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Eddy-Current Loss in the Rotor Magnets
of Permanent-Magnet Brushless Machines

Having a Fractional Number of Slots Per Pole
Dahaman Ishak, Z. Q. Zhu, Senior Member, IEEE, and David Howe

Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, U.K.

We develop an analytical model for predicting the eddy-current loss in the rotor magnets of permanent-magnet brushless machines
that have a fractional number of slots per pole, when either all the teeth or only alternate teeth are wound, and in which the unwound
teeth may be narrower than the wound teeth. The model enables the magnetic field distribution in the air gap and magnet regions to
be determined, by neglecting the eddy-current redistribution effect and assuming that the eddy currents are resistance limited. It can
account for space-harmonic magnetomotive forces (MMFs) resulting from the winding distribution and time-harmonic MMFs due to
nonsinusoidal phase currents, as well as for the effect of curvature and circumferential segmentation of the magnets. We have validated
the model by finite-element analysis, and used it to investigate the eddy-current loss in the magnets of three surface-mounted magnet
brushless motors that have similar slot and pole numbers, and employ identical rotors but different stators, when they are operated in
brushless ac (BLAC) and dc (BLDC) modes. We show that the stator winding configuration, as well as the operational mode, significantly
influence the resultant eddy-current loss.

Index Terms—Brushless machines, eddy currents, fractional slots/per pole, permanent magnet.

I. INTRODUCTION

T
HE eddy-current loss that is induced in the permanent

magnets of brushless machines is often neglected [1].

However, this assumption may not always be justified. For

example, machine designs are emerging in which the torque

is produced by the interaction of a space-harmonic mag-

netomotive force (MMF) with the permanent magnets and

which employ concentrated windings. Although this results

in short end-windings, and, hence, a low copper loss, and a

high power density [2]–[7], and the coils may be wound only

on alternate teeth so as to enhance fault-tolerance [5]–[7],

eddy currents will be induced in the magnets by forward and

backward rotating MMFs. The situation may be aggravated

further by time harmonics in the phase currents. Due to the

relatively high electrical conductivity of rare-earth magnets, the

resultant eddy-current loss can be significant, and may cause

a substantial temperature rise and result in partial irreversible

demagnetization of the magnets, especially in machines with

a high electric loading, a high rotational speed, or a high pole

number. A comprehensive literature review on rotor eddy-cur-

rent losses was presented in [8].

This paper extends the model that was presented in [7] by con-

sidering time harmonics in the stator MMF distribution, and pro-

poses a simplified analytical model, with reference to [8]–[11],

which assumes that the eddy currents are only induced in the

permanent magnets and are resistance limited. The model is for-

mulated in two-dimensional (2-D) polar coordinates, and rep-

resents the stator ampere-conductor distribution by an equiva-

lent current sheet distributed over the stator slot openings. Thus,

Laplace’s equation, which governs the vector magnetic potential
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in the air-gap and magnet regions, can be solved using the sepa-

ration of variables method. Subsequently, an expression for the

eddy-current loss in the magnets can be derived, accounting for

space-harmonic and time-harmonic MMFs, as well as the effect

of curvature and circumferential segmentation of the magnets.

The following assumptions are made in the derivation.

• The machines are three-phase, although the analysis is

readily applicable to higher phase number machines.

• The winding currents are approximated by an equivalent

current sheet of infinitesimal thickness distributed over the

stator slot openings.

• The stator and rotor iron cores are infinitely permeable and

have zero electrical conductivity.

• The induced eddy currents are axially-directed only, i.e.,

end-effects are neglected.

• The magnets have a relative recoil permeability of

, which simplifies the analysis but does not unduly com-

promise the accuracy of the predictions, as will be shown

later.

• The magnets have an electrical conductivity of .

• The modifying effect of the induced eddy currents on the

applied magnetic field is neglected.

• The air-gap permeance variation due to stator slotting is

neglected.

