer function matrix technique , which is a generalisation of the
frequency response methods introduced by Bode, Nyquist etc... In this
formulation the dynamic system under consideration is assumed to have a
mathematical description of the form
y(s) = H(s)u(s) (1)
A general multivariable control system structure for this system is

illustrated in Fig.l. The input/output relationships of such a

configuration are as follows

y(s) = H(s)u(s)
u(s) = G(s)e(s) (2)
e(s) = r(s) - K(s)y(s)
or
y(s) = {I + H(s)G(s)K(s)} ‘H(s)G(s)r(s) (3)

The control problem is the choice of cascade and feedback control elements
(as represented by the transfer function matrices G(s) and K(s)) such that
the overall closed loop system (eqn(3)) satisfies the required stability
and transient response specifications.

(1)

Results are available describing necessary and sufficient conditioms
for the stability and integrity of the closed-loop system of Fig.l, and
several methods have been suggested for the control design analysis.

(2)

These techniques are based on ideas of (i) direct structural modification

to reduce the problem to the analysis of N single variable systems,
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(3,4)’ (iii) loop by loop
(6)

(ii) eigenvalue or characteristic locus analysis

(5)

addition methods and (iv) approximation concepts.
In a practical situation, the control engineer may have direct
experience with his system and may have obtained some useful insight into
its dynamic behaviour which could be used to guide the control synthesis
procedure. However, the methods listed above are not explicitly constructed
to make maximum use of this informatiomn. The system matrix H(s) contains
basic information on the overall dynamical structure and subsystem structure
of the plant and also defines the contributions of these subsystems to the
outputs and the effect of the control inputs on these subsystems. An
essential part of the process of feedback control system analysis is the
manipulation of this frequency response information into a form suitable
for design work. Hence, if the engineers background information is to
be used to help in control synthesis, it seems reasonable that the
manipulated form of H(s) should, if possible, be amenable to physical
interpretation. An example where such considerations have led to a
practical approach to control system synthesis is the dyadic approximation

(7)

method as applied to the problem of regulating the spatial power

distribution in a nuclear reactor. In this case, the individual dyads

(7,8,9)

of the approximation have a direct physical interpretation in terms

of spatial modes of oscillation in the system in the sense that their

form is similar to that of the eigensolutions of the underlying partial
differential equations. The physical insight provided by this formulation
enables the control engineer to identify the source of control

difficulties, assess the affect of modelling errors on the final closed-loop

(8)

design and provides a technique for synthesizing fail-safe feedback

(759)

control schemes with a performance adequate for nuclear reactor systems.
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(7)

The dyadic approximation method in essence replaces H(s) by an

approximation of the form

o+
HO(S) = ; hj (S)ajsj (4)

| I e =

j=l

where
H(s) = Ho(s)

lim = = 0 (5)
870

The {aj} and {Bj} are sets of linearly independent, frequency independent
vectors whose elements are real or exist in complex conjugate pairs, and
{hj(s)} is a set of rational scalar transfer functions. Practical

(8)

experience with nuclear reactor spatial control problems indicates that
{aj} corresponds to the dominant eigenmodes of the system, the {hj(s)}

are transfer functions describing the dynamics of the dominant eigenmodes,
and the {Bj} describé the effect of the control inputs on each eigenmode.
For a more general system, if the error term H(s)—Ho(s) is sufficiently
small at all frequencies, then similar physical interpretations can
provide direct insight into the essential or dominant interactions in the
system,

It would seem therefore that interaction in linear multivariable
systems can usefully be described using dyadic representations. The
dyadic approximation described previously is limited in application as
only certain practical systems are approximately dyadic. To extend the
technique to include a larger class of systems it is necessary to use
exact representations. In general an exact dyadic representation of H(s)
must take the form

N
H(s) = %

hj(s)uj(s)8j+(s) (6)

j=1
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where now {uj} and {Bj} are frequency dependent. An example of such an

(3)

expansion is the eigenvector expansion used in the commutative controller
and characteristic locus methods(a).

