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Abstract  32 

The ‘phosphorus (P) problem’ has recently received strong interest with two 33 

distinct strands of importance. The first is too much P is entering into waste water 34 

creating a significant economic and ecological problem. Secondly, whilst agricultural 35 

demand for phosphate fertiliser is increasing to maintain crop yields, rock phosphate 36 

reserves are rapidly declining. Unravelling the mechanisms by which plants sense, 37 

respond to and acquire phosphate can address both problems, allowing the 38 

development of crop plants that are more efficient at acquiring and using limited 39 

amounts of phosphate whilst at the same time improving the  potential of plants and 40 

other photosynthetic organisms for nutrient recapture and recycling from waste 41 

water. In this review we attempt to synthesise these important but often disparate 42 

parts of the debate in a holistic fashion, since solutions to such a complex problem 43 

require integrated and multidisciplinary approaches that address both P supply and 44 

demand. Rapid progress has recently been made in our understanding of local and 45 

systemic signalling mechanisms for phosphate and expression and regulation of 46 

membrane proteins that take phosphate up from the environment and transport it 47 

within the plant. We discuss the current status of understanding of such 48 

mechanisms involved in sensing and responding to phosphate stress. We also 49 

discuss approaches to improve the P use efficiency of crop plants and future 50 

direction for sustainable use of P including use of photosynthetic organisms for 51 

recapture of P from waste waters.  52 

6 key words in alphabetical order: fertilisers, phosphate, nutrient recycling, 53 

membrane transporters, phosphate signalling, transcription factors 54 

Abbreviations: 55 

AMF Arbuscular Mycorrhizal Fungi, MAB marker assisted breeding, miRNA micro 56 

RNA, NATS natural antisense transcripts, OA organic acids, PAE, the amount of P 57 

taken up as a function of biomass. PUE the amount of productivity or yield per unit 58 

P. Pi, inorganic phosphate. SPX, protein domain named for founding members 59 

Syg1, Pho81, XPR1. TF transcription factors 60 
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Introduction  62 

Phosphate is a non-substitutable plant nutrient, essential for global 63 

agriculture. There are two key reasons why the sustainable use of phosphate is of 64 

importance; the supply is running out and paradoxically much of what is produced is 65 

wasted and results in environmental damage. Rock phosphate is crucial for the 66 

production of inorganic phosphate fertilisers but reserves are finite and the supply is 67 

expiring rapidly (Cooper and Carliell-Marquet, 2013). In 2010 global extraction was 68 

c. 176Mt and demand is increasing, with global peak phosphorus use expected to 69 

be reached by 2030 (Cordell et al., 2009). The best estimates for longevity of 70 

reserves are around 200 years and the worst are at 50 years (Rosemarin et al., 71 

2011). Moreover, the process of mining rock phosphate and manufacturing fertiliser 72 

is expensive and energy intensive (Elser and Bennett, 2011).  73 

In 2013 the UK imported and consumed c. 140,000 tonnes of phosphate, 74 

with 86,000 tonnes used for crop fertiliser and animal feeds (Cooper and Carliell-75 

Marquet, 2013). It is estimated that 2-3 tonnes of phosphate per million people per 76 

day enter the UK’s watercourses as treated sewage where it is lost to the 77 

environment (Kato et al., 2007) and can negatively impact on ecosystems. This 78 

equates to 70,000 tonnes or half the country’s annual requirement. Prices for 79 

diammonium phosphate fertiliser in 2014 were $500 tonne-1 (Argus, 2014) leading to 80 

the potential loss of $35M (£22M) every year. 81 

The majority of phosphate inputs to the environment are from land 82 

application as fertilisers (Smil, 2000), animal-generated wastes (Goopy and Murray, 83 

2003) and waste water from human conurbations (organic waste and detergents). 84 

These inputs supply waste water treatment plants with concentrations of dissolved 85 

phosphate that is difficult and expensive to remove (Britton et al., 2005) yet provide 86 

a potential supply of this resource. Phosphorus (P) is an essential element in many 87 

cellular macromolecules such as nucleic acids, phospholipids, and metabolites such 88 

as nucleoside triphosphates and phosphorylated intermediates in many biochemical 89 

pathways, therefore capacity to replace phosphorus (as phosphate) is limited. 90 

Consequently, the key to sustainability must be to reuse and recycle phosphorus 91 

efficiently both within the environment (Elser and Bennett, 2011) and within the plant 92 

(Veneklaas et al., 2012). Although several excellent reviews are available on 93 

efficient utilization of P nutrition for sustainable crop production (Chiou and Lin, 94 

2011; Lopez-Arredondo et al., 2014; Nussaume et al., 2011; Raghothama, 1999; 95 

Richardson et al., 2011; Rouached et al., 2010; Zhang et al., 2014) in this article we 96 
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present a more holistic view that considers the potential to apply recently developed 97 

molecular understanding of plant phosphate responses to reducing crop phosphate 98 

requirements and environmental phosphate remediation.  99 

Chemical and biological technologies for capturing phosphate 100 

Methods employed in capturing phosphate from waste outputs depend on 101 

available space, cost and load applied. In many cases, the addition of metal salts 102 

such as Al2 (SO4)3, CaCl2 or FeCl3 is used to precipitate out the phosphorus (de-103 

Bashan and Bashan, 2004). Struvite (NH4MgPO46H2O) formation is an alternative 104 

method used for nutrient recovery from anaerobic digestates (Britton et al., 2005). 105 

These technologies have been used for many years with variable success in 106 

achieving low phosphate discharges (c. <1mg P L-1), but carry the burden of cost 107 

variations due to fluctuating prices of iron, magnesium and aluminium (Farchy, 108 

2013; Vidal, 2008). A further issue to tackle when adding these salts is the 109 

discharge consent on the salts themselves- high concentrations of iron are not 110 

permitted as it can cause as much harm to the environment as high concentrations 111 

of phosphate. In an attempt to tackle the issues surrounding the chemical removal 112 

of phosphates, in recent years much research has been carried out employing 113 

biological alternatives.  114 

Phosphate can be removed from waste streams via several different 115 

biological methods. These include microbiological, algal, plants (terrestrial and 116 

aquatic) and combinations of these. Some are energy-requiring processes and 117 

some are not. As well as nutrient removal capacities, biological methods often 118 

provide extra benefits such as production of bioenergy crops and animal fodder. 119 

Here we focus on the potential for plant based remediation. 120 

Microalgae such as Chlorella sp. or Scenedesmus sp. can be utilised to 121 

remove phosphate from wastes (Larsdotter, 2006). Systems include waste water 122 

ponds used for nutrient capture (Chopin et al., 2012) or photobioreactors which are 123 

generally more focused on maximal biomass generation (Michels et al., 2014). The 124 

latter tubular systems are energy intensive (artificial lights and temperature control 125 

in laboratory settings), while the former makes use of solar energy. While algal and 126 

mixed bacterial-algal assemblages have been shown to capture high concentrations 127 

of phosphates (Muñoz and Guieysse, 2006), a drawback is the difficulty of 128 

harvesting which can prove uneconomical (Michels et al., 2014). 129 
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Terrestrial and aquatic (rooted and free-floating) higher plants (and 130 

combinations of all) can be implemented for the capture of several compounds 131 

including phosphates (Vermaat and Khalid Hanif, 1998). Waste water stabilisation 132 

ponds on farmland, constructed and engineered wetlands as well as constructed 133 

tanks for phytoremediation are all employed globally. Water hyacinth, knotgrass and 134 

cattail can all be grown to capture nutrients in natural or managed wetlands (Fedler 135 

and Duan, 2011). Floating macrophytes such as duckweed (E.g. Lemna sp. or 136 

Spirodela sp.) have also shown promise in the uptake of phosphates from waste 137 

water, in large scale batch or variable flow rate tank systems (Abuaku et al., 2006; 138 

Alaerts et al., 1996; Farrel 2012). The large quantities of phyto-biomass produced 139 

by phyto-remediative systems (Verma and Suthar, 2014) generally all have 140 

beneficial by-products as energy sources such as for biogas, biodiesel (Fujita et al., 141 

