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Summary

Kron's polyhedron model based on a sequence of transformations
related to the orthogonal electrical network problem was proposed for a
wide range of system problems., The scattering formulation for a flow
process introduces a similar sequence of 'obstacles' and can form an
analytical basis for many of the concepts discussed by Kron, It can be
associated with the system problems incorporating an optimality condition
and the updating of a priori information, and ecan also be identified in
the sweep method of solution of the two-point boundary value problems for
optimal control and estimation, which would appear to be related to the
concept of wave propagation in Kron's model. The sequential networks in
the polyhedron model and the scattering problem thus provide a basic
analytical structure which has important applications in general system

theory.




1. Introduction

N

Kron developed the concept of the complete orthogonal network
incorporating nonsingular transformations in his pioneering work on the
generalised theory of rotating electrical machines and stationary electrical
networks, in which the overall system is related to a single primitive form.
Although the electrical network problem had been studied extensively, Kron
appeared to be the first to develop a complete formulation including the
symmetry of the orthogonal network solution. This then provided a basic
framework for the development of the method of tearing and the polyhedron
model, The significance of the orthogonal network defined in terms of
closed- and open-path variables has not been widely accepted and the broad
concepts associated with the polyhedron model representing a multidimensional
space filter have been largely unexplored, possibly because of the lack of
an adequate analytical basis which does not appear in the published work.
However, Kron's work represents an important contribution which now appears

to be particularly relevant in general systems theory,

Kron proposed a wide field of application for the polyhedron model
which consists essentially of a set of orthogonal network structures connected
sequentially according to the geometrical properties of points, lines, surfaces
and volume elements, Electrical, electromagnetic, thermodynamic, fluid
flow, chemical and cther types of physical wave phenomena were associated
with the model, together with a procedure for obtaining an improved least
squares estimate, similar to the process of updating a priori information

within a sequential recursive algorithm.

The general scattering problem, concerned with propagation through
media containing obstacles or distributed constants and characterised by the
effects of incident and reflected waves, has been shown to possess similar
propertiesl’ . It also provides an algebraic framework related to a
sequential network structure which supports the validity of many of the
concepts associated with the polyhedron model. The interconnection of
obstacles corresponds to the procedure for updating a priori information in
the least squares estimation problem, and can be associated with a process
of smoothing which also exists in the polyhedron model, The properties of
a star product define the connection of adjacent obstacles in the Scattering

preblem and in the continuum the syetem 12 represen

ted by a set of au

and linear matrix differential equations. A similar star product and




-2 -

differential equation set are also associated with the linear two-point
boundary value problems concerned with optimal control and estimation. The
sweep method of solution combining a forward and reverse integration or
filtering procedure as in the optimal smoothing problem, would also appear
to be relevant to the concept of multidimensional wave propagation in the
polyhedron model. The scattering problem and Kron's model thus possess
similar basic features which are of fundamental importance, particularly in

the study of system structure.

The present work illustrates the significance of Kron's polyhedron
model and the scattering problem, and the resulting sequential forms are also
shown to exist in the linear quadratic control and estimation problems. It
is believed that the concepts associated with the interconnection of mutually
interacting subsystems or sequential networks will stimulate the development
of generalised solutions and computational techniques required in the analysis
of large scale system problems.

2. Kron's polyhedron mode13_9

Kron's polyhedron network model or 'automaton' was proposed for a
wide range of system problems, concerned for example with multidimensional
curve fitting, the phenomena in molecules and crystals, brain modelling and
crystal computers. The model was endowed with self-adaptive properties and
assumed to accommodate many physical concepts concerned with multidimensional

‘generalised' electrical machines, thermodynamics, fluid flow and statistical

phenomena,

The model consists essentially of a sequence of multidimensional
networks, each represented by the solution of an electrical network defined
with closed- and open-paths, which Kron called an orthogonal network. The
adjacent networks are interconnected using boundary operators and incidence
matrices related to points, lines, surfaces and volume elements forming a
multidimensional space. The resulting topological structure can accommodate
superimposed electrical and electromagnetic variables, and the geometrical
properties of the surfaces passing through the given data points provide
additional information based on physical laws, which may be used particularly

for obtaining improved curve fitting.