This paper presents a dyadic representation of H(s) of the form of
equation 6. The representation is derived with the objective that the
expansion should be amenable to physical interpretation. This objective
is incorporated into the analysis in the form of axioms concerning the
required properties of {uj(s)} and {Bj(s)}. The technique does not generate
a complete control design technique because of the assumption of a human
link in the design procedure. However, simple examples indicate that, if
used together with existing theory and physical intuition, it can provide

insight into system dynamics and provide guidelines to possible feedback

controller structures for highly interacting systems.

2. The Dyadic Representation of System Interactions

Consider the problem of manipulating the NxN transfer function matrix
H(s) of a general linear system into a form suitable for physical inter-
pretation. As H(s) describes the vector response of the system to vector
inputs it is reasonable that, as in the nuclear reactor case, a dyadic
expansion of H(s) may be useful for this purpose. However, H(s) has an
infinite number of dyadic representations, and hence it is necessary to
choose a representation which gives the most insight into the physical
interactions in the system. To illustrate this point consider the response
of the system at s = iw, as represented by the complex matrix H(iw).
Consider arbitrary sets {aj(iw)} and {Yj(im)} of N complex, linearly

independent vectors such that, 1 € j, k € N,

Yj+(im)ak(iw) = S (7)
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The NxN unit matrix is as follows
N
I = L oY (8)

and hence H(iw) can be written as

N
. ; +_ ..
H(iw) = IH@Ew) = £ o.{y. H{iw)} (9)
N
J
which is a possible dyadic expansion. This expansion is just one of many
as the {uj} are arbitrary. From the point of view of physical interpretation,

however, most of these expansions will be irrelevant as an arbitrary choice
of {aj} is unlikely to bear any relationship to the physics of the problem.
It is convenient to write egn 9 in the more general form (cf eqn 6)
X +
H(iw) = I h,{lw)a.(lw)B. (iw) (10)
fest, ] ]
The requirements of physical interpretation used in.this paper are:-
(1) The vectors {aj(iw)} should reflect the physical structure of
the system just as the dyadic approximation method reflects the
eigenmode structure of the nuclear reactor spatial control problem.
(ii) The vectors {aj(im)} and {Bj(iw)} should be real vectors or at
worst exist in complex conjugate pairs. This requirement is
included to aid physical interpretation and is consistent with
the fact that system dynamics are generated by real interconnections
between subsystems.

(3)

Although eigenvector expansions have useful analytical properties . the

eigenvectors themselves are not in general real and are a senmsitive function
. : (7

of parameters which are not fundamental to the dynamics of the system ).

For example, consider an arbitrary real, non-singular matrix B, then the

eigenvectors of H(s) and H(s)B could be significantly different, yet the

dynamical structures of the two systems are essentially the same except for
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a redefinition of control variables, and this can be removed by the use of
a cascade controller factor of the form B_l. Therefore, in general,
eigenvector expansions will not satisfy the requirements (i) and (ii) above
for physical interpretation.

It is the purpose of this section to derive, using geometrical and
physical arguments, an appropriate set of vectors {aj(z)} to form a basis
for the dyadic representation of H(s) at s = z (which is not necessarily
on the imaginary axis). This is done using the idea that if two dynamical
systems have indistinguishable dynamic responses at s = z, then, from the
practical viewpoint, they can be taken to have identical interaction
structures at s = z, The problem is then solved by investigating the
properties of a dynamical system described by a dyadic transfer function
matrix HA(s,z) which is indistinguishable from H(s) at s = z. The dyadic
structure of HA(s,z) forms a basis for the dyadic exzpansion of H(z).