The developed analytical model is employed to investigate

the eddy-current loss in the magnets of three 12-slot/10-pole sur-

face-mounted magnet motors, in two of which all the teeth have

the same width, one having all the teeth wound and the other

only having coils on alternate teeth. The third motor also has

coils on alternate teeth, the width of which is increased in order

to maximize the torque density. Further, since the slot number

and pole number are related by , viz.

10 poles and 12 slots, the electromagnetic torque is produced

by the interaction of the fifth space-harmonic MMF with the

0018-9464/$20.00 © 2005 IEEE
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TABLE I
PARAMETERS OF THREE-PHASE, 5.5-Nm PERMANENT-MAGNET

BRUSHLESS MOTORS

Fig. 1. Equivalent current sheet distribution.

rotor magnets. The analytically predicted eddy-current loss in

the magnets is validated by finite-element analyses (FEA) under

both brushless ac (BLAC) and dc (BLDC) modes of operation.

Table I shows the motor parameters.

II. EQUIVALENT CURRENT SHEETS

In order to predict the time-varying armature reaction field in

the air-gap and magnet regions, the stator ampere-conductor dis-

tribution is represented by an equivalent current sheet of infini-

tesimal thickness disposed over the slot openings, as illustrated

in Fig. 1. In the motor in which all the teeth are wound, each

slot accommodates conductors of two different coils, whereas

in the motors in which only alternate teeth are wound each slot

accommodates conductors of a single coil, albeit the number of

coils per phase being halved and the number of turns per coil

doubled in order to achieve a similar phase back-electromotive

force constant. Fig. 2 shows the cross section and winding ar-

rangement for each of the three motors [4]. Fourier series ex-

pressions for the equivalent current sheets, assuming balanced

three-phase windings, are

(1)

Fig. 2. Winding distributions for the 12-slot/10-pole motors. (a) Motor I—all
teeth wound. (b) Motor II—alternate teeth wound. (c) Motor III—alternate teeth
wound on wider teeth.

for the motor in which all the teeth are wound, and

(2)

for the motors in which only alternate teeth are wound, where

and

(3)



2464 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 9, SEPTEMBER 2005

is the time-harmonic order in the phase current waveform,

is the space-harmonic MMF order, is the rotor position in

mech. rads, is is the stator bore radius, is the

amplitude of the harmonic phase current, is the number of

rotor magnet pole-pairs, is the total number of series turns

per phase, is the rotor speed, is the phase current harmonic

angle, is the slot opening factor and is

the winding factor, and being the winding pitch factor

and the winding distribution factor, respectively, where

when all the teeth are wound

Motor I (4)

when only alternate teeth are wound

Motor II (5)

when alternate teeth are wound on wider teeth

Motor III (6)

III. ARMATURE REACTION FIELD

In terms of the vector magnetic potential , Laplace’s equa-

tion, which governs the armature reaction field in the air-gap

and magnet regions, neglecting the eddy-current redistribution

effect in the magnets, is

(7)

for which the general solution is

(8)

where is the number of pole-pairs in the stator winding MMF.

The magnetic field components are related to by

and (9)

and the boundary conditions are given by

and (10)

where is the inner radius of the magnets. Analytical expres-

sions for the vector magnetic potential can be derived as

(11)

for a motor in which all the teeth are wound, and

(12)

for a motor in which only alternate teeth are wound, where

is given by

(13)

Therefore, the radial and tangential components of the armature

reaction field are

(14)

(15)

for a motor in which all the teeth are wound, and

(16)

(17)

for a motor in which only alternate teeth are wound.