2.1 The orthogonal electrical network probleml The general electrical

network problem includes the comnection of b-primitive branches specified by

E+e = z2(I +1i) or V =273 (1)
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where Z is a symmetrical impedance matrix for the primitive network and e,I
represent branch voltage and current source vectors respectively. In the
orthogonal formulation, the branch connections are defined in terms of square,

nonsingular connection matrices

s T =1
c = [c_c] , a=[a%a"=h
]
related to specified closed- and open-paths containing variables i° ,e ' and
' c
1° ,Eo' respectively. In the connected network
T.
m p i€ mc po e !
J = bfc c] . vV = b[A®aA°] | © (2)
c o ) = i
I EO

and with specified trees and links

c o0 ' cC o

TIC_ B TIO A

c = T T A o= i
L CL 0 L_Gm AL

A typical set of paths and connection matrices for the unit-tree, unit-link

"b case are illustrated in FIG 1.
‘\\
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FIG 1 Network specified with two closed- and three open-paths

The branch variables E,i and the tree-branch voltages EO‘ and mesh
1]

. C
currents i are related by

. T
1

' " r ] £
E = = AE L= [iL} = Ccl
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The branch variables are also constrained by the Kirchoff laws

¢cE = o % = o B = o

\

. T
New equivalent sources eL,I are then referred to the links and open-paths

or tree branches respectively, with

.éT . "0 ) IT o BT(AO)T
B = =Aec'= T ,I:: L=CI =
e C e I & 0
L c
1
where ec' = CCTe ° = (AO)TI

represent equivalent induced mesh-voltage and nodal-current sources
respectively, with arbitrary sources e,I. Combining eqns 1 and 2 and

rearranging them gives the solutions

&' ~1 -1 o' " -1 i of .k
i I -
oI N %4 I L 6T, Y o] [2 -
AT -1, S| -1 -1 L 1Sl
B 2y ~8q8y 2y B2y e, o =, Tyigdile 1%
(3)
Zo & Y. Y
v _— V2l SeTc=2 , |12 2aTya = 3
z, 2, Y, Y,
and with 7Z = diag(ZT,ZL), dlag(Y Y )
- - = T o
By =& ZTAL ) Yy = (p +A YA

The usual mesh- and node-solutions are included in eqn 3 with

L(e - ZI) E
T

i

I

M(I - Y&)

;oM o= ATt - g - gz

]

T ~-1
where L € (C "9C ) ¢
et e ¢
represent the branch-admittance and branch-impedance matrices respectively.
The matrices M,L are significant in many linear system problems, and in the
particular form possess properties similar to those of the generalised inverse

. 10
matrix” ,

Equation 3 represents the orthogonal formulation of the electrical
network problem, and a similar form is used to characterise each 'isolated'
higher-dimensional network in the polyhedron model, as illustrated in FIG 2.

. y i ; .
Incidence matrices Mi+l lnterconnect the spatial elements in adjacent networks

such as branches with nodes or planes, and are related to the boundary

3
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2 i ; o} : G
operators or partial connection matrices CC,A for the i- and i+l-networks,
with

(1)

(A ) (i).T o i-1 1 i=1.7T
'c (1+l) 1+1 ?

(CC ) A(i) =0 , M, "M, = L.(M. ) =0
The transformation diagram includes residual-type operators directed
horizontally between similar closed~ and open-path variables, with impedance/

admittance-type projection operators directed vertically between the closed-

and open-path dual variables.

2.2 Wave propagation in the polyhedron model Kron introduced a concept of

wave propagation into the polyhedron model, with a transverse electromaguetlg
wave assoc%ated with closed-path dielectric and magnetic variables (d( ), 7 ))
and (h(i)’ (i)) regpectively, and a longltudlnal wave assoclated with open-
path dielectric and magnetic variables (D( ), i \) and (H,, ), % )) respectively.
Propagation proceeds from the O-dimensional points to the hlgher dimensional
network elements, and induces electrical and electromagnetic variables, as
shown in FIG 2, consistent with the form of Maxwell's field equations, A

cycle of 'open-circuit' wave propagation repeats after each two dimensions,

and is represented by the general steps

' : . it i-1.T : )
P F Baa) T 2y M) Yoy @ ) by Byl s by =0,
' L

where (M;+1)+ represents an equivalent inverse defined by

(i+1) T

i % (1) c
AP LI R T LIE N (Asy)

i+l

which can be identified with the operation curl

°

Wave propagation induces physical variables with properties which
can be associated with higher-order divided differencess’6’8’9, representing
generalisations of similar quantities used in the calculus of finite
differences. These are proposed for obtaining improved curve fitting with
nonlinear functions, although the precise relevance of these variables is not
discussed in detail and requires further investigation, Similar properties
may be derived using the scattering representation of a flow process, and this
also provides an analytical basis for many of the physical concepts discussed
by Kron. The scattering formulation includes inherently the effects of
interaction between coupled obstacles or ‘networks', compared to the 'open~
circuit' propagation across the polyhedron with a 'pathway' defined by the
incidence matrices M;+i’ which apparently avoids the necessity for considering

such interaction.