1999), or feed for fish or cattle (Goopy and Murray, 2003). The other obvious 142 

advantage of using plants in outdoor settings to recapture phosphate is that they are 143 

solar powered. However studies are often descriptive in nature and difficult to 144 

compare in terms of efficacy as very different systems, organisms and conditions 145 

have been used, and often control over important variables is lacking, especially in 146 

low cost open systems. Where more controlled studies are performed results are 147 

frequently extrapolated from small scale to tonnes/ha with the associated potential 148 

for multiplication of errors. Nevertheless, the drawbacks of chemical removal 149 

practices and the energetic inputs required by some biological phosphate removal 150 

processes highlight the benefits of low energy phytoremediation. The beneficial by-151 

products from plant nutrient capture systems must also not be overlooked. A clearer 152 

understanding of the molecular mechanisms of phosphate uptake in plants would 153 

provide great benefits, not least in their manipulation for greater and more reliable 154 

phosphate capture from high P waste waters as well as the converse goal of 155 

maintaining crop plant productivity with reduced P inputs. 156 

 157 

Plant responses to low phosphate . 158 

Plants operate molecular signalling networks to detect and respond to Pi 159 

starvation. Many recent studies have helped to underpin the molecular signalling 160 

networks involved in P homeostasis (reviewed in Chiou and Lin, 2011).  Plants 161 

sense and respond to the Pi status both locally and systematically, with separate 162 

molecular mechanisms being involved in local and long distance Pi signalling to 163 

maintain homeostasis under Pi starvation (Lin et al., 2014; Lopez-Arredondo et al., 164 
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2014; Thibaud et al., 2010). Typical levels of inorganic phosphate (Pi) in soils are 165 

low µM, whereas levels in the cytosol of plants under optimal conditions are mM, 166 

requiring the ability to acquire and buffer cytosolic Pi at concentrations 3 orders of 167 

magnitude above that in the environment. Plants respond to low P stress in a 168 

number of ways (Figure 1). These include: release of Pi from vacuolar stores for 169 

example; remodelling of membranes to reduce reliance on phospholipids (reviewed  170 

in Nakamura, 2013) and redistribution of Pi from old(er) source tissues to young, 171 

actively growing sink tissues. Remodelling the root system increases the surface 172 

area for Pi uptake. Moreover, the secretion of organic acids (OAs) increases Pi 173 

solubility, especially in acidic soils and the secretion of phosphatases releases Pi 174 

from soil organic matter. The majority of plant species form mutualistic associations 175 

with soil microorganisms, especially with Arbuscular Mycorrhizal Fungi (AMF) 176 

expanding the volume of soil that can be explored and allowing interchange of 177 

nutrients in both directions. Membrane proteins are central to many of these 178 

adaptations and examples to be explored in this review are members of the PHT1 179 

family that are important in both acquisition of Pi from the soil and its recycling 180 

within the plant, members of the PHO1 family some of which are involved in export 181 

of Pi from roots to shoots, and membrane proteins involved in secretion of organic 182 

acids. The elaborate machinery, that regulates these (and other phosphate 183 

response genes) at multiple levels from transcription through to protein location and 184 

stability, is also discussed in this article.  185 

 186 

Transcriptional regulation of P responses 187 

PHR1 and its regulatory network 188 

PHOSPHATE STARVATION RESPONSE 1 (PHR1) belongs to the MYB 189 

family of DNA-binding proteins and is a major transcription factor (TF) involved in Pi 190 

signalling (Figure 2). It binds to the phosphate starvation related regulatory element 191 

(P1BS) motif (GNATATNC) in the promoter region of Pi stress responsive genes 192 

(Rubio et al., 2001). PHR1 is localized to the nucleus and a SUMO E3 ligase (SIZ1) 193 

is known to control Pi homeostasis at the posttranslational level through 194 

sumoylation of PHR1 (Miura et al., 2005). PHR1 is involved in the activation of 195 

multiple P starvation-inducible genes including phosphate transporter1 (PHT1), 196 

PHO1, At4 and micro-RNA399 (miRNA-399) (Chen et al., 2011a; Rubio et al., 2001; 197 

Shin et al., 2006). The miRNA-399 has been implicated in Pi starvation related 198 

signalling in many plants (Lin et al., 2008; Pant et al., 2008; Liu and Vance, 2010; 199 
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Liu et al., 2010; Xu et al., 2013) by regulating the levels of PHO2 mRNA which 200 

produces ubiquitin-conjugating enzyme E2 24 ((UBC24) (Pant et al., 2008)). Some 201 

of these molecules move within the vasculature and therefore function as systemic 202 

signals integrating activities in different tissues (Lin et al., 2014). 203 

PHR1 both regulates and is in turn regulated by SPX domain proteins 204 

(Secco et al., 2012) (Figure 2). These proteins are strongly involved in Pi starvation 205 

responses. The transcript abundance of AtSPX1-AtSPX3 is significantly enhanced 206 

while the expression level of AtSPX4 is reduced to half of that before Pi deprivation 207 

(Duan et al., 2008). The regulation of the AtSPX genes was shown to be controlled 208 

by PHR1 with AtSPX1 being proposed to be a transcriptional regulator, given its 209 

nuclear localization and capacity of up-regulating the expression of downstream PSI 210 

(Phosphate Starvation Inducible) genes when over-expressed (Duan et al., 2008). 211 

However, recent studies have shown that instead of directly regulating the PSI 212 

genes expression, AtSPX1/ AtSPX2 are involved in the formation of a protein 213 

complex with AtPHR1 in a Pi dependent manner (Puga et al., 2014). Upon Pi 214 

starvation, the interaction between AtSPX1/ AtSPX2 and AtPHR1 is replaced by the 215 

binding of AtPHR1 to the P1BS (PHR1 Binding Site) from PSI genes, thus activating 216 

the expression of these genes (Puga et al., 2014). A similar Pi dependent 217 

interaction between OsSPX1/OsSPX2 and OsPHR2 was also detected in rice 218 

(Wang et al., 2014). OsPHR2 is also regulated post transcriptionally by OsSPX4, 219 

which binds to and prevents its translocation into the nucleus under high Pi 220 

conditions. However under low Pi conditions OsSPX4 is degraded by the 221 

proteasome allowing OsPHR2 to traffic to the nucleus and activate gene expression 222 

(Lv et al., 2014). Given the fact that transcription of PHR1/PHR2 is not greatly 223 

influenced by Pi levels, these observations indicate a Pi sensing and signaling 224 

function of SPX proteins, although further research is needed to clarify how Pi level 225 

affects the interaction between SPX proteins and PHR1/PHR2. The functional 226 

similarities of SPX proteins between monocotyledons and dicotyledons also suggest 227 

the highly conserved SPX domain could be of great significance in a prevalent Pi 228 

sensing and signaling pathway. 229 

 230 

Transgenic manipulation of PHR1 231 

Several studies have looked at the impact of over expressing PHR1 of 232 

Arabidopsis (Nilsson et al., 2007), ZmPHR1 of maize (Wang et al., 2013b), OsPHR2 233 

of rice (Zhou et al., 2008) BnPHR1 of oil seed rape (Ren et al., 2012) and TaPHR1-234 

A1 of wheat (Wang et al., 2013a).These studies all observed up regulation at the 235 
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transcriptional level of several low phosphate response genes such as phosphate 236 

transporters and non-coding RNA miRNA399, and corresponding down regulation 237 

of PHO2, and showed increased levels of Pi in tissues. In several of these studies 238 

the PHR1 over expressing plants showed improved growth under low Pi conditions 239 

(Wang et al 2013a, b, Ren et al., 2012 Zhou et al., 2008). In some studies reduced 240 

plant growth and performance and Pi toxicity symptoms were observed under high 241 

phosphate growth conditions (Nilsson et al., 2007, Zhou et al., 2008, Ren et al., 242 

2012) but not in others (Wang et al., 2013a,b). This is perhaps not surprising as 243 

over expressing some of the Pi-starvation responsive genes that are downstream of 244 

PHR1 such as OsmiR399 (Hu et al., 2011) and OsSPX1 (Wang et al., 2009a) 245 

caused Pi toxicity in transgenic plants. In all cases constitutive strong promoters 246 

