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Abstract

The dual cascade of enstrophy and energy in quasi two-dimensional turbulence strongly suggests

that a viscous but otherwise potential vorticity (PV) conserving system decays selectively toward

a state of minimum potential enstrophy. We derive a non-perturbative mean field theory for the

dynamics of minimum enstrophy relaxation by constructing an expression for PV flux during the

relaxation process. The theory is used to elucidate the structure of anisotropic flows emerging from

the selective decay process. This structural analysis of PV flux is based on the requirements that

the mean flux of PV dissipates total potential enstrophy but conserves total fluid kinetic energy.

Our results show that the structure of PV flux has the form of a sum of a positive definite hyper-

viscous and a negative or positive viscous transport of PV. Transport parameters depend on zonal

flow and turbulence intensity. Turbulence spreading is shown to be related to PV mixing via the

link of turbulence energy flux to PV flux. In the relaxed state, the ratio of the PV gradient to

zonal flow velocity is homogenized. This homogenized quantity sets a constraint on the amplitudes

of PV and zonal flow in the relaxed state. A characteristic scale is defined by the homogenized

quantity and is related to a variant of the Rhines scale. This relaxation model predicts a relaxed

state with a structure which is consistent with PV staircases, namely, the proportionality between

mean PV gradient and zonal flow strength.
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INTRODUCTION

The formation of large-scale shearing structures due to momentum transport–i.e., zonal

flow formation–is a common feature of both geostrophic fluids and magnetically confined

plasmas (e.g., [1–5]). In this work, we study the dynamics of relaxation leading to structure

formation. The relaxed state of a high Reynolds number, turbulent, two-dimensional fluid is

thought to be one of minimum potential enstrophy, for given conserved kinetic energy. This

hypothesis constitutes the minimum enstrophy principle of Bretherton and Haidvogel [6].

Their variational argument is based on the concept of selective decay, which is in turn based

on the dual cascade in two dimensional turbulence. In two dimensional turbulence, kinetic

energy inverse cascades to large, weakly dissipated spatial scales, whereas enstrophy forward

cascades to small spatial scales and there it is viscously damped. In the presence of weak

dissipation, total kinetic energy is thus approximately conserved relative to total enstrophy,

which is dissipated. Thus, the system evolves toward a state of a minimum enstrophy.

Interestingly, the theory does not specify the minimum enstrophy actually achieved in the

relaxed state. The theory predicts the structure of the flow in the end state; however, it

gives no insight into the all-important question of how the mean profiles evolve during the

relaxation process. Here, we discuss the dynamics of minimum enstrophy relaxation, which

leads to zonal flow formation. In particular, since inhomogeneous potential vorticity (PV)

mixing is the fundamental mechanism of zonal flow formation, we ask what form must the

mean field PV flux have so as to dissipate enstrophy while conserving energy?

The reason mixing of PV is the key element of zonal flow formation is that PV conserva-

tion is the fundamental freezing-in law constraint on zonal flow generation by inhomogeneous

PV mixing. Note that since zonal flows are elongated, asymmetric vortex modes, translation

symmetry in the direction of the flow and inhomogeneity across the direction of the flow are

essential elements in zonal flow formation. The importance of PV mixing to the zonal flow

problem is clearly seen via the Taylor identity, which states that the cross-flow flux of PV

equals the along-flow component of the Reynolds force, which drives the flow. Most of the

theoretical calculations of PV flux are modulational stability analyses using weak turbulence

theory (e.g. [3, 7, 8]). These types of analyses are, however, valid only in the initial stage

of zonal flow formation. Therefore, there is a need to develop a mean field theory based

on general, structural principles, and not limited by perturbative methods. To obtain the
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general form of the PV flux, the selective decay hypothesis is exploited. In this paper, we

show that the structure of the PV flux which dissipates enstrophy in mean field theory is

Γq = 〈vx〉
−1∇ [µ∇ (∇〈q〉/〈vx〉)]. In other words, PV flux is not given by a simple Fick’s

law, but has a complex form involving viscosity and hyper-viscosity, with flow-dependent

transport coefficients. In the relaxed state, the ratio between the local PV gradient and zonal

flow is homogenized. Interestingly, this proportionality relationship between PV gradient

and zonal flow is observed in PV staircases.