3. The scattering probleml’2

The interconnection of physical components will in general introduce
an effect of mutual interaction or feedback, with the subsystems being
influenced by and reacting with the adjacent subsystems. The scattering
problem, concerned with the interconnection of 'obstacles' in a flow process
defined in terms of incident and reflected variables, introduces similar
effects of reaction within a combined scattering matrix relating the input
and output variables. The representation has application to energy transfer
and wave propagation in inhomogeneous media, and is particularly relevant in

network and transmission line theory, neutron diffusion and radiative transfer.

The problem is represented by the connection of two obstacles, as

in FIG 3.
Tl T2
7 //
V., o—m o I T ——— Y/
1 v 5
3 v
4
v-ﬂ—*—-/"‘ = %
£ L iy
x y v z

FIG 3 Propagation through adjacent obstacles

The n—component reflected and incident waves are related by

2 A A 6 AT

where T, defines the scattering matrix for the jth obstacle, and Sj(x,y),
Rj(X,y) and Uj(x,y), Wj(x,y) are nxn transmission and reflection matrix
functions, with spatial coordinates (x,y). The system variables are also

illustrated in the transformation diagram of FIG 4.
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FIG 4 Transformation diagram representing the scattering process
Eliminat;ng the connecting variables in eqn 4 then gives the combined system
responsc )

Ve s, (5-U,W.)"'s,, U+, U (6-W.U.) 'R [v v
o AL REUTRRTTRNY M1 e
v " -1 & - i 1 &
L 2 W1+R1W2(5 UIWZ) Sl, Rl( WzUl) R2 _V6 V6
where T :ip

L, defines the star product or combined scattering matrix for two

obstacles, For a series of obstacles, the continued star product

18 BIVEn by B = Tl*Tz*..*Tn. The input and output variables may also be

related by

1 L1 "1 11
Vli —Sl_lUl i 18 <t

Vg] R -W.S, ‘U, W,S _1][v v
with & ¢ hined transformation given by the continued matrix product

L=1L0JLL..
gial
1, & il
The matrix L can be identified with the orthogonal network matrix
N of equ , m v

with the scattering matrix T corresponding to Z and Y. The matrix

N also Jscomposes into a star product with

. A -1 T 4
0 oy ¢
v oo 120 ™ | 280 L A
-1, -1\ -1 . -1
L2 23 iy oy S I S B 2
S T 1 -1
o E Y ¥
g _ LA VR I 21 R LA N v T3
1 -1 21, =1 T
v, -, o v, Y, -y, o Ay

The stal

and eqn

AR e R e e

nroduct can thus represent the form of an orthogonal network sclution

% illustrates a basis for interconnecting network tree and link elements.
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The components of the combined star product and corresponding elements of the
orthogonal network sequence of FIG 2 are illustrated in FIG 5, The
contributions to the response variables are indicated, together with the
unit-block and residue-type transformations (6—ini+l)_l representing the
connecting zone, which also introduces the properties of a return-difference
operator. Kron's orthogonal network sequence can thus be represented as a
scattering problem, although it may appear that the solution does not introduce

inherently the properties of a return difference operator, with U, or W, o= 0.

+1
This would also be supported by Kron's reference to the polyhedron model as
an open-circuited structure of networks. However, the orthogonal network
solution can be considered to contain a return difference effect within the
off-diagonal elements of N, and thus includes the ability to incorporate a
priori information (as YL or ZT). In the scattering problem, this effect
and the return difference operator are introduced into each successive stage
of the multi-stage process by the effects of the connecting zone between
adjacent obstacles, in contrast to the connection of adjacent orthogonal

networks in the polyhedron model based on the incidence matrices M1+1.

The solution of the scattering problem for adjacent obstacles
extends in the continuum to form a set of functional equations which generalise

to a matrix differential system given by

Sy Uy (D+UC)S, A+DU+UB+UCU
Ty(X,Y) = = (7
Wy Ry RCS R(B+CU)

where TY = 3T/3%y and A,B,C,D are Eomplex nxn matrix functions of the real
variable y, given by (Ty)O = g %J and T(x,x) = Gzn. The projection matrices
U,W are obtained as solutions of a Riccati-type equation and a gquadrature

and possess properties of covariance or admittance/impedance-type operators.
Matrices S,R are obtained as solutions of linear differential equations with
coefficients depending on U. A linear matrix differential equation is also

defined in the scattering problem, with

-B -C R, Tty
H = H(x,y) , H = - " y Hix,x) = 4
= A D Y, s-ur M 4
Also H = = L, and the components of H can be identified with the orthogonal
network solution. A similar structure appears in a variational problem

defined by an integral in the dependent variable and its derivative given by
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v, a'lT [F E][a’ a']T [B
Ji Jdy , J = 5 -
Y1 o E° G| |a o B!

