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Abstract

A simple identity is given which forms the basis of a descent algorithm
for the optimization of bilinear systems with quadratic performance index.

The technique does not require linearization of the system equations.

The dynamics of xenon-135 transient power effects during power
manoeuvres in a thermal nuclear power reactor are described by a set of

(1) (1)

bilinear ordinary differential equations . Recent work on the
systematic control analysis of such systems has demonstrated that the
problem of maximization of control rod margins can be formulated as an
optimization problem with terminal quadratic performance index. This
letter presents a generalization of the previous results(l’z) to a general
bilinear-system with a general form of quadratic performance index and
outlines a numerical approach to the solution of the optimization problem.
Consider a system described by the state equations
x(t)
x(o0)

A(t)x(t) + B(t)u(r) + C(x(t),u(t),t) + D(t) s (1)

]

X
o

£ : : 3
where X(t)ERn, u(t)eR”, A(t),D(t) and B(t) are matrix functions of time
which, for practical purposes are assumed to be piecewise continuous, and
C(x,u,t) is continuous in x,u,t and bilinear in X, U. The performance

criterion for the system is

J(u) = $<x(T) - z, F(x(T) - z)>
+ 1 gT{<x<t) - r(t), Qt) (x(t) - r(t))>
+i<u(t) - v(t), R(t) (u(t) - v(t))>}dt o L2

. . 8 -
where T is fixed, zeR , r(t) and v(t) are desired state and control
trajectories, F is a constant symmetric, positive semidefinite matrix

and Q(t), R(t) are symmetric positive semi-definite and positive definite
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matrices respectively whose elements are piecewise continuous functions

of time.
Let uo(t), ul(t) be admissible controllers generating state

trajectories xo(t) and Xl(t) respectively, then I claim that

J(u)-J) = iT{H[xl(t),ul(t),p(t),t]—H[xl(t),uo(t),p(t),t]}dt

+ %<xl(T)—x0(T), F(Xl(T)_Xo(T))>

4 £l (O-x (1), QB (x, (D)=x_(£))>de e )

where the Hamiltonian function

H[x,p,u,ﬁ] = 3<x-r(t),Q(t) (x—r(t))> + i<u-v(t),R(t) (u~v(t))>

+ <p, B(t)u + C(x,u,t)> _ 2o LB

and the costate p(t) is-the solution of

ac|T

-AT(©p(e) - 2l p(0) - QO {x (6 - r(6)) i
u_(t)

1l

p(t)

p(T) F(XD(T) = &} vik LB

To prove the above statement, consider the identity

T
éT{<ﬁ(t),Xl(t)—xo(t)>+<p(t),i (t)—ko(t)>}dt = [<p(t),x (t)—xo(t)>]O

.+ (7)

From the state and costate boundary conditions the right-hand-side becomes,

after some manipulation
Fx (T)-2),x (T)-x (T)> = j<x (T)-z, F(x (T)-z)>
- %<XO(T)—Z,F(XO(T)—Z)>

- %<XI(T)—XO(T),F(xl(T)—xO(T))> wrw'(8)
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The left-hand-side of eqn (7), after substitution for the state and costate

derivatives, becomes

T T BCT
g {<=A"(t)p(t) - o i (t)p(t) - Q(t)(xo(t)—r(t)), xl(t)—xo(t)>
(s}

+ <p(t), A(t)(xl(t)—xo(t)) + B(t) (ul(t)-uo(t))

+ Clx; (8),u, (0),0) - Clx, (t),u (£),t)>}dt

= [ {2 (6),B(0) (g ()= (£)4C (1), (£),0)-Cx (8) u_(£), £) -2 \ (O o
o

o <Q(t)(xo(t)—r(t)),xl(t)—xo(t)>}dt 30y

The result now follows by combining equations (7)-(9), noting that

Clxy (8), (8),8) = Cx (B),u (8),0) - 22| G (0)-x_(8))
u (t)
o]
= C(xl(t),ul(t),t) - C(Xl(t),uo(t),t) drw(10)

applying a similar identity to equation (8) to <Q(t)(xo(t)—r(t)),x (t)—xo(t)>
and rearranging the resulting expression.

Relation (3) has direct application in numerical solution of the
optimization problem. If u(t) is constrained to lie in a restraint set
Q(t) and ul(t), O<t<T, is a solution of the algebraic minimization problem

min {H[xl(t),p(t),u,tjuﬂ[xl(t),p(t),uo(t),t]+gx<u—uo(t),u—uo(t)>} a1y
ueQ(t)

then, for all large positive A, we have J(ul)<J(uo). An unusual point
in equation (11) is that the descent direction is a function of the new
state xl(t). This is in direct contrast to standard gradient type methods
where, due to linearization, the descent direction depends only upon the

previous iterate. This does not introduce any practical numerical
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problems however, as can be seen from the following simple computational
procedure, and, a priori, ome expects good results as the approach uses
information on the new state trajectory in the choice of the new controller.
STEP 1: Choose an initial admissible controller uo(t) and calculate
the state trajectory Xo(t).
STEP 2: Calculate the costate trajectory p(t) from equations (5),(6).
STEP 3: Integrate the state equations using, at each step, the controller
calculatgd from (11). As ul(t) depend upon the trajectory
Xl(t), ul(t) is calculated at time t in the simulation.
STEP 4: 1If J(u1)<J(u0), set u =u and go to step two. TE J(ul)aJ(uO)

1

increase A and return to step three.

(1), (2)

The suggested procedure has been applied with some success in
the nuclear field where in some cases the performance criterion was reduced
to 1/100th the value corresponding to the initial control guess in 6-8

iterations, for sets of 10-12 ordinary bilinear equations.

Identity (3) has a parallel, proved in a similar manner,

I(u)=ICu ) = gT{H[xo(t),p(t),ul(t),t]—H[xo(t),p(t),uo(t),t]}dt

+ g<x  (T)-x_(T), F(x, (T)-x_(T))>
+ ] £T<x1(t)-xo(t),Q(t)(xl(t)—xo(t))>dt ... (12)

where the costate p(t) is the solution of the equations

T

AT (t)p(r) - &

p(t) =

p(t) - Q(E)Ix_(©)-r(t)} ... (13)

ul(t)

1]

P(I) = F(x (T) - 2) . (18)

This identity leads to a similar algorithm but the new controller ul(t)
must now be computed at each step of the integration of the costate

equations as the solution of the problem,




min {H[Xo(t) ap(t) ,u,t] =H [XO (t) sp(t) ’uO (t) s t:l +._'I! A‘CU"UO (t) ’u_uO (t)>} .o on (15)
uef(t) ‘

The major problem in this case is that, if an iteration is unsuccessful,

it is necessary to integrate the costate equations again to generate ul(t)

for the increased value of A. This feature tends to increase computational

times.
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