Assume that the interaction present in H(z) can be reconstructed using
a dyadic transfer function matrix HA(s,z) and some other transfer function

matrix u(s,z) such that, for all s,

N
+
HA(S,Z) = jil hj(s,Z)aj(Z)Bj (z) {11}
H(s) = HA(s,Z) + u(s,z) (12)
and ulz,z2) = 0 (13)

The dyadic matrix HA(s,z) is said to intersect the system.H(s) at
s = zZ. That is, the systems described by HA(s,z) and H(s) are indistinguishable
at s = z and hence, from the practicai viewpoint, can be taken to have
identical interaction structures at s = z. Bearing in mind that, by
asSumPtiDn,HA(s,z) represents a dynamical system in its own right which

automatically satisfies the two requirements for physical interpretation
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given above, then the representation

o=

H(z) = BH,(z,2) h, (z,2)a, (z)sj‘”(z) (14)

j=1

is a candidate for the required dyadic expansion of H(z).
In order to characterize the vectors {uj(z)} explicitly, note that,

as H(s) and HA(s,z) represent physical systems,

H(s) = H(s) (15)

HA(E,Z) = H,(s,2) (16)

and hence, from equations (12) and (13),
u(z,z) = 0 (17)
or

Hiz}, = hj (Z,z)ocj (ZDBJ. (z) (18)

o=

j=1

i, HA(s,z) intersects H(s) at s = z.
Assuming that H(z) is non-singular and defining, 1 ¢ j € N,

'@ = ej+<z)H'1<z> (19)

then, from equation (14), for 1 £ j, k ¢ N, we can take

Yj+(z)ak(z) = ajk (20)

and, from equation (18),
1 N
- - - +
H(z)H “(z) = I h.(z,z)a.(z)y. (z) (21)
oq it
J-—
Equations (20) and (21) immediately suggest that the {aj(z)} are
defined uniquely to be the eigenvectors of H(E)H_l(z).
The above results are based entirely on a physical interpretation of

the mathematical structure of the problem. A justification of the assertions

can be obtained using the following results, (see Appendices 7.1, 7.2 and 7.3).

&




RESULT 1

If the NxN system transfer function matrix H(s) is of the dyadic

form(7)

H(s) =

It =

hj(s)aij+ and H_l(o) exists,where the vectors
1

]
{0,.} and {Bj} are frequency independent, then we can take HA(s,z) = H(s)

5 —- =1
and the eigenvectors of H(z)H ~(z) are {aj}.

RESULT 2
If aj(z) is an eigenvector of H(E)H_l(z) = A(z) with eigenvalue Aj(z),

then aj(z) is an eigenvector of A(z) with eigenvalue (Aj(z))_l.

RESULT 3

{Aj(z)| =1 if, and only if, uj(z) can be chosen to be real and

non—zero.

Results 2 and 3 immediately verify that {aj(z)} satisfy requirement
(ii) for physical interpretation. Result 1 states that the {uj(z)},as
chosen,ensure that requirement (i) is satisfied at least for dyadic
transfer function matrices, and hence may be true for a larger class of
systems. This result is very difficult to gene%}ize and may only be
consolidated by application to a large number of practical problems.

Tf {yj(z)} are the dual eigenvectors to {aj(z)} satisfying the
equation (7), then the proposed dyadic representation of H(z) takes the

form (c.f. eqn 9),

H(z) =

o=

u.(z){y.+(z)H(z)} (22)
ey B

which can be written in the form (cf. equation (10))

N
Hz) = 3 hj(zmj(z)sj*(z) (23)

j=1




if we define, 1 £ j < N,

hj(z)sj+<z) Yj+(Z)H(Z) ' (24)

To show that the vectors {Bj(z)} can be scaled to satisfy requirement
(ii) for physical interpretation, note that the eigenvalue equation for
Az) = H(E)H_l(z) can be written, using the notation of Results 2 and 3,

in the form, 1 £ j < N,

yj+(z>H(2) = xj<z)Yj+<z>H(z) (25)

From Result 2, {aj(z)} are either real or exist in complex conjugate pairs.