The definition of variables B,B' represents an L-type operator which transforms
to a scattering T-form to give the Euler differential equation in the
canonical variables o,B

of ~F~1E F_l o

B' GEFE EF L |g

A similar formulation appears in the linear two-point boundary value problems
for optimal control and estimation, which also contain the matrix differential
system of eqn 7.  These problems introduce a constraint of minimum quadratic

performance which exists inherently in the electrical network problem as a

minimum power condition, and such a condition also appears in the formulation

of the scattering problem,

3.1 The scattering process as a lattice-type structure The component

transformations in the scattering representation may also be formed into a
i lattice~type structure as illustrated in FIG 6. The lattice

cross connections define the input to output through-transformations, and

with the interconnection of adjacent lattice~type 'obstacles' as in the

scattering problem, the overall structure appears as an interwoven double

helix consisting of the transformations Rn’"RZ’Rl and 81’82'°Sn with
interconnections Ul’w2’U2’w“..' The overall lattice
e )

illustratesparticularly the significance of the interconnecting zones, with
alternate clockwise and anticlockwise transformations which introduce the
return-difference-type operators (S-ini+l). They are also associated
inherently with the process of updating a priori information into the

adjacent stages and with the method of tearing and interconnection.

It is of interest to note that the lattice sequence appears to
have a similar form to the double helix model for the DNA molecule33, with
Ui,wi+1 forming a core of transformations between the coiled vertical
transformations Rn"Rl and Sl°'Sn in reverse directiocns. A coupled lattice-
type model with reverse cross connections and reciprocal feedback repressor
paths representing a sequence of undamped nonlinear oscillators, has also
been used to represent the dynamic properties of a control mechanism for
macromelecular synthesis in cellsBz. The modelling of continuous bicchemical
control systems in cells and the pattern of molecular interactions requires a

highly organised and integrated spatial-time structure and a formalism of
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functional analysis and automata theory with continuous signals. The form
of the interconnected lattice and the scattering problem would now appear to
provide a basic framework with important applications in the study of complex

cellular structure and organisation.

4. Optimality conditions in the polyhedron model and scattering problem

The transformations forming the structure of Kron's polyhedron model
and the variables in each network can be associated with an inherent minimum
power condition. The scattering problem similarly contains an algebraic
framework with properties of a return difference matrix or feedback effect
which can be associated with a minimum quadratic condition. Both
representations thus include features of a least squares solution, and the
interacting sequential networks introduce dimensionless and impedance/
admittance or variance-type operators in a multi-stage solution procedure
which evolves by updating a priori information. A similar structure is
shown to exist in the linear two-point boundary value problems for optimal
control and estimation, and similarly in the classical least squares problem

incorporating a priori information concerning the unknown parameter vector.

4.1 Least-squares estimation A least squares estimate for the parameter

vector % in the measurement equation
y = Hx + v (8)

with known mean and covariance properties

ELV] =0 , E[:va] = R | E[xx:r_]‘ =8 , E]:vxT] =0
is obtained by minimising the function

2 2
IG) = [ly-mx|] T+ ] T
- R 5

vhers ”v![z_l = VTR_lv. Then
R

x = PHR 'y, P = (s +0'®R 'm)"' = s-su'ims
and y = HY = MYy, M = H(s tem'R tmy iyl
where L = RE - = ! = (remsaty ! , M = R-RLR
and F = (G—NR_l)_l = S+HSHR -

represents a return—difference~type matrix.

We can then identify the form of the orthogonal network matrix N

of eqn 3, with




-— 14 -—
0 nt p Ry Ry Y Y st ogR7?
- 1721 _
R = - = N - . = - -1 (9)
b ~-R H X X _Y3Yé R ™H -R
]
The particular analogy requires the condition i¢ = 0, and a return difference-

type matrix also appears in the electrical network problem with

F = [6+¢Y _1Y3(Y1 -y v,y )-1Y2]-1 = 6-v vyl

4 274 3 4 33 2

The properties of a scattering matrix also appear with

- -1 ° -1 - -1,”
R “(y-vy) R 7y {0 [k (y=y)
o = N] " « (%] F N2 5 (10)
Loy . Ly ' [y L X
r—a R g7t
where N = N_#%N = | *
X R 0 H
The star product transformations are illustrated in FIG 7.
-1 T
R “(y-y)=-Ly H
- Ji
e A (8)
R_ly s C(Ky-r) G(s)
YMe e 0
C(s)r(s) -1 -1 least squares
=R R S m/c system
a 0 ! 5
A o | Zgl YM YN [ control system
¥ = =F -C "(s) C(s) S x
v-e -} = _ e v
Ky-r 8 y = MR 1y H ? )
v A(0) . THB
K(s)y(s) K(s)