We note that selective decay is a hypothesis based on the observation of the dual cascade

in two-dimensional turbulence, and is not rigorously derived from first physical principles.

There are relaxed states derived from more fundamental principles, namely, statistical equi-

librium states and stable stationary states (see, Ref. [9–11]). Even though the minimum

enstrophy principle is not a ‘first principle’ physical theory, it is a plausible and demon-

strably useful guide, which gives us predictions of the structure of PV and flows, and the

enstrophy level in the relaxed state. Although the validity of the selective decay principles

still lacks rigorous proof, they can and have been applied in a number of areas of physics,

such as MHD and geophysics. Selective decay hypotheses have been supported by a num-

ber of computational studies (e.g., Ref. [12, 13]) and experimental studies (e.g., successful

prediction of the magnetic configuration of reversed field pinch plasmas). Thus, our model

based on the minimum enstrophy principle is plausible and the results are believable and

useful. The minimum enstrophy state is a subclass of stable states. When there is no exter-

nal forcing and dissipation, the minimum enstrophy state is one of the possible attractors.

In the presence of viscous damping, the minimum enstrophy state is the attractor of the sys-

tem. However, when the viscosity approaches zero, the system may be trapped in long-lived

quasistationary states while relaxing to equilibrium, like many other long-range interacting

systems. Thus, the time scale of convergence needs to be considered carefully to determine

the relevancy of the minimum enstrophy model to inertial time scales.

Turbulence spreading [14–16] is related to PV mixing because the transport of turbulence

intensity has influence on Reynolds stresses and flow dynamics. The momentum theorems

for the zonal flow in Rossby/drift wave turbulence [17] link turbulent flux of potential en-

strophy density to zonal flow momentum and turbulence pseudomomentum, along with the

driving flux and dissipation. In this work, turbulence spreading is linked to PV mixing via

the relation of energy flux to PV flux. The turbulent flux of kinetic energy density during
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minimum enstrophy relaxation is shown to be proportional to the gradient of the (ultimately

homogenized) quantity, which is the ratio of PV gradient to the zonal flow. A possible expla-

nation of up-gradient transport of PV due to turbulence spreading–based on the connection

between PV mixing and turbulence spreading–is discussed in the last section.

DEDUCING THE FORM OF THE PV FLUX

We approach the question of the dynamics of momentum transport in 2D turbulence by

asking what the form of PV flux must be to dissipate enstrophy but conserve energy. We

start with the conservative PV evolution equation

∂tq + v · ∇q = ν0∇
2q, (1)

where ν0 is molecular viscosity. Equation (1) states PV as a material invariant and so

applies to many quasi-2D systems, including, but not limited to, the following two systems.

In 2D quasi-geostrophic turbulence [2], the PV and velocity fields are q = ∇2ψ + βy and

(vx, vy) = (−∂ψ/∂y, ∂ψ/∂x), where ψ is the stream function and β is the latitudinal gradient

of the Coriolis parameter. In drift wave turbulence [18], the PV consists of the ion vorticity

due to E × B drift and the ion density n. In this paper we use the coordinates of a 2D

geostrophic system; the x-axis is in the zonal direction, the direction of symmetry (the

poloidal direction in tokamaks), and the y-axis is in the meridional direction, the direction

of anisotropy (the radial direction in tokamaks). Periodic boundary conditions in the x̂

direction are imposed, and we assume zero mean zonal flow at ±y0 boundaries and zero

PV flux and energy flux through ±y0 boundaries. We average equation (1) over the zonal

direction to obtain the mean field equation for PV

∂t〈q〉 = −∂yΓq + ν0∂
2
y〈q〉, (2)

where Γq is the PV flux in the ŷ direction. The selective decay hypothesis states that 2D

turbulence relaxes to a minimum enstrophy state. During relaxation, the enstrophy forward

cascades to ever smaller scales until it is dissipated by viscosity. Thus the total potential

enstrophy

Ω =
1

2

∫

q2 dxdy (3)
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must decrease with time. On the other hand, the kinetic energy inverse cascades to large

scales and sees negligible or weak coupling to viscous dissipation, as compared with enstro-

phy. Only frictional drag can damp flow energy at large scales. The rate of large scale

energy drag is much slower than the rate of small scale enstrophy dissipation. Thus the

total kinetic energy

E =
1

2

∫

(∇ψ)2 dxdy (4)