(35S or maize Ubiquitin) were used for over expression of PHR1 and the level of 247 

over expression determined by measuring transcript abundance. Since active PHR1 248 

is controlled primarily at the post transcriptional level this may not be a reliable 249 

method of estimating the true level of transcriptionally active PHR1. In the studies 250 

where growth inhibition at high Pi was not reported, tissue levels of Pi showed only 251 

relatively modest increases. The beneficial effects of PHR1 over expression 252 

included increased root growth/branching (Wang et al., 2013a) and proliferation of 253 

root hairs (Zhou et al., 2008). 254 

Other transcription factors 255 

 Other TFs involved in P signalling are WKRY75, ZAT6, BHLH32, PTF1, 256 

MYB2P-1 and MYB62 (reviewed in (Lopez-Arredondo et al., 2014) (Figure 2). Both 257 

WKRY75 and ZAT6 are up-regulated during Pi starvation and are found to be 258 

involved in regulating the modification of root architecture (Devaiah et al., 2007a; 259 

Devaiah et al., 2007b). In contrast, the BHLH32 TF is down regulated during Pi 260 

starvation and has been found to be associated with the modifications of root 261 

architecture and carbon metabolism in response to Pi stress (Chen et al., 2007b). 262 

Over expression of OsMYB2P-1 conferred Pi-starvation tolerance in rice 263 

(Dai et al., 2012).Transgenic plants had shorter roots than wild type controls on P 264 

sufficient medium and longer roots and more tillers on Pi deficient medium. The 265 

OsMYB2P-1 over expressing plants had retarded growth and lower biomass on high 266 

Pi, but better growth than wild type on low Pi (Dai et al., 2012). As with PHR1 over 267 

expressing plants, the OsMYB2P-1 over expressing transgenics had enhanced 268 

expression of Pi responsive genes including IPS and miRNA399 in both Pi sufficient 269 

and deficient conditions. PHO2 was repressed and OsPT2 was upregulated under 270 
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Pi deficient conditions and the transgenics had increased Pi levels compared to wild 271 

type (Dai et al., 2012). 272 

Transgenic plants over expressing Oryza sativa Phosphate Starvation–273 

Induced Transcription Factor 1 (OsPTF1) showed improved growth and yield 274 

characteristics in hydroponics, pots and field. At low Pi root and shoot biomass and 275 

Pi content was higher, as was the number of tillers, reproductive development and 276 

yield (Yi et al., 2005). Over expression of maize ZmPTF1 also showed improved 277 

tolerance to Pi starvation and resulted in increased partitioning of carbohydrate to 278 

the roots leading to larger root biomass on low Pi (Li et al., 2011). Interestingly, over 279 

expression of PTF1 up regulated a different set of genes to those under PHR1 280 

control and included genes involved in gluconeogenesis (phosphoenolpyruvate 281 

carboxykinase PEPCK) and sucrose synthesis (sucrose synthase 2) as well as 282 

phosphate scavenging RNAse and vacuolar pyrophosphatase (Yi et al., 2005, Li et 283 

al., 2011). These results emphasise the interaction between phosphate levels and 284 

carbohydrate metabolism and point to the importance of carbohydrate supply to 285 

maintain growth under low Pi stress. Sugars are hence another important group of 286 

metabolites involved in Pi starvation related signalling which influence the 287 

expression of many Pi stress related genes in a number of species (Liu et al., 2005; 288 

Karthikeyan et al., 2007; Hammond and White, 2008; Hernandez et al., 2009). 289 

 290 

 291 

Other regulatory genes 292 

It is well established that an important response to Pi stress is through 293 

changes in root architecture. Plants produce more lateral roots and root hairs in 294 

response to Pi stress which expands the adsorptive area in the soil (reviewed in 295 

Rouached et al., 2010). The phenotypic changes of root architecture are genotype 296 

dependent and have been shown to be important for overcoming Pi stress in bean, 297 

soybean, maize and barley (reviewed in Zhang et al., 2014).  Key regulatory genes 298 

involved in Pi starvation associated signalling linked to root system architecture 299 

changes are LOWPHOSPHATE ROOT (LPR1, LPR2 and LPR3) and the 300 

PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2) genes (figure 2). Both LPR and 301 

PDR2 are involved in root architecture modification in response to Pi starvation. 302 

LPRs encode multi copper oxidases expressed in the meristematic regions of the 303 

root tip, including root cap, and have been demonstrated to reduce the primary root 304 

growth capacity under Pi starvation (Svistoonoff et al., 2007). PDR2 encodes a P5-305 

type ATPase that functions in the endoplasmic reticulum and is involved in close 306 
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monitoring of Pi status around the roots (Ticconi et al., 2004). PDR2 is essential for 307 

the expression of SCARECROW (SCR) which is a key regulator for root morphology 308 

during Pi starvation (Ticconi et al., 2009). In the root tip, both PDR2 and LPR1 309 

function to sense the external Pi status and regulate the root architecture through an 310 

endoplasmic reticulum-resident pathway (Rouached et al., 2010). Interactions with 311 

auxin and sugar signalling are also of critical importance in modulation of root 312 

architecture in response to phosphate deprivation (reviewed in Rouached et al., 313 

2010). 314 

  315 

PHT1 phosphate transporters  316 

P enters into the plant as Pi via plasma membrane transporters of the 317 

PHOSPHATE TRANSPORTER1 (PHT1) family and the process is affected by soil 318 

pH which influences the predominant form of Pi (HPO4
2- or H2PO4

-) available 
319 

(Schachtman et al., 1998). Following the first identification and characterization of 320 

PHT1 family members in Arabidopsis (Muchhal et al., 1996), subsequent PHT1 321 

members have been characterized in many plants including potato, white lupin, 322 

tomato, Madagascar periwinkle, barrel medic, barley, tobacco, rice, maize and 323 

wheat (Table 1) (Nussaume et al., 2011). 324 

The PHT1 proteins belong to the Major Facilitator Super family (MFS), which 325 

is the largest superfamily of active transporters and these are generally symporters 326 

or antiporters driven by proton or sodium gradients. The PHT1 proteins are 327 

predicted to contain 12 trans-membrane alpha helices divided into two domains (N 328 

and C) of 6 transmembrane helices each (Karandashov and Bucher, 2005). The 329 

PHT1s are encoded by a family of genes found in each plant species, for example 330 

the Arabidopsis genome contains 9 genes (Mudge et al., 2002), rice has 13 genes 331 

(Paszkowski et al., 2002), soybean has 14 genes (Fan et al., 2013), barley (Rae et 332 

al., 2003) and foxtail millet (Ceasar et al., 2014) contain 12 genes each. The first 333 

crystal structure of a eukaryotic fungal (Piriformospora indica) high-affinity 334 

phosphate transporter was recently solved at 2.9 Å in an inward-facing occluded 335 

state (Pedersen et al., 2013).  Pi is located between the two domains buried in the 336 

middle of the membrane at a location similar to the substrate binding sites in other 337 

major facilitators. The same study also proposed a model for the mechanism of Pi 338 

import into the cell (Pedersen et al., 2013).  339 
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PHT1 proteins transport Pi into the epidermal cortical cells of the root via a 340 

proton-Pi co-transport mechanism (Ullrich and Novacky, 1990). Different members 341 

of the PHT1 gene family show different patterns of expression with respect to tissue 342 

and phosphate status (reviewed in Nussaume et al., 2011). The PHT1s have been 343 

predominantly found to be expressed in roots, especially in epidermal cells and the 344 

outer cortex of the root hair (Misson et al., 2004; Mudge et al., 2002; Schunmann et 345 

al., 2004; Xiao et al., 2006). For example 8 out of 9 PHT1s in Arabidopsis have 346 

been found to be expressed in roots (Karthikeyan et al., 2002; Mudge et al., 2002).  347 

Further, localization studies on these transporters in different plant species 348 

confirmed that PHT1 is most specifically targeted to the plasma membrane (Bayle et 349 

al., 2011; Fan et al., 2013; Gonzalez et al., 2005; Jia et al., 2011; Preuss et al., 350 