FIG 7 Transformation diagram for least squares,

multimachine and control system problems

The transformation operators M,L associated with the least squares
solution without' a priori information and the convenfional network problem
appear within the component blocks of FIG 2, thus indicating that Kron's
vertical propagation within each polyhedron component introduces effectively
a least squares operation, with the measurement and covariance matrices
defined by the properties of the higher-dimensional elements. The improved

estimate obtained by incorporating a priori information (8) may then be
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identified with the orthogonal electrical network, although it does not exisﬁ
within the solution of the conventional electrical network problem, as Kron
appreciated by physical reasoning. The interconnection of obstacles in the
scattering problem similarly introduces the effects of a priori or previous-—
stage covariance-type information based on a return difference or feedback-
type operator associated with the adjacent stages. The polyhedrén model and
the scattering problem thus include a structure for updating a least squares
solutionlz, which also forms the basis of Kron's method of tearing which is
highlighted by the analogy between the components Yl,Y4 and the covariance

operators S_l,RF1 in eqn 9.

The form of eqn 9 and the star product components of eqn 10 and the
associated properties also exist in the multimachine system and multivariable
feedback control problems.

4.2 Multimachine system  The connection of generators with a system network
1,11,12

is defined by the relationships

) ) ) s
iy = YNVN , Vv = eszl s V= A(B)vN P lN = A (8)i

where © represents machine load angle and A(8) the generator-network node

connection matrix. The generator variables are then given by
S i ;
v = M(S)YMe = (AZNA i, i =Le
here M=AE YA AT L=y -y =Y F L=z +az Ayt
! N s ’ M MM M M N

The solution includes transformation matrices M,L with impedance and admittance
properties respectively and a dimensionless return difference matrix F as in
the least squares problem, with implicit feedback introduced by the machine-
network interconnection and machine equations. The machine-network relation-
ships may then be specifieﬁ in the form of eqns 9 and 10, with the variables
defined in FIG 7. The machine system can thus be identified with the

orthogonal network and scattering problems, with

~AT(6) E +AT(8)Y (8) -5 X ] A:(B) ¥
N = N % , N = M N

“ZM A(8) “ZM 5 | I 0 A(®)
The etar product then effects an interconnection of the machine and network
parameters by means of the connection matrix or transmission operator A(8)

and by analogy the network admittance matrix Yq introduces a pricri information

B
network g
concerning the ‘estimate‘ for fvoltages. The orthogonal electrical network
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problem also forms a basis for the analogy between the machine system problem

and the concept of wave propagation in the polyhedron modell.

4.3 Multivariable control problem The closed-loop response of the linear

multivariable system represented by a plant transfer function matrix G(s),
forward controller C(s) and feedback controller K(s), with reference input

r(s) is given by
y(s) = (§ + GCK)_lGCr(s)

Transformation operators may then be defined, as previously, with

M(s) = K(§ + Gck) ‘g . L(s) = c-cMC = cF

where F(s) represents a return-difference matrix. The solution can then be
represented in terms of an orthogonal network matrix N and the components of
a star product as in eqns 9 and 10, with the variables defined in FIC 7y
. =1 i

provided C exists. Then

-G §+GCK -8 C G &

=] =1

~C K -C " 8 0 K
It is significant to note that the controller matrix C(s) may be associated
with the reciprocal covariance properties of the error signal, by comparison
with the estimation problem. The solutions of the least squares, machine

and control system problems are also defined by the respective quadratic

functions

(1
i

lets)| 2 +|ly()] 2

2 oy 2 G2 e 1l 2
Il 1 =l ", = | Ilz vl _

S M YN

The transformation diagram of FIG 7 incorporates a basic topological
and algebraic structure defined by the interrelationships between similar and
conjugate sets of variables, and defines the available forms of solution for

a wide range of linear system problems.

The general linear feedback system may also be represented as an
equivalent signal-flow graph in a lattice or return-difference operator form
as illustrated in FIG 8, where u(s),y(s),d(s) represent transformed input,
output and internal dynamical variables respectively, and disturbance n(s)

i . : 31
1s included as an output variable




. e

d(s) : F(?z, n(s)

y(s)

u(s) -
W(s)

FIG 8 System representation in return—-difference operator form

The feedback system is characterised by the operator matrices U(s),V(s) and
W(s), and F(s) = 6-T(s) represents the return-difference operator matrix

where T(s) is the return-ratio operator matrix. The output is then given by

y(s) = [V()F H(s)U(s) W (s)]u(s) + V()E “(s)n(e) = Gs)u(s) + V(s)F L(s)n(s)

n

The transformations can be illustrated in the scattering forms of FIG §.