should remain invariant on the characteristic enstrophy dissipation time. Note that only the

kinetic energy is conserved in the minimum enstrophy hypothesis, because the nonadiabatic

internal energy (i.e. ∼ 〈(ñ/n − eφ̃/T )2〉 for drift wave turbulence) forward cascades to

dissipation [19]. To ensure that the total kinetic energy is conserved (apart from feeble

collisional dissipation) in mean field theory,

∂tE = −
∫

〈ψ〉∂t〈q〉dxdy = −
∫

∂y〈ψ〉Γq = −
∫

∂yΓEdxdy, (5)

the PV flux is necessarily tied to the energy density flux by

Γq = (∂y〈ψ〉)
−1∂yΓE. (6)

where the energy density flux ΓE is defined as 〈vy
(∇ψ)2

2
〉. The connection between PV flux

and energy density flux has a direct implication for turbulence spreading, which we discuss

later in this paper. The form of the energy density flux is constrained by the requirement

of decay of total potential enstrophy, i.e., by the demand that:

∂tΩ = −
∫

〈q〉∂yΓq = −
∫

∂y
[

(∂y〈ψ〉)
−1∂y〈q〉

]

ΓE < 0. (7)

Note that a finite flux at the boundary would contribute a surface integral term to the total

enstrophy evolution. PV relaxation at the point y would then become dependent explicitly

upon fluxes at boundary, thus rendering the mean field theory manifestly non-local. The

simplest solution for ΓE is for it to be directly proportional to ∂y [(∂y〈ψ〉)
−1∂y〈q〉]:

ΓE = µ∂y
[

(∂y〈ψ〉)
−1∂y〈q〉

]

, (8)

where µ is a positive proportionality parameter. The necessary dependence on turbulence

intensity is contained in µ. In this mean field theory, µ is not determined. Note that any

combination of an odd derivative of (∂y〈ψ〉)
−1∂y〈q〉 and an even power of 〈vx〉, 〈q〉, or ∂y〈q〉

will contribute a term which dissipates enstrophy. Thus, the solution we present here is
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the smoothest (i.e., the dominant one in the long wavelength limit), and lowest order (i.e.,

not combined with any higher power of 〈vx〉
2, 〈q〉2 or (∂y〈q〉)

2). The reasons we study the

simplest solution are: 1) The smoothest solution reveals the leading behavior of the PV

flux on the large scale. This is relevant to our concern with the large-scale flow dynamics.

The higher order derivatives should be included to study the relaxation dynamics at smaller

scales and the finer scale structure of the shear flow. 2) The dependence on the higher

powers of the shear flow intensity can be absorbed into µ. The PV flux is then given by the

simplest, leading form of ΓE:

Γq = (∂y〈ψ〉)
−1∂y

[

µ∂y
(

(∂y〈ψ〉)
−1∂y〈q〉

)]

. (9)

The system evolves to the relaxed state, ∂t〈q〉 = 0, when (∂y〈ψ〉)
−1∂y〈q〉 approaches a

constant, where the mean PV flux vanishes and the nonlinear term is annihilated, i.e.,

q = q(ψ) = λψ annihilates v · ∇q for λ constant, so ∂yq = λ∂yψ and ∂y[(∂y〈ψ〉)
−1∂y〈q〉] = 0.

The structure of the PV flux in equation (9) contains both hyper-diffusive and diffusive

terms. The mean PV evolution,

∂t〈q〉 = −∂y

[

1

∂y〈ψ〉
∂y

[

µ∂y

(

∂y〈q〉

∂y〈ψ〉

)]]

+ ν0∂
2
y〈q〉, (10)

shows that hyper-viscosity is the leading high ky dependence and so it controls the smaller

scales. From equation (10) we can also prove that hyper-viscosity term damps the energy

of the mean zonal flow. Therefore, the hyper-viscosity represents the nonlinear saturation

mechanism for zonal flow growth and partially defines the scale dependence of turbulent mo-

mentum flux. The other important implication of equation (9) is that the PV flux is explicitly

zonal flow-dependent. The zonal velocity appears in the denominators of hyper-viscosity and

viscosity terms, as well as the diffusion coefficient; this is not seen in perturbative analyses

(e.g. [7, 8]). We emphasize that within the mean field approach, the selective decay analysis

for the PV flux in this work is entirely non-perturbative and contains no assumption about

turbulence magnitude.