2011). In addition members of the PHT1 family have been found to be expressed in 351 

aerial parts including shoot, leaves and flowers suggesting their involvement in both 352 

acquisition and remobilization of Pi in the plant. For example in Arabidopsis, 353 

AtPHT1;5 is involved in removing Pi from senescing leaves (Nagarajan et al., 2011) 354 

and AtPHT1;6 has been found to be expressed in pollen (Karthikeyan et al., 2002; 355 

Mudge et al., 2002). 356 

The PHT1s show a range of affinities for Pi and are divided into high and low 357 

affinity transporters. The affinities of PHT1s have been characterized by expressing 358 

in heterologous systems including the S. cerevisiae pho84 mutant which lacks the 359 

equivalent endogenous phosphate transporter (Bun-Ya et al., 1991) and Xenopus 360 

oocytes. The high-affinity PHT1s are usually expressed at low Pi concentrations and 361 

have a Km ranging from 3 to 10 µM, whereas the low-affinity ones functional at high 362 

Pi availability have a Km ranging from 50 to 300 µM (Lopez-Arredondo et al., 2014; 363 

Raghothama and Karthikeyan, 2005). These expression patterns and kinetic 364 

properties of PHT1s suggest that they play multiple roles for Pi acquisition and 365 

remobilization with respect to external Pi status and tissue specificity. Most of the 366 

PHT1s are found to be expressed in response to Pi starvation. Examples of PHT1 367 

transporters expressed under Pi starvation and their affinities where known are 368 

listed in Table1.  369 

Post translational regulation of PHT1 levels 370 

Besides regulation at the transcriptional level in response to phosphate 371 

levels, PHT1 transporters undergo regulated trafficking and degradation. These 372 

mechanisms have been studied in detail in Arabidopsis thaliana and to a lesser 373 

extent in rice. 374 

 375 
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PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR 1 (PHF1) was 376 

identified through a genetic screen as an ER localised factor required for PHT1;1 377 

targeting to the plasma membrane (Gonzalez et al., 2005). It was subsequently 378 

shown to enhance plasma membrane localisation of PHT1;2 and PHT1;4 as well 379 

(Bayle et al., 2011). PHF1 shares some sequence similarity to S. cerevisiae Sec12p 380 

and its overexpression, like that of Sec12p, inhibited export of COPII dependent 381 

cargo from the ER (Gonzalez et al., 2005), however PHF1 did not co-localise with 382 

other COPII components suggesting a distinct role (Bayle et al., 2011). PHT1-GFP 383 

fusions are detectable in sorting endosomes regardless of the external Pi 384 

concentration, but Pi starvation stabilised the GFP signal at the plasma membrane. 385 

In the presence of high Pi and Concanavalin A, which inhibits the vacuolar ATPase, 386 

GFP fluorescence was detected in vacuole-like structures, consistent with a model 387 

where PHT1 is endocytosed and targeted to the vacuole for degradation under high 388 

P conditions (Bayle et al., 2011) (Figure 3A). 389 

 390 

NITROGEN LIMITATION ADAPTATION (NLA) is an E3 ligase which also 391 

contains an SPX domain (Table 3) that interacts with PHT1 at the plasma 392 

membrane. It targets PHT1;1 and PHT1;4 leading to their ubiquitination and 393 

subsequent endocytosis and degradation in the vacuole (Lin et al., 2013) (Figure 3). 394 

nla mutants over accumulate Pi and show toxicity symptoms (Kant et al., 2011). 395 

Thus NLA is an important component of a regulatory system that prevents Pi over 396 

accumulation under conditions of surplus. The ubiquitination pathway requires 397 

sequential action of E1, E2 and E3 enzymes with UBC8 being the E2 that interacts 398 

with NLA (Peng et al., 2007). A further  enzyme, PHO2, an ER and Golgi localised 399 

peripheral membrane protein which may be a chimeric E2-E3 enzyme (Liu et al., 400 

2012) is also important in phosphate deficiency responses and regulates PHT1 401 

transporters (and also other targets such as PHO1 (Liu et al., 2012) and PHF1 402 

(Huang et al., 2013) via ubiquitination (Figure 3B). However double mutants in nla 403 

and pho2 showed aggravated phenotypes. They were smaller, accumulated higher 404 

levels of Pi in shoots and had much higher steady state levels of PHT1;1/2/3, 405 

suggesting they function independently in regulation of phosphate transporter levels 406 

(Lin et al., 2013). When Pi is limiting AtNLA is down regulated by miRNA827 (Hsieh 407 

et al., 2009) relieving this inhibition, whilst PHO2 is a target of miRNA399 (Aung et 408 

al., 2006). One interesting observation is that PHO2 is predominantly in the 409 

vasculature based on studies with promoter reporter fusions; however PHT1s are 410 

predominantly expressed in the epidermal, cortex and root hair cells. This 411 

discrepancy in potential localisation has led to the proposal that PHO2 mRNA or 412 
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PHO2 protein may undergo cell to cell trafficking (Huang et al., 2013), adding yet 413 

another layer of complexity to regulation of phosphate transporters. 414 

 415 

Lin et al showed that NLA regulation of PHT1 levels is also conserved in rice 416 

(Lin et al., 2013), and in S. cerevisiae Pho84p is internalised and degraded 417 

subsequent to phosphorylation and ubiquitination (Lundh et al., 2009). Interestingly 418 

PHT1;1 and PHT1;4 also show increased phosphorylation under Pi replete 419 

conditions. A phosphorylation mimicking mutation Ser514 to Asp promoted 420 

intracellular localisation, probably through inhibiting ER exit. Phosphorylation of Ser 421 

320 also increased under Pi replete conditions, but whether this affected 422 

endocytosis was not tested (Bayle et al., 2011).  In Rice OsPHF1 also regulates 423 

trafficking of phosphate transporters (Chen et al., 2011b) whereas in S. cerevisiae 424 

pho86 mutants retain Pho84p in the ER (Kota and Ljungdahl, 2005). Thus an 425 

ancient conserved mechanism for regulation of phosphate transporter activity 426 

appears to operate across kingdoms although the molecular components differ. 427 

Manipulation of PHT1 expression levels 428 

Several studies have investigated the effects of up regulating expression of 429 

phosphate transporters on the ability of plants to grow on low levels of Pi. 430 

OsPHT1;1 (OsPT1) is widely expressed in rice plants and not markedly induced by 431 

Pi deficiency (Seo et al., 2008; Sun et al., 2012). In these studies transgenic plants 432 

that express OsPHT1;1 under the control of the CaMV 35S promoter (Seo et al., 433 

2008) or the ubiquitin promoter (Sun et al., 2012) were characterised. In both cases 434 

plants with increased level of OsPHT1;1 transcript were selected, and these plants 435 

accumulated higher levels of Pi  in shoots under Pi sufficient conditions. However, 436 

under Pi limiting conditions no difference in Pi content was seen in 21 day old plants 437 

(Sun et al., 2012). In older plants grown in fertilised soil, Pi levels were almost 438 

double the levels in the xylem of transgenic compared to control plants (Sun et al., 439 

2012) and field grown plants grown on unfertilised soil had much higher Pi content 440 

as well as 20% more panicles at harvest, although the plants were 30% shorter 441 

(Seo et al., 2008). The OsPHT1;1 overexpresser lines took up more phosphate and 442 

also produced more root hairs than control plants, even under Pi replete conditions 443 

(Sun et al., 2012). A similar enhancement of root hair  production  even under high 444 

Pi was seen when arabidopsis PHT1;5 was expressed under the control of the Actin 445 

2 promoter (Nagarajan et al., 2011). AtPHT1;5 is expressed in root and leaf and 446 

moderately upregulated under Pi deficiency,  and characterisation of mutants in this 447 

gene point to an important role in the allocation of Pi to shoots under P limitation 448 
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conditions and in transfer of Pi from shoots to roots under Pi sufficient conditions  449 