-u(s) FL(s)U(s)
u(s) =0 o= n(s) u(s) == ; d(s)
W(s) I F(s) { a(s) ] % Fiesy
- d(s) y(s) - e n{s)
y(s)
V(s) V(s)F H(s)
(a) (b)

FIG 9 System representations in scattering form

The scattering or system matrix associated with FIG 9(a) is then given by

=U(s) TF(s)
P(s) =
W(s) V(s)

The scattering matrix for FIG 9(b) also includes a star product given by

-1 -7
[ “(s) T “(8)

of 1
LTF (8) F "(s)]

F(s)U(s) 7l (s) ] %‘—U(s) o

]
(3] NG V(s

N(s) = -1 ~
W(s)+V(s)F " (s)U(s) V(s)F (

-l

The matrix N(s) can then be identified with the orthogonal network matrix N,

with impedances and source and response variables defined by




Z. Z F(s) ~U(s) i u(s) i d(s)

1
il
[14]

242, V(s) W(s) e’ n(s) E' (s)

4.4 Multistage optimal contrel problem The solution of the control problem

concerned with minimising the N-stage index
N-1
T L. s ’ i : y
J o= g Momx@) + 4 [x (eE)xE) + vl (D)RE) u(i)]

i=o
for the discrete linear system
x(i+l) = @(1)x(1) + A{L)uli) , x(0) given

can be formulated by defining the B sequence

B o= ) 2L (DA + 3 ahORE @) + TG [pE)xE) + A uE)]

The condition 8H1/3u(i) = 0 then gives the minimising sequence
u(i) = =R I(i)aTE)A+)

The optimal trajectory and undetermined multipliers are defined by a two -

point boundary value problem represented by the coupled linear difference

equations
ATIEE a(i) =AC)E L) AT ()T x(i) wo)] T wted
A1) Q(i) @T(i) A(i+1) ’ A (N) Q(N)x (W) '

i=0,.N-1 (11)

The sweep method of solution is then based on the transformation
A@E) = P@i)x(i) (12)
Combining eqns 11 and 12 gives the backward recursive relationship

P(i) = ot (1) [Pl +a (R H (i) a7 ()] Tre (i) +Q) , i =N-1,...0, P) = Q)

Then x(i+1) = [6 + AGDE T(1) a7 @)PE+)] Te@)x() = M(1)x(i)

uG@) = -[RG) + AT@PE+DAMN] AT ()P G418 () x(E)

An orthogonal network matrix and the components of a star product

are identified, as in eqns 9 and 10, with
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= 19 T~
‘ oL TS I .
! x(i+1) -A(i) P %1+1)+A(1)R (LA™ (1) | |~u(i) -u(i)
= =N
0 ~R(i) AT i) 1 rcny A(i+1)
A Plasn) a@)R )
¥y %, R raT@) =l
S RN [a@) P iien
N = N*N, = *
L2 -R(1) 6 o a'd)

The augmented system matrix of eqn 11 can also be specified as a scattering-~
type matrix which combines with a previous~stage matrix in a star product

to form the state transition-type matrix M(i) and current—stage covariance

matrix P(i), with

x(i+l) M(1i) O] [x(i) x(i) ]
. = T(i)
A(L) P(i) O] |[A(i+1) A(i+1)J
) -AE)R @) aT () [ s 0]
where T(i) = i = J
Q(i) & (i) P(i+l) O

The component transformations associated with the sweep method of solution

are illustrated in FIG 10.

6(i) (41 5
x(1) =0 . o x(1+1)
Q(i) —A(i)R(iflAT(i1 P(i+1)
A() = o B S A(i+1)
@T(i) A(i+1) 0

FIG 10 Sweep method of solution in scattering form

The multi-stage minimisation procedure and associated dynamic programming
. algorithms thus operate according to the properties of the star product

in the scattering process, which essentially incorporates the

effects of a priori information by updating the previous—stage covariance

operators. A similar multi-stage procedure also exists inherently in the

polyhedron model.




- 20 =
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4,5 Linear optimal control with terminal constraint Optimal control of

the linear system

x(t) = Ax(t) + Bu(t) , y(t)

il

cx(t) , x(tO? = X

with minimum performance index

t
Jw = 4t
o]

(yTQy + uTRu)dt + 4 yT(tl)Fy(tl)

subject to the terminal vector constraint z = Zy(tl)

is defined by the solution of the two-point boundary value problem

%(t) A - [r(e)]  [x(e) o 5

: - : - T

B(t) -cToc AT ||p(t) (t)) |c"Fox (e, )+ ZTAJ
where A is a vector multiplier. Adjoint-state variable and terminal

constraint relationships are then introduced with

P(E) = B(E)x(E) + G(A 2 = GT(O)x(e) + N(OA , G'(t) = 2
giving

[ A N N e x(t)

p(t) i p-aN 16T v Y| 2 ! z

p(c)] cTz" cTrc][ A L[

|z 0 ZC x(tl) . 2 x(tl)

Equations 14 and 15 will now combine as a star product to form a compo

object with external 'reflected' and 'incident' variables in the form

o e

— 'I‘ i
P(tl) x(t) -C'Z°N "G CT(F+ZTN 1z)c
= T_*%T where T %T_ =

172 172 =1 T 1

p(t) x(t,) P-GN G GN “zC

The corresponding transformation diagram is illustrated in FIG 11.