The prediction of the homogenization of (∂y〈ψ〉)
−1∂y〈q〉 in minimum enstrophy relaxation

is a new result. It states explicitly that the local zonal flow speed tracks the local PV gradient

in the relaxed state, i.e., strong zonal flows are localized to the regions of larger PV gradient.

This trend is observed in the PV staircase, in that strong jets produced by inhomogeneous

PV mixing peak at PV jump discontinuities [20]. The jetlike pattern of the E×B staircase is
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also observed in plasma simulations [21]. It is already known from PV invertibility that local

zonal flow speed tracks the local PV gradient. However, the theory predicts this behavior

without assuming how PV is mixed and what the initial or final PV profile is like. Thus, we

show that a relaxed state of “flow-tracking-PV gradient” results from PV mixing subject to

only the selective decay of enstrophy. The theory does not predict that the staircase is an

“attractor” for the system. Figure (1) shows a cartoon of the PV staircase. Strong zonal

flows are located around “the edges of PV steps.” Since ∂y〈q〉/〈vx〉 is a constant, we can

FIG. 1. PV staircase

write ∂y〈q〉 =
∑

i aif(y−yi) and 〈vx〉 =
∑

i bif(y−yi), where ai are constants and bi = −λai.

While the prediction of the detailed form of the function f(y − yi) is beyond the scope of

this work, the constant proportionality between ai and bi reconciles the staircase-like, highly

structured profiles with the homogenization or mixing process required to produce it. In

a related vein, both ∂y〈q〉 and ∂y〈ψ〉 can each be large and variable, though the ratio is

constrained.

PV mixing in minimum enstrophy relaxation is also related to turbulence spreading [14–

16], since we can see from equation (6) that ΓE and Γq are related. Since there is no

mean flow in the direction of inhomogeneity, ΓE represents the effective spreading flux of

turbulence kinetic energy and is given by

ΓE = −
∫

Γq〈vx〉dy = µ∂y

(

∂y〈q〉

〈vx〉

)

. (11)

Equation (11) shows that ∂y〈q〉/〈vx〉 drives spreading and that the spreading flux vanishes

when ∂y〈q〉/〈vx〉 is homogenized. The dependence of ΓE on zonal flow follows from the fact

that turbulence spreading is a mesoscale transport process. Note that the step size of the

PV staircase, which corresponds to the distance between zonal flow layers, is also mesoscale.

Both observations suggest that the relaxation process is a non-local phenomena. This is a
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necessary consequence of PV inversion, i.e., the relation ∇2ψ + βy = q, so that 〈vx〉 is an

integral of the q(y) profile. Thus ΓE(y) and Γq(y) in fact depend non-locally on q(y).

An expression for the relaxation rate can be derived by linear perturbation theory about

the minimum enstrophy state. We write 〈q〉 = qm(y) + δq(y, t), 〈ψ〉 = ψm(y) + δψ(y, t)

and use the homogenization condition in relaxed state ∂yqm = λ∂yψm. Assuming δq(y, t) =

δq0exp(−γrelt− iωt+ iky), the relaxation rate is found to be

γrel = µ

(

k4 + 4λk2 + 3λ2

〈vx〉2
−

8q2m(k
2 + λ)

〈vx〉4

)

ω = µ

(

−
4qmk

3 + 10qmkλ

〈vx〉3
+

8q3mk

〈vx〉5

)

. (12)

The condition of relaxation–i.e., that modes are damped–requires positive γrel: k2 >

8q2m/〈vx〉
2 − 3λ, and so k2 > 0 relates qm to λ and 〈vx〉 by

8q2m
〈vx〉2

> 3λ. (13)

Equation (13) shows that the zonal flow cannot grow arbitrarily large, and is constrained by

the potential enstrophy density and scale parameter λ. It also shows that a critical residual

enstrophy density q2m is needed in the minimum enstrophy state, so as to sustain a zonal

flow of a certain level. Equation (13) thus specifies the ‘minimum enstrophy’ of relaxation.

Therefore, we not only obtain the structure of the end state, which is expressed in terms of

λ, the constant of proportionality between PV gradient and zonal flow velocity, but also we

observe that potential enstrophy intensity and zonal flow strength are ultimately related in

the relaxed state.