(Nagarajan et al., 2011). At PHT1;5 over expressers showed reduced Pi uptake but 450 

increased biomass and leaf area, dry weight and stalk thickness under both long 451 

and short days. However, over expression lines senesced earlier (Nagarajan et 452 

al.,2011). OsPHT1;8 (OsPT8) is also a widely expressed phosphate transporter that 453 

is not strongly induced by low Pi (Jia et  al., (2011). Over expression of OsPHT1;8 454 

under the control of the maize ubiquitin promoter resulted in increased Pi uptake, 455 

high level accumulation of Pi in roots and shoots and toxicity symptoms under 456 

conditions of high Pi supply. The transgenic plants displayed stunted growth under 457 

both high and low Pi conditions (Jia et al., 2011). Overexpression of AtPHT1;9 458 

under the 35S promoter resulted in enhanced tolerance to Pi deficiency in seedlings 459 

with plants in soil growing similarly to controls (Remy et al., 2012). However in 460 

contrast to the effects of overexpressing AtPHT1;5 (Nagarajan et al., 2011) and 461 

OsPHT1;1 (Sun et al., 2012) AtPHT1;9 overexpression resulted in no difference in 462 

root hair density on high Pi and less proliferation of lateral roots under Pi deficiency 463 

(Remy et al., 2012) while over expression of BnPHT1;4 in Arabidopsis resulted in 464 

longer primary roots and reduced lateral root density in low Pi compared to control 465 

plants (Ren et al., 2014). 466 

AMF interactions with PHT1 genes 467 

AMF play an important role in mobilization of Pi from new sites in soil to Pi 468 

depletion zones that form around the root surface by extending their hyphae far 469 

beyond the Pi depletion zone (Becquer et al., 2014). The AMF in turn receive 470 

carbon photosynthetically manufactured by the host plant (Smith and Read, 2008). 471 

A comprehensive discussion of the role of AMF in increased P uptake is beyond the 472 

scope of this review, however it should be noted that several PHT1 genes are 473 

mycorrhiza-specific and inducible only upon inoculation of AMF. PHT1s that are 474 

known to be induced by AMF are given in Table 2.  There is a complex and still not 475 

well understood interplay between plant and fungus. Barel medic MtPHT1;4 is 476 

specifically localised to the plant-derived periarbuscular membrane and the specific 477 

delivery to this membrane is proposed to arise through a transient reorientation of 478 

polarised secretion to this membrane during arbuscle development (Pumplin et al., 479 

2012). MtPHT1;4 is essential for the acquisition of Pi delivered by the AM fungus 480 

and  also critical for AM symbiosis. Loss of MtPHT1;4 function leads to premature 481 

death of the arbuscules; the fungus is unable to proliferate within the root and 482 

symbiosis is terminated (Javot et al., 2007). Similarly in rice both OsPHT1;11 and 483 
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OsPHT1;13 are important for AM symbiosis although only OsPHT1;11 is required 484 

for Pi transfer to the plants (Yang et al., 2012) .  485 

 486 

PHO1 and its homologues 487 

  Since the concentration of bioavailable Pi in the soil solution is frequently 488 

1000 fold lower than that in the plant intracellular compartments (Bieleski, 1973), an 489 

efficient Pi homeostasis system requires not only the acquisition of Pi but also the 490 

reallocation of this element. The Arabidopsis pho1 mutant displays a series of Pi 491 

deficiency symptoms including a prominent decrease in leaf Pi content (Poirier et 492 

al., 1991). Intriguingly, it was also found in the same study that mutating pho1 does 493 

not impact the root Pi uptake or shoot Pi movement, thus suggesting PHO1 is 494 

specifically playing a crucial role of exporting Pi from root cortical cells to the xylem 495 

before the element is delivered to the shoot (Poirier et al., 1991). This proposed Pi 496 

exporting function of PHO1 was later confirmed by transgenic overexpression of 497 

PHO1 in Arabidopsis shoot tissues, resulting in enhanced shoot Pi content and 498 

intense release of Pi into the extracellular medium (Arpat et al., 2012; Stefanovic et 499 

al., 2011). Transient expression of AtPHO1 in tobacco leaves, revealed that the 500 

protein was predominantly localised to the Golgi/trans-Golgi network, but a certain 501 

proportion of total PHO1 was re-localised to the plasma membrane upon high Pi 502 

infiltration (Arpat et al., 2012). PHO1 may be more than a Pi exporter. Arabidopsis 503 

lines with reduced levels of PHO1 (2-10 fold decrease compared to wild type), 504 

showed reduction of shoot Pi levels comparable to pho1 mutants. However, unlike 505 

the pho1 mutant, growth rates similar to those of wild type were maintained and 506 

gene expression profiles indicative of Pi stress were not observed, showing that it is 507 

possible to uncouple Pi levels in the shoot from changes in gene expression 508 

(Rouached et al., 2011a). The authors propose that PHO1 may also be involved in 509 

transporting a root to shoot signal (other than Pi) that leads to induction of the suite 510 

of Pi deficiency responses in shoot and it is this transcriptional response rather than 511 

low Pi per se which leads to growth inhibition in the pho1 mutant (Rouached et al., 512 

2011a).  513 

Arabidopsis genomic sequence analysis identified 10 homologues of PHO1. 514 

These genes encode proteins (PHO1;H1-PHO1;H10) each of which has a well-515 

conserved hydrophilic SPX domain at the N-termini and a hydrophobic EXS domain 516 

with six to eight potentially membrane-spanning segments at their C-termini 517 

(Hamburger et al., 2002). Among these 10 PHO1 homologues, PHO1;H1 and 518 
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PHO1;H10 are shown to exhibit the same Pi stress inducible expression as PHO1 519 

(Yuan and Liu, 2008), while only PHO1;H1 has a similar Pi exporting function and 520 

restores the Pi xylem-loading in pho1 mutant plants (Stefanovic et al., 2007). 521 

However, expression of PHO1;H1 and PHO1 has been shown to be dependent on 522 

either the regulation of transcription factor PHR1, or controlled by PHO2 mediated 523 

endomembrane degradation, respectively (Figures 2 and 3) (Liu et al., 2012; 524 

Stefanovic et al., 2007). Such observations suggest that when facing Pi stress, 525 

plants utilise complex signaling pathways at multiple levels of regulation with 526 

potentially complex cross-talking among these pathways to maintain the intracellular 527 

Pi level. Three similar PHO1 family members, OsPHO1;1-OsPHO1;3, have also 528 

been found in rice. So far, OsPHO1;2 has been the only member found to resemble 529 

AtPHO1 in Pi  transfer from roots to shoots, although all three rice PHO1 members 530 

are phylogenetically close to AtPHO1 and AtPHO1;H1 (Secco et al., 2012a) and are 531 

potentially regulated by their cis-Natural Antisense Transcripts (NATs) under Pi 532 

deprivation (Secco et al., 2010). The closest mammalian homolog of PHO1, 533 

xenotropic and polytropic retrovirus receptor XPR1, has also recently been 534 

demonstrated to exhibit Pi export activity when expressed in metazoan cells 535 

(Giovannini et al., 2013) and ectopically expressed in tobacco epidermal cells 536 

(Wege and Poirier, 2014). 537 

 538 

Despite all Arabidopsis PHO1 family members containing some common 539 

primary structural features and RT-PCR analysis indicating a broad range of gene 540 

expression throughout the plant corpus (Wang et al., 2004), to date, only AtPHO1 541 

and AtPHO1;H1 have been shown to play critical roles in Pi signaling and transport. 542 

AtPHO1;H4, otherwise known as SHB1 (Short Hypocotyl Under Blue1) has been 543 

demonstrated to control hypocotyl elongation under blue light through the formation 544 

of a protein complex (Zhou and Ni, 2010), while homologue AtPHO1;H10 is 545 

intensely induced upon various abiotic and biotic stresses apart from Pi starvation 546 

(Ribot et al., 2008). The relatively high level of similarity among PHO1 family 547 

members and the conservation of their N-terminal SPX domain throughout 548 

homologues from different species indicate an important role of SPX domain-549 

possessing proteins and this domain itself in Pi homeostasis maintenance (Table 3).  550 