(13)

. N(tl) =0

(14)
(15)

site
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Tyt
x(t) A s piE.)
1
P-GN "G 0 C FC
p(t) x(tl)
Z ZzC _

terminal

constraint

FIG 11 Scattering representation of optimal control problem

The state variables act as 'inecident' variables in the forward direction to
the left of the 'obstacle' and the adjoint variables act as left reflected
variables in the reverse direction. The terminal constraint is also defined

with external state and adjoint variables, and variables X,z appear in the

interconnecting zone. The combined scattering matrix is also represented by
- - -1
§ 0 ¢t d] Nl *] z" 0] o CTFC1
TI*TZ = % * i sed * *
ps] loo [P oz o ¢ |

The form of an orthogonal network can also be identified in

eqns 14,15 with

T .

z,z,]  [We - [2122]
1 T2

Z,2, G P 2,2, ]

[KCTFC)_I ~(c'rey LTt

1zec"re) ™ —ze(cTrey LTt

NI
]
i

The variables A,p(t) associated with the 'obstacle' Tl may then be identified
1
with the closed- and open-path response variables i° ,Eo' and x(t).z with

1
’ o} .
the open- and closed-path source variables T ,ec' respectively,

The relationships of eqn 13 also lead to a set of matrix differential

equations which define the optimal control problem in the form

G P (PBR 1BT -A")G, -PA- ATP+PBR 1BTP -C"QC G(tl)P(tl) CTZT CTFC
- L] - 3 =
N Gl ¢'sr 8Te ., oF R 1pTp-4) N(tl}G?(tll 0 20
(16)
- -1 1.7 -1
and u(e) = R BTG(ON (02 -~ BB [P (e)-6(oN (r)aT ()] x(e)

Equations 16 can be integrated backwards to yield P(t),G(t) and N(t), then
eqn 13 is integrated forward as an initial value problemlB, The differential

equation set appears similarly in the optimal tracking problem and in the




.
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terminal control problem requiring Xi(tl) = 0.13 It also appears inherently
in the scattering problem in eqn 7, with the space argument (x,¥) translated
to a time interval. The linear optimal control problem thus incorporates
concepts of scattering with interconnected obstacles, and the associated
algebraic relationships also appear within the structure of the orthogonal

network and thus similarly in Kron's polyhedron model.

4.6 Xalman-Bucy filter Consider the random process x(t) and measurement

z(t) generated by the system
x(t) = Fx(t) + Gu(t) z(t) = Hx(t) + v(t) (17)

where u{t),v(t) represent independent zero-mean white Gaussian noise vectors

with covariance matrices QS (=1) ,R8 (t~1) respectively, The ninimum-variance

~

estimate x(t) is generated by the Kalman-Bucy filter equations
X(t) = Fx(e) + K(e)[z(0) - Bx(0)] , K(t) = p(e)nlp

where the state error covariance matrix P(t) is given by the solution of a
matrix Riccati differential equation. For the stationary filter, the Laplace

transformed solution is given by

x(s) = [8 + o(s)PHR 6] Lo ()piTR Las) , 0(s) = (sgor)-L
y(s) = Hx(s) = MR '2(s) ,
where M = H[P_1®_l(s) ¥ HTR_lﬂ]_IHT ,L=r gl o [R+u@(s)PH?]'1

A return-difference matrix F(s) also exists, with the tracking error given by

1,~1

e(s) = Z(S)~H§(S) = RLz(s) F_l(S)Z(S) » F(s) = (8-MR ")~ = §4Ho(s)K

The solution can now be defined directly by the form of the least
squares estimation eqns 9 and 10, with a priori covariance § = d(s)P, The
stationary optimal filter problem thus alss includes a structure which is
associated with the orthogonal network and the scattering problem. The
star product effects a combination of the measurement noise covariance with
the 'previous-stage' transformed error covariance operator ¢(s)P representing
a priori information. A direct analogy also exists with the machine system

problem with R = 72 , H = A(®), 9(s)P = ZN' The condition of optimality for

M’
the filter problem in the frequency domain, represented by the spectral
density for the observationla, can also be defined by means of a star product

in the form
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) “G(s) R+G(s)QG (-s) =5 q] [es) R

g 6L (-s) o tsl o e :

n
3>

il
=

The scattering matrix N is similarly identified as an orthogonal network matrix

with

1 Y2 R G(s)Q

T
3 Y4 QG (-s) =Q

13,15-25

4.7 The optimal smoothing problem Optimal smoothing provides a

state estimate at intermediate time points t, based on all measurements within
the range t0§t$T. It gives an improved estimate, with reduced variance,
compared to the filter estimate at time t based on data obtained before the
time t. A solution is formulated in terms of a two-point boundary value
problem which can be solved using a forward and reverse sweep or integration

: technique incorporating properties of the filtering solution.