One can define a characteristic scale:

lc =

∣

∣

∣

∣

∣

∂y〈q〉

〈vx〉

∣

∣

∣

∣

∣

−1/2

. (14)

In minimum enstrophy state, lc = |λ|−1/2 and PV flux can vanish on scale lc. As a result,

lc characterizes the scale at which the terms in the PV flux can compete and cancel. For

scales smaller than lc, hyper-viscosity dominates and damping wins. For scales larger than

lc, effective viscosity (which can be negative) dominates. It is interesting to compare lc with

the Rhines scale [22] lR ∼ (∂y〈q〉/ṽrms)
−1/2, where ṽrms is the r.m.s. velocity at the energy

containing scales. Which velocity should really be used to calculate the Rhines Scale is

still being debated (see, e.g. Ref. [23] and [24]). lc and lR both depend on the gradient
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of mean field PV; what distinguishes them is that lc is determined by mean zonal velocity

while lR is set by fluctuation velocity. The characteristic scale and Rhines scale become

indistinguishable when ṽrms reaches the level of zonal flow velocity.

DISCUSSION AND SUMMARY

In this paper, we have considered the problem of zonal flow formation in quasi-2D turbu-

lent systems which conserve PV. The approach is to study PV transport during relaxation

processes by exploiting the minimum enstrophy relaxation principle. The analysis of PV flux

using selective decay is non-perturbative, and so can be applied to general 2D turbulent sys-

tems. The nonlinear term is annihilated in the end state of the selective decay. The deduced

PV flux is shown to be non-Fickian; it consists of diffusive and hyper-diffusive terms. Note

that there are other forms of PV flux which can minimize enstrophy while conserving energy.

In this work, we study the simplest, smoothest form of the PV flux. The hyper-viscosity

reflects the saturation mechanism of zonal flows and the scale dependence of the momentum

flux. The results are pragmatically useful in the context of transport modeling, where the

problems of zonal flow scale and saturation are important. The homogenized quantity in

the relaxed state is found to be the ratio of PV gradient to zonal flow velocity, implying that

strong localized zonal flows are located at sharp PV gradients. This is consistent with the

structure of the PV staircase. A relaxation rate is derived using linear perturbation theory.

We show that a critical enstrophy in the minimum enstrophy state is needed to sustain zonal

flows at a given level. A characteristic scale lc is defined from the homogenized quantity,

lc = |∂y〈q〉/〈vx〉|
−1/2, so that hyper-viscosity dominates at scales smaller than lc. lc is similar

to the Rhines scale.

We compare our model with previous relaxation models for geostrophic turbulent flow

(e.g., Ref. [25–27]). The main difference is that equation (10) is derived using a structural

approach, while the previous relaxation equations are derived using variational principles,

with various conserved and dissipating/maximizing functionals. Our result from a structural

approach is consistent with the result from the calculus of variations [6], in which the enstro-

phy is minimized at constant energy, so δΩ+λδE =
∫

qδ(∇2ψ) dxdy+λ
∫

∇ψ ·∇δψ dxdy =
∫

(q − λψ)∇2δψ dxdy is required to vanish, and so 〈q〉〈ψ〉−1 is equal to the Lagrange mul-

tiplier λ. What we show here is that our structural approach also gives 〈q〉〈ψ〉−1 = con-
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stant. First, instead of writing the nonlinear term in PV equation as an explicit diver-

gence of a PV flux, we keep it as N and repeat the minimum enstrophy analysis as we did

in the paper. Conservation of the total kinetic energy in mean field theory gives ∂tE =

−
∫

〈ψ〉〈N〉 dxdy = −
∫

∂yΓEdxdy. Thus, the nonlinear term is necessarily tied to the energy

flux by 〈N〉 = 〈ψ〉−1∂yΓE. The form of the energy density flux is constrained by the require-

ment of decay of total potential enstrophy: ∂tΩ =
∫

〈q〉〈N〉dxdy =
∫

〈q〉〈ψ〉−1∂yΓE dxdy < 0,

which in turn forces ΓE = ν∂y (〈q〉〈ψ〉
−1) . The system evolves to the relaxed state when

∂y(〈q〉〈ψ〉
−1) = 0. Therefore, the structural approach we use in this paper can recover the

condition of 〈q〉〈ψ〉−1 = constant in the steady state.