 551 

Secretion of organic acids to enhance P availability 552 

Acid soils suffer from Pi deficiency as it is sequestered by positively charged 553 

components of the soil (Figure 4), such as the toxic Al3+ ions that become mobilised 554 
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at soil pH below 4.5. Importantly, approximately 50% of the world's potentially 555 

arable soils are acidic (von Uexküll and Mutert, 1995) and 60% of these are in 556 

developing nations, so this is a widespread problem compromising a large portion of 557 

potentially arable land (Kochian, 1995). Thus, plants have developed a range of 558 

mechanisms to deal with growth on acidic soils, chief among these is organic acid 559 

(OA) exudation. By this mechanism plants release organic anions, such as malate 560 

and citrate, into the soil and these anions overcome the dual problems of soil that is 561 

both deficient in phosphate and replete with Al3+ ions by protecting the plant from 562 

Al3+ ion toxicity and helping to mobilise phosphate as shown in Figure 5.  Phosphate 563 

can be mobilised by organic anions either by anion exchange, freeing bound Pi, or 564 

by chelation of the metal ions that immobilise Pi in the soil (Sas et al., 2001). OA 565 

exudation is well established as a major trait in plants with resistance to Al-toxicity 566 

and improved PUE such as wheat (Ryan et al., 2001). The importance of OA 567 

exudation can be seen by the fact that up to 20% of a plant’s carbon usage can be 568 

invested in OA exudation in the roots (Lynch et al., 2005) and this loss of carbon 569 

may account for some of the loss in yield of P-starved plants.  570 

 571 

There are two main families of membrane proteins involved in OA exudation, 572 

the channels of the Aluminium-activated Malate Transporter (ALMT) family, and 573 

transporters of the Multidrug and Toxic compound Extrusion (MATE) family, which 574 

export malate and citrate, respectively (Ryan et al., 2011). These proteins are 575 

alpha-helical membrane proteins that form pores through the plasma membrane of 576 

root epidermal cells in order to release OAs into the soil. The MATE family is large, 577 

with many members still uncharacterised, however a sorghum homolog (SbMATE) 578 

has been shown to confer Al3+ tolerance by facilitating the release of citrate into the 579 

rhizosphere in response to Al3+ (Magalhaes et al., 2007). In addition, the barley gene 580 

HvAACT1 has been identified as a plasma-membrane-localised MATE transporter 581 

expressed at the root tips of barley root epidermal cells responsible for citrate efflux 582 

in the presence of Al3+ (Furukawa et al., 2007). 583 

 584 

The first gene of the ALMT family to be characterised was ALMT1 in wheat 585 

and it has been shown that TaALMT1 releases malate in an Al-activated manner 586 

(Zhang et al., 2008). The protein senses free Al3+, which is a signifier of acidic soils, 587 

and releases malate through its central pore, down a concentration gradient into the 588 

soil. It acts as a channel, passively releasing the malate, rather than a transporter. 589 

There is a pressing need for a greater understanding of the structure and 590 
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mechanism of these channels; although some research has attempted to explore 591 

topology via either immunocytochemical or bioinformatics approaches no settled 592 

model has yet been agreed upon (Dreyer et al., 2012; Motoda et al., 2007).  Recent 593 

work has shown that the first 48 residues and a C-terminal helix of TaALMT1 are 594 

vital for its function in oocytes (Sasaki et al., 2014). As yet several areas remain 595 

unresolved including: the mechanisms by which these proteins are activated, how 596 

they function at a molecular level, and their atomic-level structure. Interestingly, 597 

although TaALMT1 has been shown to be constitutively expressed before being 598 

directly activated by Al3+, activity of the Arabidopsis homologue AtALMT1 is 599 

controlled at the transcriptional level by transcription factors STOP1 (Sawaki et al., 600 

2009) and WRKY1 (Ding et al., 2013) in response to the presence of Al3+.  601 

 602 

Manipulation of organic acid exudation through transgenic modification 603 

Transformation of barley (Hordeum vulgare L.), (which does not have a 604 

functional equivalent) with TaALMT1 from wheat resulted in plants that were able to 605 

take up more phosphate from the soil and which thrived when grown in acid, highly-606 

P-fixing ferrosol (Delhaize et al., 2009). This boost in yield was seen both in short-607 

term 26-day pot trials and a longer term experiment to physical maturity after 156 608 

days. The improvement is due to a combination of effects. Firstly, the transgenic 609 

plants were able to thrive in acid soil, enabling more root growth and so increasing 610 

the area of its rhizosheath. Even in limed conditions the wild type barley had a 611 

severely restricted rhizosheath, while ALMT1-transfomed plants grown in both limed 612 

and non-limed conditions produced a larger rhizosheath. Secondly, there was an 613 

increase in phosphate uptake per unit root length indicating that the PAE was 614 

increased by the release of malate into the soil by mobilisation of Pi. These 615 

experiments show that the creation of a transgenic line with just a single gene 616 

addition (that of TaALMT1) was able to more than double the grain yield of barley 617 

plants grown in acid soil, producing yields close to growth in ideal non-acidic 618 

conditions (with no loss of productivity on limed soil). This large effect is very 619 

promising for the potential production of transgenic crops with improved PAE and 620 

PUE on acid soils.  621 

In connection with the effects on the rhizosheath it is notable that even on limed soil 622 

and soil with added P, the deeper regions of the soil remain depleted of P. Wild type 623 

barley roots were near-non-existent below 50 cm, but growth below this depth could 624 

be enabled by TaALMT1. This restricted root growth impairs yield due to decreased 625 
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uptake of nutrients such as P, but also by restricting access to deep water sources. 626 

These transgenic approaches also impact on water usage and drought 627 

susceptibility, facilitating integration with other transgenic crop approaches. 628 

Although work assessing transgenic barley has been promising, a question remains 629 

over the viability of a transgenic strategy to increase yields as no work has been 630 

undertaken at field-scale.  631 

 632 

Exploitation of knowledge for crop improvement 633 

The results of manipulation of levels of specific membrane transporters, channels 634 

and transcription factors suggest that such an approach could be beneficial to both 635 

PAE and PUE. However, it is still unclear exactly how plants sense Pi levels 636 

internally and the contribution of levels of phosphate in specific cell types and 637 

subcellular compartments to perception and response. As excess accumulation of 638 

phosphate results in toxcity, simply driving plants to take up more is not necessarily 639 

the solution and runs the risk of further depletion from the soil. It is also difficult to 640 

compare results of different studies when different growth conditions and 641 

developmental stages of plants are used. More sophisticated approaches using 642 

targeted gene expression in specific tissues, analysis of protein levels (which may 643 

not reflect transcript levels because of the extensive post transcriptional regulation) 644 

and whole  lifecycle comparisons of control and transgenic plants under conditions 645 

more closely replicating those in the field are required. Perturbation of phosphate 646 

transporter expression clearly alters these balances in as yet unpredictable ways 647 

and provokes changes in transcription of other genes as reported (Jia et al., 2011, 648 

Nagarajan et al., 2011, Sun et al., 2012). The uncoupling of transcriptional 649 

responses to phosphate starvation from phosphate levels that was seen in 650 

Arabidopsis lines with reduced PHO1 expression (Rouached et al., 2011a) may 651 

present a useful tool for further investigation as does the recent discovery of a small 652 

molecule ‘phosphatin’ that can attentuate Pi starvation responses and partially 653 

uncouple growth inhibition from Pi levels (Arnaud et al., 2014). Furthermore, as it is 654 

becoming apparent that there is significant cross talk between phosphate and other 655 

nutrient pathways such as nitrogen (Kant et al., 2011), sulfur (Moseley et al., 2009; 656 

Rouached et al., 2011b), iron (Bournier et al., 2013; Thibaud et al., 2010) and zinc 657 

(Khan et al., 2014) a more holistic approach that considers multiple nutrients may 658 

be necessary. However, there may also be specific instances where over 659 

expression of a single gene or combination of relatively few genes could make a 660 
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significant contribution such as the expression of TaALMT in barley (Delhaize et al., 661 