If the phase current waveforms in the three-phase windings

are assumed to be sinusoidal or rectangular, and to have a peak

value of 10 A, Figs. 3(a) and 4(a), respectively, show instanta-

neous field distributions when A and

A, corresponding to BLAC operation, and A,

A, and A, corresponding to BLDC operation. Analyt-

ically predicted air-gap flux density distributions at the surface

of the magnets are compared with those obtained from FEA in

Figs. 3(b)–(g) and 4(b)–(g). Since the motors in which only al-

ternate teeth are wound have twice the number of turns per coil

the maximum radial component of air-gap flux density is ap-

proximately twice that of the motor in which all the teeth are

wound. As can be seen, in both modes of operation, the analyti-

cally predicted flux density distributions are in good agreement

with those obtained from FEA. However, close inspection of

Figs. 3 and 4 reveals that the analytically predicted flux density

is slightly higher than that calculated by FEA since the perme-

ance variation due to the stator slots is neglected in the analytical

model. This is justified since the permeance harmonics due to

the stator slots decay rapidly with distance from the stator bore

[12], and, in general, the representation of the stator MMF dis-

tribution by an equivalent current sheet without accounting for

the stator slot openings is sufficiently accurate. However, if the
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Fig. 3. Instantaneous armature reaction field and air-gap flux density distributions, for BLAC mode (i = 10 A, and i = i = �5 A). (a) Field distributions.
(b) Radial flux density component—all teeth wound. (c) Circumferential flux density component—all teeth wound. (d) Radial flux density component—alternate
teeth wound. (e) Circumferential flux density component—alternate teeth wound. (f) Radial flux density component—alternate teeth wound on wider teeth. (g)
Circumferential flux density component—alternate teeth wound on wider teeth.

width of the slot openings is considered to be large, the influ-

ence of slotting may be accounted for by introducing a “2-D”

permeance function in the analytical field [12] and eddy-cur-

rent loss [11] calculation. However, it then becomes much more

complicated.

It is also worth noting that, since it has been assumed that

in both the analytical and finite-element calculations,

the armature reaction field for the actual motors, for which

, will be slightly underestimated. However, the error

will be significantly less than 5% since the effective permeance

is due to the air gap as well as the magnets.

IV. EDDY-CURRENT LOSS

Since rare-earth magnets have a relatively low electrical resis-

tivity and recoil permeability, for most practical machines, the
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Fig. 4. Instantaneous armature reaction field distributions and air-gap flux density distributions, for BLDC mode (i = 0 A, i = �10 A, and i = 10 A).
(a) Field distribution. (b) Radial flux density component—all teeth wound. (c) Circumferential flux density component—all teeth wound. (d) Radial flux density
component—alternate teeth wound. (e) Circumferential flux density component—alternate teeth wound. (f) Radial flux density component—alternate teeth wound
on wider teeth. (g) Circumferential flux density component—alternate teeth wound on wider teeth.

skin depth at the inducing frequencies is significantly greater

than both the magnet pole-arc and radial thickness. Hence, the

induced eddy currents are usually resistance limited, and the as-

sociated loss in the magnets can be derived directly from the ar-

mature reaction field. For example, for the motors under consid-

eration, at the fundamental time harmonic, the skin depth is 104

mm at 400 rpm, and this reduces to 52 mm at 1600 rpm, whereas

the magnet pole-arc and thickness are 17 and 3 mm, respec-

tively. Even for low-order time harmonics, such as and ,

which are significant in the rectangular phase current waveform

under BLDC operation, it is still reasonable to assume that the

skin depth is greater than both the magnet pole-arc and thick-

ness, as will be evident later.

In order to determine the induced eddy currents, the expres-

sions for the equivalent current sheets and the vector magnetic

potential have to be transformed from the stationary reference



ISHAK et al.: EDDY-CURRENT LOSS IN THE ROTOR MAGNETS OF PM BRUSHLESS MACHINES 2467

frame to the rotating reference frame such that .

Hence

(18)

(19)

for motors in which all the teeth are wound, and

(20)

(21)

for motors in which only alternate teeth are wound.

The induced eddy currents in the magnets due to the time-

varying armature reaction field can then be calculated from

(22)

where is the electrical resistivity of the magnets and is an

integration constant which forces the net total current flowing

in each magnet segment to be zero at any instant, i.e.,

(23)

where and are the magnet outer radius and pole-arc, re-

spectively. Therefore, the eddy-current loss per unit axial length

in each magnet, irrespective of whether all the teeth or only al-

ternate teeth are wound, is given by

(24)

where the variables and are given by

(25)

Fig. 5. Variation of eddy-current loss with rotor speed at rated current, BLAC
mode.