In the paper, we write the form of the nonlinear term as an explicit divergence of a PV

flux, i.e., we take 〈N〉 = −∂yΓq. The difference between the results of the N and the ∂yΓq

formulations comes from the treatments of the structure of the nonlinear term. We can

see clearly how the treatment of derivatives results in difference forms of the homogenized

quantities in the two approaches: 〈ψ〉−1〈q〉 and (∂y〈ψ〉)
−1∂y〈q〉. The derivative of equation

〈q〉 = λ〈ψ〉, from the N approach, gives the equation ∂y〈q〉 = λ∂y〈ψ〉, obtained from the Γq

approach. Thus, the two solutions are consistent with each other, and are both consistent

with the solution from the calculus of variations. The ∂yΓq formulation is more accurate,

since it starts with a more precise form of the nonlinear term in PV equation, i.e., to take N

as a divergence of a PV flux. Γq is smoother than N , and hence better satisfies the conditions

of the mean-field approximation, namely that the fluctuations around the average value be

small, so that terms quadratic in the fluctuations can be neglected. Moreover, while the

stream function ψ is unique up to an arbitrary constant, the absolute value of its derivative

∂yψ = −vx has a clear physical meaning. Therefore, in this paper we maintain the form of

the nonlinear term in the mean PV evolution as an explicit divergence of a PV flux.

We note that even though the result can give a staircase-like relationship between the

zonal flow and PV profiles in the relaxed state, the solution is not suitable to explain

the sharp jump in the PV profile of the staircase. Equation (8) is the solution of the

form of energy flux which dominates the large scale. This solution can represent two-scale

phenomena, but cannot treat multi-scale phenomena. We also note that the model presented

in this paper does not directly predict staircases. It does, however, predict a relaxed state

with a structure which is consistent with PV staircases, namely, the proportionality between

mean PV gradient and zonal flow strength. The model also shows that a system with flow
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structure similar to that of staircases arises as a consequence of PV mixing during the

minimum enstrophy relaxation. The form of PV flux is shown to contain not only diffusive,

but also hyper-diffusive transport of PV. (Note that simple PV diffusion cannot recover a

structure consistent with PV staircases.) These results are not seen in the previous relaxation

models. Thus, the model provides a new way to look at the problem of staircase formation

from the perspective of turbulent relaxation. The staircase formation will depend on the

initial conditions. Even though in this model we do not derive the evolution and end state

of a given initial state, we show that the mean field PV will evolve toward a state, at which

PV and energy fluxes vanish.

PV mixing, the fundamental process for zonal flow generation, in wave-number space is

directly linked to the forward enstrophy cascade. The importance of such small scale mixing

processes is seen from the appearance of hyper-viscosity in the PV flux, which contributes

to zonal flow energy damping. The terms in the PV flux which contribute to zonal flow

energy growth ( i.e., effective negative viscosity,) however, are not well reconciled with the

picture of diffusive mixing of PV in real space. Here we offer a possible explanation, based

on the connection between PV mixing and turbulence spreading derived from the minimum

enstrophy analysis, i.e., ΓE = −
∫

Γq〈vx〉dy ∼ ∇ (〈q〉′/〈vx〉). We may consider turbulence

spreading as a process which contributes to up-gradient, or “anti-diffusive”, mixing of PV.

The argument is as follows: It is reasonable to assume that PV mixing in real space tends

to transport PV from the region of larger mean PV to the region of smaller mean PV.

Because a stronger mean vorticity corresponds to a stronger shearing field which suppresses

turbulence, the PV mixing process tends to transport PV away from the region of weak

excitation toward the region of stronger excitation. In contrast, the spreading of turbulent

enstrophy tends to transport enstrophy from the strongly turbulent region to the weakly

turbulent region. When the tendency of turbulence spreading is greater, the net transport

of PV appears up-gradient, and so the apparent effective viscosity becomes negative. The

relaxed state is reached when PV mixing and turbulent enstrophy spreading are balanced.

The total PV flux that we calculate in the relaxation model includes both trends.

We conclude by noting that, the dynamics of PV flux derived analytically in this work

has not been confirmed by numerical tests. Therefore, an important topic for future research

would be developing a numerical simulation test and comparing its results with the analytical

predictions.
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