If aj(z) is real then Yi(z) is real and from Result 3 Aj(z) = e218(2)

where ©(z) is real.  Substituting into equation (25) and multiplying both

sides by e—xe(z) yields the fact that yj+(z)H(z)ele(z) is real and hence,
-i0(z) o]

nd Bj+(z) - yj+(z)H(z)ei9§2)

defining hj(z) = e the result follows

fo: this case.
If aj(z) is complex, then, from result 2, there exists a linearly
independent eigenvector uk(z) = aj(z), and hence yk(z) = Yj(z) . Defining
+ + =]
Bj (z) = ¥y (z)H(2), hj(ZJ = 15 Bk(Z) = lk(Z)Yk (z)H(z) and h (z) = (?\k(Z)) :
then, using Result 2 and equation 25

Bj+(2)

i

Y, (2)E()

]

A (27, T (2)H(2)

+

I (z) (26)

= f
as required.
The procedure for the proposed dyadic expansion of H(s) at s = z can
be summarised as follows

STEP 1: Compute the matrix A(z) = H(E)Hﬂl(z). If H(z) is singular, then

an arbitrarily small perturbation will ensure non-singularity.
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STEP 2: Compute the eigenvectors {ujgz)} of A(z). If A(z) does not have
a complete set of eigenvectors then an arbitrarily small perturbatién
to H(z) will remove this difficulty.

STEP 3: Form the dyadic expansion of equation (22).

STEP 4: By suitable scaling operations; transform the dyadic expansion into
the form of equation (23) where {Bj(z)} are real or exist in complex
conjugate pairs.

In the next section, the above procedure is applied to some examples

to illustrate how it can reveal system structures which are not immediately

apparent by visual inspection of H(s), and to demonstrate how the techmique

can suggest practical control schemes for highly interacting structures.
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3. EXAMPLES

3.1. Example 1

This example is designed to illustrate how the dyadic representation
described in the previous section can reveal the physical structure of a
plant. This possibility has already been illustrated by result 1 and its
nuclear reactor application(g). The system chosen here is of a form which
readers from all fields can readily understand. The procedure of section 2
is applied to the system and it is shown tﬁat ﬁhe dyadic structure reveale&
corresponds physically with the expected dynamics.

Consider the spring, mass, damper system shown in Fig.2, where the
masses are m, and m, the springs are identical with unity spring constant
and the damper has linear characteristics with unit damping censtant.

The dynamic equations describing the dynamic responses of the masses

to input spring movements are

m

Y e ”2} = {&2 = &l} : (28)

Taking the Laplace transform of these equations with zero initial conditions

and defining

dl(s) = m132 + s + 1 (29)
a,(s) = m252 b8 %1 (30)
a(s) = 4 (s)d,(s) - a* (31)

then the transfer function matrix describing the system takes the form

d.(s) s
Hs) = i | (32)
s d. (s)
1
(a) Consider the case when m, = m, and z = iW. The eigenvectors of

A(z) = H(-im)H—l(iw) are linearly independent and given by
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o, (lw) = » a,(le) =

The dual eigenvectors (equation 20) are given by

i -1
v (i) = sy, = 4

Forming the dyadic expansion of equation (22) yields, after some
manipulation,

1
Hiw) = —22 | |[1 1]+ —22— -1 1] (35)

l*mlm 1 l—mlm +21w 1

That is, the interaction effects in the system are characterised by two,
real frequency independent dyads and hence H(s) is a dyadic transfer function
matrix(7). Inspection of equation (35) reveals that the first dyad has
dynamics with zero damping, and that this behaviour occurs when the two
masses are moving in phase and with equal amplitude. This observation is
consistent with physical intuition ﬂ%ause (see Fig.2), if this condition is
{
‘satisfied, there is no energy loss in the damping mechanism. The second
dyad has a damping constant.of two which is characterised by a dynamic
response where the two masses move in antiphase with equal amplitude.
Again this is in accordance with physical intuition as, if the masses move
in ;his way, the relative-velocity is twice the velocity of each mass and
hence the damper has effectively twice the damping constant.

Also the expansion (eqn.35) shows that these two natural responses are
non-interacting in a feedback situation as inputs of the shape of ul(iw)
(respt. az(iw)) produce outputs of the shape al(iw) (respt. az(im)). The
control analysis of this type of system has been discussed elsewhere(7).