TABLE II
ALL TEETH WOUND—EDDY-CURRENT LOSS, BLAC MODE

for

for
(26)

(27)

(28)

for

for
(29)

V. COMPARISON WITH FINITE-ELEMENT PREDICTIONS

AND INVESTIGATION

The developed analytical model has been applied to the three
three-phase, 12-slot/10-pole motors whose parameters are given
in Table I, and the calculated magnet eddy-current loss has been
compared with predictions from 2-D time-stepped FEA, using
the MEGA software package. Fig. 5 shows the variation of the
magnet loss at rated current, viz. 10 A peak, for BLAC opera-
tion. As will be seen, good agreement is achieved. As shown in
Tables II–IV, the magnet loss that results in Motor III is approx-
imately three times higher than that for Motor I, while the loss
that results in Motor II is approximately double that for Motor I.
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TABLE III
ALTERNATE TEETH WOUND—EDDY-CURRENT LOSS, BLAC MODE

TABLE IV
ALTERNATE TEETH WOUND ON WIDER TEETH—EDDY-CURRENT

LOSS, BLAC MODE

Fig. 6. Simulated BLDC phase current waveforms.

Fig. 7. Variation of eddy-current loss with rotor speed, BLDC mode. (a) All
teeth wound. (b) Alternate teeth wound. (c) Alternate teeth wound on wider
teeth.

The developed analytical model has also been used to predict
the magnet loss when the motors are operated in BLDC mode

Fig. 8. Loss spectra at 1600 rpm, BLDC mode. (a) All teeth wound. (b)
Alternate teeth wound. (c) Alternate teeth wound on wider teeth.

at rated current, using the phase current waveforms shown in
Fig. 6 deduced from dynamic simulations. The slight difference
in the waveforms is due to the different winding self and mutual
inductances [4], these being 2.91 and 0.32 mH, 4.62 mH and

0.01mH, and 4.85 mH and 0.001 mH, respectively, for mo-
tors I, II, and III. Again, good agreement is obtained between the
analytical and finite-element calculated eddy-current loss as will
be evident from Fig. 7. In addition, it will be seen that the magnet
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TABLE V
MAGNET EDDY-CURRENT LOSS FOR DIFFERENT STATOR CURRENT DENSITIES

loss in Motor II is approximately twice that in Motor I, and that
BLDC operation results in a significantly higher eddy-current
loss than BLAC operation. Since the electromagnetic torque
is produced by the fifth space-harmonic MMF, which rotates
in synchronism with the rotor, the magnet loss is zero for the
combination of this space harmonic and the fundamental time
harmonic for all three motors. When all the teeth are wound
[Fig. 8(a)], the magnet loss associated with the fundamental
component of the phase current is very small, the majority of
the loss being due to the seventh space-harmonic MMF and the
fifth and seventh current time harmonics. In contrast, when alter-
nate teeth are wound, the loss is due mainly to the fundamental
and seventh space-harmonic MMFs and the fundamental, fifth,
and seventh current time harmonics [Fig. 8(b) and (c)].

The eddy-current loss is influenced significantly by the max-
imum current density, or electric loading. By way of example,
Table V compares the eddy-current loss that results when the
three motors are operated in BLAC mode at current densities of
6, 15, and 30 A/mm , which correspond approximately to nat-
ural air-cooling, forced air-cooling, and water cooling, respec-
tively. As can be seen, the loss varies approximately in propor-
tion to the square of the current density and rotor speed.

VI. CONCLUSION

An analytical model for predicting the eddy-current loss
in the surface-mounted permanent magnets of a brushless
machine due to the armature reaction field has been presented.
The method has been validated by FEA and used to compare
the loss that results when all the teeth are wound and alternate
teeth are wound. It has been shown that BLDC operation results
in a significantly higher magnet loss than BLAC operation, that
the loss that results when alternate teeth are wound is almost
double that when all the teeth are wound, and that the use of
unequal tooth widths results in the highest eddy-current loss.
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