2009). 662 

As an alternative to targeting individual genes, plant breeders have 663 

developed crops with improved tolerance to acid soils, which are also improved in P 664 

uptake efficiency (David and Brett, 2003). Screening for QTLs for low Pi tolerant 665 

varieties is also a useful method of identification of new components in the P 666 

homeostasis pathway and potential means of marker assisted breeding. Several 667 

studies have been conducted for phenotyping the root traits and marker 668 

development in order to produce the low Pi tolerant varieties (reviewed in 669 

(Richardson et al., 2011). In rice, a major QTL, phosphate uptake1 (Pup1) was 670 

identified from aus type Pi starvation-tolerant Indian rice variety Kasalath (Chin et 671 

al., 2010), and this has been recommended for MAB. This gene was named for 672 

phosphate starvation tolerance locus (PSTOL1) and was missing in the non-tolerant 673 

rice genome, Nipponbare; expression of PSTOL1 is also found to be up regulated 674 

under Pi starvation (Gamuyao et al., 2012). In barley, increased level of expression 675 

of a low affinity PHT1 transporter HvPHT1;6 and HvPHT1;3 was correlated with 676 

genotypes with higher PUE (Huang et al., 2011). 677 

Identification of root trait variations among the genotypes has been another 678 

important area of study to identify and develop Pi stress tolerant varieties (Lynch, 679 

2007). Variation in root growth angles has been identified as an important trait for 680 

Pi-deficiency tolerance in maize (Zhu et al., 2005b), bean (Bonser et al., 1996; Liao 681 

et al., 2001) and wheat (Manske et al., 2000). Root hair variation has also been 682 

considered as an important trait for improving the Pi stress tolerance. Several 683 

studies have been conducted to assess the genotype variation for root hair density 684 

and root hair length (reviewed in Richardson et al., 2011) and QTLs associated with 685 

root hairs have also been identified in maize (Zhu et al., 2005a) and common bean 686 

(Yan et al., 2004). More studies are needed to utilize MAB to release new varieties 687 

with increased PAE and PUE. 688 

 689 

Concluding statements 690 

The development of integrated and sustainable approaches to agriculture is 691 

essential to meet humankind’s future needs. Increased understanding and 692 

exploitation of genes, transcription factors and proteins involved in uptake, utilization 693 

and signalling of Pi will be useful for efficient utilization of P in future. Transgenic 694 
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approaches to modulate the expression levels of some of these genes holds 695 

promise but needs to be decoupled from detrimental knock on effects on other 696 

aspects of plant physiology. Marker assisted breeding and improvement is a 697 

complementary approach for the production of Pi efficient crops. As well as 698 

improved farming methods and improved crop varieties with superior PAE and PUE 699 

it will be crucial to develop more efficient and environmentally benign methods to 700 

recover nutrients including P from waste and here too plants have a role to play. 701 

Thus, phosphorus sustainability is a major challenge requiring the efforts of 702 

government and industries, engineers, soil scientists, plant scientists, agronomists, 703 

plant breeders and farmers.  704 
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Tables 

Table 1. PHT1 genes up regulated by low Pi in different plants and their 

affinities 

Some of the PHT1s reported to be induced by Pi starvation are listed along with the 

name of the host plant, site of expression and affinities of the known transporters 

with reference. The expression patterns of these transporters have been analysed 

by RT-PCR, qRT-PCR and promoter GUS or GFP fusion studies.  

Name of the PHT1 
gene Plant Affinity 

Site of 
induction by 

low Pi 
Reference 

AtPHT1;1 Arabidopsis 
High 

affinity  
- 

Mitsukawa et al., 
1997 

AtPHT1;7, AtPHT 
1;8,  AtPHT1;9 

Arabidopsis - Root Mudge et al., 2002 

CfPHT1;1CfPHT1;2 
CfPHT1;3 
CfPHT1;4 
CfPHT1;5 

Cayenne 
pepper 

- Only in AMF 
inoculated roots 

Chen et al., 2007a 

GmPHT1;1 to 
GmPHT1;12 

Soybean - Root Fan et al., 2013 

GmPHT1;1, 
GmPHT1;2, 
GmPHT1;5, 

GmPHT1;7, and 
GmPHT1;10 

Soybean  
High 

affinity 
Root Fan et al., 2013 

HvPHT1;1 Barley 
High 

affinity 
Root Rae et al., 2003 

HvPHT1;6 Barley Low affinity 
Moderately 

induced in root 
and shoot 

Rae et al., 2003 

HvPHT1;9 Barley - Roots Huang et al., 2011 

MtPHT1;1 Barrel medic Low affinity - Liu et al., 1998b 

OsPHT1;2 
OsPHT1;6 

Rice 
 

Low affinity 
 

- Ai et al., 2009 

OsPHT1;8 Rice 
High 

affinity Root Jia et al., 2011 

OsPHT1;8 Rice High 
affinity 

Shoot Secco et al., 2013 

PtaPHT1;1 
PtaPHT1;2 
PtaPHT1;3 
PtaPHT1;7 

Hardy orange - Roots Shu et al., 2012 

PvPHT1;2 Kidney bean - Roots Tian et al., 2007 
SiPHT1;2 Foxtail millet - Leaf Ceasar et al., 2014 
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Name of the PHT1 
gene Plant Affinity 

Site of 
induction by 

low Pi 
Reference 

SiPHT1;4 Foxtail millet - Root Ceasar et al., 2014 
SlPHT1;1 
SlPHT1;2 

Tomato - Roots Liu et al., 1998a 

SmPHT1;1 
SmPHT1;2 
SmPHT1;3 
SmPHT1;4 
SmPHT1;5 

Eggplant - Leaf and roots Chen et al., 2007a 

StPHT1;2 Potato Low affinity Roots 
Leggewie et al., 

1997 

ZmPHT1;1 
ZmPHT1;2 
ZmPHT1;3 
ZmPHT1;6 

 

Maize - 

Root and leaf:  
ZmPHT1;1 
ZmPHT1;2; 

All parts: 
ZmPHT1;3; 
Old leaves: 
ZmPHT1;6 

Nagy et al., 2006 
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Table 2.PHT1 genes induced by AMF in various plants 

The PHT1s reported to be induced by inoculation with AMF have been listed with 

the name of the plant and the name of the AMF species used with references. The 

expression patterns of these transporters have been analysed by RT-PCR, qRT-

PCR after inoculating the roots with specific AMF. 

Name of the 
PHT1 gene Plant species AMF species used Reference 

AsPHT1;1 
AsPHT1;3 
AsPHT1;4 

Chinese Milkvetch 
 

Gigaspora margarita 
and 

Glomus intraradices 
Xie et al., 2013 

BdPHT1;3 
BdPHT1;7 

BdPHT1;12 
BdPHT1;13 

Purplefalsebrome 
 

Glomus candidum Hong et al., 2012 

CfPHT1;3 
CfPHT1;4 
CfPHT1;5 

Red pepper 
 Glomus intraradices Chen et al., 2007a 

GmPHT1;11 
GmPHT1;12 
GmPHT1;13 

Soybean 
 Glomus intraradices Tamura et al., 2012 

HvPHT1;8 
HvPHT1;11 

Barley 
 

Glomus intraradices, 
Glomus sp,WFVAM23 and 

Scutellospora calospora 

Glassop et al., 2005; 
Sisaphaithong et al., 2012 

LjPHT1;3 
LjPHT1;4 

Miyakogusa 
 
 

Glomus mosseae, 
Glomus intraradices 

Maeda et al., 2006 

MtPHT1;1 
MtPHT1;4 

Barrel Clover  
 

Glomus versiforme 
Harrison et al., 2002; 

Javot et al., 2007 
OsPHT1;11 
OsPHT1;13 

Rice 
 

Glomus intraradices 
Paszkowski et al., 2002; 

Guimil et al., 2005 
PhPHT1;3 
PhPHT1;4 
PhPHT1;5 

Petunia  Glomus intraradices Wegmuller et al., 2008 

PtaPHT1;4 
 Hardy orange 

 

Glomus etunicatum, 
Glomus diaphanum and 

Glomus versiforme 
Shu et al., 2012 

PtPHT1;9 
PtPHT1;10 
PtPHT1;12 

Black cottonwood 
 

Glomus intraradicesand 
Glomus mosseae 

Loth-Pereda et al., 2011 

SiPHT1;8 
SiPHT1;9 

Foxtail millet 
 

Glomus mosseae Ceasar et al., 2014 

SlPHT1;3 
SlPHT1;4 
SlPHT1;5 

Tomato 
 

Glomus margarita, 
Glomus caledonium and 

Glomus intraradices 
Nagy et al., 2005 
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Name of the 
PHT1 gene Plant species AMF species used Reference 