The concept of non-interaction used above, however, will play an important

part in the following analysis.
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b) Consider the case when m., # m_ and z = iw, Applying the procedure
(b) 1 2

of section 2, the eigenvectors of A(z) = H(—iw)H—l(iw) are

1 —(l-mzwz)
o, (u) = a,(iv) = ) (36)

1 l—mlw

The dual eigenvectors are (see equation 20)

) 1 i, 6
plidd = g 2
2—(m1+m2)m l—mzw
1 =L
Yz(iw) B i (37)
2~(m1+m2)m 1
and hence, from equation 22, after some manipulation,
1
; 1
H(iw) = ——s. [1 1]
2*(m1+m2)w 1
- 2
-(l-m,w") )
+ 4 5 22 [—(1—m2m2), 1-m1w2] (38)
d(im)(2~(ml+m2)w ) l—mlw

Again, the dynamic response of the system is characterised by two real dyads,
the first of which is frequency independent and identical in form to that
in equation (35). The second dyad is frequency dependent.

The problem considered in the next few paragraphs is whether or not
the information contained in equation (38) does in fact correspond physically
to the expected dynamic behaviour, and whether or not the analysis can
indicate possible feedback controller structures (see Fig. !).

At low frequencies, the dyads in equation (38) approximate to the forms

1
[1 1] (39)
1
and
-1 ;
' [-1 1] ” (40)
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which are identical to those of the equal mass problem (see equation 35).
Physically, equation (39) suggests that, at low frequencies, the vector
sum of the inputs to the plant produces more or less identical movements
of the masses. Equation (40) states that, under the same conditions, the
vector difference between the input produces more or less the same equal
movements of the masses but with a difference in sign. These behaviours
are as expected physically, for, at low frequencies, the difference between
the masses becomes of secondary importance as the system dynamics is
dominated by the stiffness of the springs. Under these conditions, low
frequency vector inputs to the system of equal amplitude and equal (respt.
opposite) phase are expected to produce movements of the masses of equal
amplitude and equal (respt. opposite) phase.

The above observations suggest that an iﬁtegral feedback controller

factor of the form,

kl 1 k2 -1
G (s) = —= [1 I] = <1 1] , (41)
1 1
where kl,kz are unspecified gain constants, is a reasonable structural form
for the control of the low frequency behaviour of the system. This

controller factor separates the low frequency part of the input into
components of al(o) and az(o), operates upon these components independently
with the integrator kl/S and kz/s respectively, and then projects the
results into control vectors which produce outputs proportional to ul(o)

and az(o) respectively. Physically the vectors ml(o),mz(o) are then
approximately non-interacting in a feedback situation at low frequency

in thesense that an input to H(s)G(s) of form al(o) (respt. az(o)) produces
an output of the approximate form ml(o) (respt. az(o) modified by an overall
.gain and phase factor. This fact enables the controller gains kl,kz to be
chosen independently to provide the required low frequency response in the

modes ul(o),az(o).




- 15 =

The high frequency response of the system is described (see equation

38) by the dyadic forms

1
[1, 1] (42)
1
and
m
2 [my o -m]] (43)
“m,

At high frequencies, the system dynamics is dominated by the inertia

represented by the masses m, and m, . To illustrate how the dyads of

equations (42) and (43) are consistent with this physical fact, consider

the case when my is much greater than m, . It can be expected that the .

energy required to excite high frequency oscillations of m, of a certain

amplitude is much greater than the energy required to excite m, to that

amplitude. The dyad of equation (42) represents the case of equal amplitude
oscillation. Any input which excites this dyad only must take the form
F{ml,mz}T where F is a. scalar. Inspection of this form reveals that the
energy input to each mass must be proportional to that mass and hence the

energy input to m, is proportionately larger than that to m

1 2"

Using similar arguments as for the low frequency analysis, the high
frequency dynamics of the system can be controlled using a proportional
feedback controller factor Gz(s) which decouples the high frequency dyads
of equations 42 and 43 e.g.

m i
G2(S) = k3 l} [ml,mzl + k4 [—l, 1] (44)
m2 1

The vectors al(im) and uz(iw) are then approximately non—interacting in a

feedback situation at high frequency and hence k,_,k, can be chosen

3°%4

independently to provide the required high frequency response in these modes.
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From the poiﬁt of view of feedback control, equations.(él) and (42)
could be combined to produce an overall feedback controller of the