SmePHT1;3 
SmePHT1;4 
SmePHT1;5 

Eggplant 
 

Glomus intraradices Chen et al., 2007a 

StPHT1;3 
StPHT1;4 
StPHT1;5 

Potato 
 

Glomus intraradices Rausch et al., 2001; Nagy 
et al., 2005 

TaPHT1;8 
TaPHT1;10 
TaPHT1;11 
TaPHT1;12 

Wheat 
Glomus sp,WFVAM23, 
Scutellospora calospora 
and Glomus intraradices 

Glassop et al., 2005; 
Sisaphaithong et al., 2012 

ZmPHT1;6 Maize Glomus intraradices Nagy et al., 2006 
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Table 3.SPX domain-containing proteins in Arabidopsis and rice for which 

location or functional information is known 

Profile of SPX domain-containing proteins in Arabidopsis and rice (Modified from 

Secco et al., 2012b)  

Protein Function/Regulation profile Subcellular 
localization Reference 

AtPHO1 

Pi transfer from root to shoot; Pi 
loading into the xylem vessel 

Possible transcriptional signal 
transporting from root to shoot. 

Controlled by PHO2 mediated 
endomembrane degradation 

Largely at 
Golgi/trans-Golgi 
network and 
uncharacterized 
vesicles; A minor 
fraction at plasma 
membrane 

Stefanovic et al., 
2011; 

Rouached et al., 
2011a; 

Liu et al., 2012 

AtPHO1;H1 

Pi transfer from root to shoot 

Regulated by PHR1 and influenced 
by phosphite 

- 

Stefanovic et al., 
2007 

AtPHO1;H4 

(AtSHB1) 

Control hypocotyl elongation under 
blue light 

Form a large protein complex 
through SPX and EXS domain 

Regulate endosperm development 
relevant genes 

Nucleus 

Zhou & Ni, 
2010 

AtPHO1;H10 

Involved in abiotic/biotic stresses 
response (including wounding, 
dehydration, cold, salt and pathogen 
attack) 

- 

Ribot et al., 
2008 

OsPHO1;2 

Pi transfer from root to shoot 

Gene expression regulated by its 
cis-natural antisense transcripts 

- 

Secco et al., 
2010 

AtSPX1 

Positive regulator of plant 
adaptation to Pi starvation 

Interacts with PHR1 in a Pi 
dependent manner 

Nucleus 

Duan et al., 
2008; 

Puga et al., 2014 

AtSPX2 
Interacts with PHR1 in a Pi 
dependent manner 

Nucleus 

Duan et al., 
2008; 

Puga et al., 2014 
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AtSPX3 
Negative regulator of some PSI 
genes 

Cytoplasm 
speckles 

Duan et al., 
2008 

AtSPX4 - Plasma membrane 
Duan et al., 
2008 

OsSPX1 

Positive regulator of plant 
adaptation to Pi starvation 

Interacting with PHR2 in a Pi 
dependent manner 

Nucleus 

Wang et al., 
2009a; 

Wang et al., 
2014 

OsSPX2 
Interacting with PHR2 in a Pi 
dependent manner 

Nucleus 

Wang et al., 
2009b; 

Wang et al., 
2014 

OsSPX3 
Negative regulator of some PSI 
genes 

Cytoplasm 
speckles 

Wang et al., 
2009b 

OsSPX4 

Interacting with PHR2 mainly in 
cytoplasm and preventing its 
translocation into the nucleus 

Controlled by Pi dependent 26S 
Proteasome Pathway 

Nucleus/Cytoplasm 

Wang et al., 
2009b; 

Lvet al., 2014 

AtSPX-
MFS3 

- Tonoplast 
Secco et al., 
2012b 

OsSPX-
MFS1 

Pi transport and relocation in leaves 

Gene expression controlled by 
miR827 

- 

Lin et al., 2010 

OsSPX-
MFS2 

Gene expression controlled by 
miR827 

- Lin et al., 2010 

AtNLA 

(AtBAH1) 

Involved in the nitrogen starvation 
response 

Regulating Pi homeostasis by 
ubiquination of PHT1 family 
members Gene expression regulated 
by a miR827 in a Pi dependent 
manner 

Endomembrane 
system 

Peng et al., 
2007; 

Kant et al., 2011 

Lin et al., 2013 
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Figure legends 

Figure 1. Schematic representation of plant responses to low Pi stress . 

Plants respond in multiple ways to low Pi. Some of these responses are local whilst 

others are systemic. Some respond to external Pi concentration whilst others 

respond to internal Pi levels. OA, organic acids;  AMF, Arbuscular Mycorrhizal 

Fungi;  RSA, Root System Architecture. 

Figure 2. Regulation and control of key genes in the model plant Arabidopsis 

during phosphate (Pi) starvation responses.  Blue arrowheads and red blunt-

ends show positive and negative regulation, respectively. In the presence of 

lowered environmental Pi concentrations, Root system remodeling is introduced, 

followed by the up-regulation of high affinity Pi transport systems (PHT1s) to 

increase Pi uptake from the soil, while specialized transporters (AtPHO1, 

AtPHO1;H1) are induced for the movement of Pi within the plant. A rigorous 

regulation system consisting of key transcriptional factor PHR1, post transcriptional 

regulation by non-coding RNAs and post translational regulation by protein 

trafficking and degradation is also involved for the functional integration of such 

transporters in response to Pi starvation. 

 

Figure3. Regulation of phosphate transporters by post translational 

mechanisms . 

A. In epidermal cortex and root hair cells PHT1 transporters under transcriptional 

control of PHR1 are translated in the cytosol and targeted to the endoplasmic 

reticulum (ER) where they pass through the endomembrane system before 

localisation at the plasma membrane. Export from the ER is enhanced by PHF1. 

PHT1 is present in sorting endosomes but localisation to the plasma membrane is 

enhanced under low Pi conditions. Under high Pi conditions the level of PHT1 at the 

plasma membrane is down regulated by multiple mechanisms. NLA dependent 

ubiquitination at the plasma membrane results in vacuolar targeting and 

degradation. Export from the ER is reduced by PHT1 phopshorylation and PHO2 

targeting of PHF1. 

B. In root cortical cells PHO2 also targets PHO1 for ubquitination and degradation in 

high Pi conditions. NLA nitrogen limitation adaption; PHT1, phosphate transporter1; 



41 

 

PHO1, phosphate1; PHO2, phosphate2; PHF1 phosphate transporter traffic 

facilitator1; PHR1phosphate starvation response1; WRKY6 a transcription factor. 

 

 

Figure 4.  Factors affecting Pi availability in soil 

Bioavailability of Pi in the soil is affected by physicochemical and biological factors 

such as soil pH, soil type and concentrations of cations such as various metals that 

can complex phosphate as well as microbial activity. Plants counteract these 

limitations through different strategies that may include exudation of phosphatases 

to liberate phosphate from organic molecules, organic anions to chelate metal 

cations and increase phosphate solubility and increasing the volume of soil that can 

be explored through modifications to the architecture of the root system and 

interaction with arbuscular mychorrizal fungi. 

 

Figure 5.  Organic acid (OA) exudation is an important mechanism to improve 

Pi availability on acid soil. 

A) Acid soil sensitive plants are compromised on acid soils by toxic Al3+ restricting 705 

root growth and low availability of Pi in the soil lowering yields. B) When acid soil 706 

tolerant varieties are grown (whether transgenic or not) transcription factors, such 707 

as STOP1 in Arabidopsis, upregulate genes involved in protection from Al3+ toxicity. 708 

Mechanisms differ between different plant species but responses include release of 709 

OAs such as malate,citrate or oxalate by ALMT or MATE genes, depending upon 710 

the plant species, which leads to lower free Al3+ and higher free Pi in the soil and 711 

thus higher yields. The upregulation of OA secretion can be by transcriptional or 712 

post transcriptional mechanisms. C) A structure to show malate chelating 713 

aluminium, sequestering  it to reduce its toxicity. 714 
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