1
proportional plus integral (PI) form (see Fig.|)
G(s) = Gl(S) + GZ(S) (45)

This controller structure contains only four unspecified constants kj,

1 g j <4, as compared with the eight constants which would be required

to specify an arbitrary PI controller. Hence, at the very minimum, the
dyadic representation has provided a physical basis for the reduction of

the number of unknown parameters in the multivariable control problem,

The final control design analysis could now be undertaken using known design

(1)

techniques , choosing the unknown gains to satisfy the desired performance
criteria,

The above analysis can be extended to incorporate the possibility of
proportional plus integral plus differential (PID) control. In this case,
the high frequency controller of equation (44) is converted to differential
form by multiplication by s. It is then necessary to investigate the
intermediate frequency dynamics using the representation of equation (38)
in order to determine a structure for the proportional confroller term.

At intermediate frequencies, an unusual feature of the dyadic

representation is the presence of an additional pole pair on the imaginary

axis at a frequency of

A | 2 (46)

o)

‘Mathematically, this pole arises when H(—im)H_l(iw) only has a Jordan form
and the eigenvectors ul(im) and uz(iw) become colinear. The properties
of this pole are entirely consistent with the form of al(iw), for 2 nt

¥ ¥, for all time, then, adding equations (27) and (28)

(ml + mz);1 = “Zyl tu +ou, (47)
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That is, a response of this form is excited by the vector sum of the inputs
and has a characteristic frequency of p' with zero damping. To investigate
the problem of what this phenomenum indicates physically, and how it
influences the feedback dynamics of the system, it is necessary to consider

the concept of dyadic or modal decoupling:-

DEFINITION

An NxN system is said to permit modal decoupling at 8 = z if, and only
if, there exists a set of linearly independent vectors {xj(z)} and a real
non-singular matrix B(z) such that {xj(z)} are either real or exist in
complex conjugate pairs and are the eigenvectors of H(z)B(z). If this is
the case then the identity (H(z)B(z)) (H(z)B(z))_1 = H(Z)H_l(z) implies
that the {xj(z)} can be identified with the {aj(z)}.

The above concept has a direct physical meaning for proporticnal
feedback control systems. If H(s) permits modal decoupling at s = z, then
the use of a proportional forward path controller B(z) implies that, if the

eigenvalue equation for H(z)B(z) is written in the form, 1 g j < N,

H(z)B(z)xj(z) = aj(z)xj(z) (48)

then

a.(z)

{I + H(z)B(z)}—lﬂ(z)B(z)xj(z) = E:%ETET_ Xj(z) (49)

i.e. an input to the feedback system at s = z of shape xj(z) produces an
outpuﬁ of the same form but modified by a scalar factor. Physically, this
situation corresponds to zero energy transfer between modes in the feedback
system.

It follows from the definition that, at frequencies where H(E)H_l(s)
only has a Jordan form, H(s) does not permit modal decoupling. For the
purpose of this example, it follows that H(s) does not permit modal

decoupling at s = iy'. ‘However, it is possible to choose a controller
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. factor B such that al(iw') is an eigenvector of H(iw')B, by noting that

=], m, = m 1
H(iw') o (50)
1 (ml+m2)d(1m ) 1
and setting
-1 0
B = (51
0 1

It follows that, in any basis of real vectors containing al(im'), H(iw')B
takes a triangular form (it cannot take a diagonal form by the above
argument). That is, there is an inevitable transfer of energy into the
mode al(im) = (1,1)T at w = w' and hence this form of response will play a
unique part in the dynamic behaviour of the feedback system in the sense
that all real inputs to the system will produce a component of output of
this form at that frequency.

The above analysis can be used to infer a reasonable practical controller
structure for H(s) by defining a basis set containing al(iwf) by the
similarity transformation

LI =1
g = (52)
1 J:
and setting the proportional controller factor to be of the form BG3(5)
where
1 1

1
Gyls) = k 1[1 1] + B, 1[—1 1] + Kk, ;

[-1 1] (53)

As ul(im') is an eigenvector of H(iw')B, then the first dyad influences
only ul(iw'). As S_lﬂ(iw')BS takes a triangular form, the second dyad
controls only the second member of the basis set but does interact with

al(iw'). The third dyad is chosen to compensate for this interactive effect.

E
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The final PID controller structure derived for the system is (see
Fig.§)

G(s) = Gl(s) + st(s) + BGS(S) (54)

lwhich contains seven unspecified gain parameters, as compared with the
twelve parameters required to construct a general PID controller.

In summary, the above example illusfrates that the dyadic representation
method of section 2 is a description which corresponds physically with the
expected dynamiecs of the system. The formulation reveals an unexpected
energy transfer mechanism in the system and gives some insight into a
possible feedback controller structure. The final control design analysis
can be undertaken using known techniques(l) (e.g. the characteristic locus
method) using the seven unspecified gains as parameters to satisfy the
required performance objectives.

3.2, Example 2 |

The previous example illustrates how the dyadic representation method
of section two provides information on system dynamics which can be used
to set up a feedback controller structure for the system. This next
example illustrates how the method can indicate a means of synthesizing
controllers for a quite different system structure.

Consider the system

1 3+5s l+3s+252+453
H(s) = ; (55)
d(s) 1+25—52—s3 1+23+252+333
where d(s) is a polynomial in s of degree greater than three. The
i i gl PO "
elgenvectors of H(-iw)H ~(iw) are given by
2 1
al(im) = ; uz(iw) = 2 (56)
T w

i

and hence
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- 1
1 s ) 1
. Y2(1M) 5 (57)

1—2m2 1 1-2w -2

0

Yl(im)

In a similar manner to example 1, after some manipulation, the dyadic

representation of H(iw) takes the form

i 2 ; 1
: _ {1+2iw} 2 {1+iw} i
(i) = i ; [1, Tra] # d(in) wz (1, 1] (58)

i.e. the interaction effects in the system are characterized by two frequency
dependent dyads. In a physical problem these dyads may reflect underlying
properties of the system (e.g. spatial modes in distributed parameter

(8)

systems e In a feedback situation these dyads are modally interacting

(7

as

[l s 1] =1 4 B j (59)

i.e. the output from one dyad will excite the other if a feedback loop is
connected around the system. It may be desirable on physical grounds to
retain these interactions, but, if necessary, a practical control design
procedure can be obtained by removing the interactive effect of al(im) on
az(im). This is achieved by choosing a non-singular controller factor G1
such that

L -1]e = [1 -2 (60)

from which it is noted that ul(im) = (25 l)T is an eigenvector of H(im)Gl

for all frequency. Moreover, in any basis set containing ul(im), H(im)G1
is of triangular form. For example, let
1 =1
= (61)
Gl
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and consider the basis set defined by the similarity transformation

2 0
s = (62)
1 1
then
-1 1 2+as+52+253 —1-s+52+253
S "H(s)G,5 = . (63)
1 d(s) 0 1+s+252+233
(1)

It is well known that the stability of a feedback configuration is

governed by the relationship,

closed-loop characteristic polynomial
open-loop characteristic polynomial

= |I + H(s)G(s)| (64)

Hence letting G(s) = G1G2(s) where S_lGZ(s)S is of upper triangular form,
and defining {Fj(s)} to be the product of the corresponding diagonal elements

of s"lﬁ(s)cls and s"lez(s)s, then

| L2
1+ 8(s)6(s)| = |+ 5 H(s)G,S8T G, (s)S| = M (14 P () (65)
j=1

(1)

This relationship can be used to investigate closed-loop stability.

Although the stability of the closed-loop system depends only on the
diagonal elements of S_lH(s)Gls and S_le(s)S, the overall transient
response will depend on both the diagonal and off diagonal terms. Insight
can be obtained into the closed—loop response by examining the error

response,

E(s) = {I + H(s)G(s)}—l (66)

where, if
-1 -1 -1
Ed(s) = {I +5§ H(S)GlSS GZ(S)S} (67)

then

E(s) = SEd(s)s“l ' (68)
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The stability and transient performance can be examined for the triangular
system of equation (67). The real system response can then be generateg
using equétion (68).

The dyadic representation method has provided a feedback control
structure of a practical and easily realisable form, without losing a
great deal of design freedom. For example, the controller factor Gl is
not unique, nor is the similarity transformation S, and the controller
G2(S) is unspecified except for the upper triangular form of S_le(s)S.

The actual choice of parameters will depend upon the precise physical

nature of the system and other performance objectives.

4. Conclusions

The paper presents a theoretical method of manipulating the frequency
response information available in the plant transfer function matrix into
a form amenable to physical interpretation, with the objective of aiding
the control engineer in his attempts to understand the physi;al interaction
structure of linear multivariable systems. In this way, any previous
experience with a system and insight into its dynamic behaviour may be
incorporated into the control synthesis procedure to give useful insight
into the sort of controller interactions required to satisfy the performance
objectives.

The technique chosen is that of dyadic expansion of H(s). The
objective of physical interpretation is incorporated into the analysis in
the form of axioms concerning the required property of such a dyadic
expansion, and the structure of the expansion is identified in terms of
the properties of the matrix H(E)Hnl(s),

The suggested procedure is illustrated by two examples which indicate
that the technique reveals properties of H(s) which have a direct relationship

to the physical properties of the underlying state-space model of the system.

&5
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By interpreting the dyadic expansion in terms of energy transfer mechanisms,
the methods are shown to indicate possible controller structures for the
systems and reveal conditions under which these transfer mechanisms cannot
be decoupled.

The technique presented does not alone generate a complete design
technique, as, by its very nature, it assumes a human link in the design
procedure. However, the examples indicate that, if used together with
existing theory and physical intuition, the procedure can provide guidelines

to aid in the choice of synthesis procedure.
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6. Appendices

6.1 Proof of Result 1

(7)

Consider a dyadic transfer function matrix of the form

H(s) =

N ™=

h.(s)a.8.+ and H_l(o) exists (69)
o

i
where {uj} and {Bj} are sets of linearly independent, frequency independent

vectors. Choosing u(s,z) = 0 and HA(s,z) = H(s), equations 11 to 13 are

automatically satisfied, which proves the first point of the result.

1

Consider now the matrix H(z)H ~(z). It can be shown in an analogous
way to Result 2 of Ref., 7 that
h.(z)B.+Hbl(z)u = 6. (70)
i ] k jk
and hence, 1 g k ¢ N,
H(Z)E '(2)a, = g . (2)a, 8, H (@), (71)
k i 33 k

i=1

which, in view of equation (70), can be written in the form

h (z)
L a. (72)

hk(Z) k

H(E)H'l(z)ak

which proves the result.




6.2 Proof of Result 2

By definition
A .(2) = A.(2)o.(z 73
(Z)uJ() J()J ) (73)
and hence, using equation (15) and the definition of A(z),

A(E)A(z)uj(z) = aj(z) = xj(z)A('z')uj(z) (74)

Taking complex conjugates

T ! e
A(z)aj(z) = E-x;fgyi aj(z) (75)

which proves the result.

6.3 Proof of Result 3

If aj(z) can be chosen to be real then, from Result 2, aj(z) is an

1

eigenvector of A(z) corresponding to two eigenvalues of Aj(z) and Aj(z)
The eigenvalues must be equal, i.e., |Aj(z)|2 = 1.
Conversely, if ]Aj(z)| = 1, then, from Result 2, aj(z) and aj(z) are .

eigenvectors of A(z) corresponding to the same eigenvalue. Therefore,
either aj(z) and E;TET are linearly dependent and hence uj(z) can be made
real, or aj(z) and EETET are linearly independent and hence the real and
imaginary parts of aj(z) are real linearly independent eigenvectors of

A(z) spanning the same subspace as aj(z) and aj(z).
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