4.7.1 Continuous-time fixed-interval smoothing The problem is stated~ given

the measurement vector {z(t), tostsT}, determine the minimum variance estimate
of the random state vector {x(t), tostsT} generated by the system defined by
eqn 17 with similar noise properties and known initial state mean and error
covariance values. A solution can be formulated in terms of the Hamiltonian

. Y
function

Ho= L+p (0@ +cu®] , L = 4 {ufl > +llz-nx]l 23
Q R

The condition oH/3u = O and the canonical equations %X = aH/9p, p = —8H/9x lead

to the two-point boundary value problem represented by

@) [ F ~GQGT] [x(t) : T o0 x(t,) x =2 _p(t )
sy R R ||pe)]  [ETR Yaco) (1) 0

i

(18)

: An off-line sweep method of solution for the smoothed estimate is

then formulated with the transformation18
-1
p(e) = =P “(t){x(t) - g(t)} (19)

Combining eqns 18 and 19 then gives P{(t),g(t) as solutions of an initial value
g g s

problem, over the forward interval (tonT), represented by
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P = FP + PPl - PER Tip + cQe’ » P(t) = P (20)

o = T = -

g = (F - PHTR 1H)g + PHR lz 5 g(to) = xo _ (21)
where P(t) = P(t/t) represents a filtered error covariance. The smoothed

trajectory x(t/T) is then obtained by backward integration of eqn 17, from

T to to’ in the form

=

X(t/T) = (F + 6Qe P Nyx - GQGTP'lg (22)

with a smoothed terminal state given by the optimal filtered estimate

x(T/T) = g(T) = x(T), and from eqn 21, for all T,
d;(T) - . B 9 i N -
T = Fx(D) + R(T) [z(1) - Bx(T)] , R(T) = p(T)n'R » x(t ) = %

O

(23)

The solution thus includes a forward sweep to the end conditions defined by
the filtered estimate ;(T), followed by a reverse sweep to an intermediate‘
stage giving a correction of the corresponding filtered estimate, The
smoothing solution thug only requires the solution for the filtered estimate
g(t) = ;(t) and P(t) forward in time, then eqn 22 is solved backward in time

; ; 25
to determine the smoothed estimate””,

The optimum linear smoother may also be considered as an optimal
combination of two independent filter estimates, based on a forward estimate
at time t using data in the range t -t and a backward estimate at time t
using data in the range t—T17’22’26. The forward filter of eqns 20,23 with
a priori knowledge ;l(tOLPlftq)wiilﬂgive ;1(t) and Pl' The backward estimare
can be obtained by replacing X, by X, K by -K and P1 by —P2 in theAforward
filter equations, with szl(T) = 0, giving an independent estimate xz(t) by
tracing backward for the period T-t, The estimates with zero-mean Gaussian
statistics are then combined to give an unbiassed smoothed minimum-variance

estimate of the form27

x(t/T) = PCe/T) [P, (0x (c) P, (©%,(0)] , P(e/1) = [, ) » P, "))

or x(t/T) = X () - PO © + 2, 0]k ) - x, ()]
= ;2(1:) " Pz(t)[Pl(t) * szt)]ml{:;:l(t) = ;Z(t):[
and P(c/T) = Pl(t)—Plct)[?l(t)+92(t)]”1plgt) . pz(t)[%1(c)+pz(t>j‘1pl(t)
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A scattering formulation can then be introduced with

X/ ] ) (5+P1P2“1)‘1 P1(5+P2'1P1)"1P2_1 x, (£) = ;l(t)
_;c(t/T)—xl(t)_ —Ple"l(<‘5+P1P2"1f1 P1(<S+P2_1Pl)—1P2_1 x, (t) x, (t)
X/ ] %, (£) x(t/T) x(£/T)
~ ~ = Tl __1 1 o~ A H _1 ~ A =, T2 ~
% (£/T)~x%, (£) ] Py ) {x(e/T)-x, (£) ]} Py @) {x(e/T)-x, (6) ] x, (£)
8 Pl(t) ) 0
where T=T *Tz = ® -1 -1
0 Pl(t) —P2 (t) P2 (t)

~

The combination of estimates xl(t) and Xz(t) based on the star product of the basic

components Tl’TZ is illustrated in FIG 12.
. S x(t/T) 8 A
xl(t) = = x(t/T)

P -1

. 0 P =E, t)
x(t/T)—;{l(t) «—l - - x, (t)

1 Pl_l{;(t/T)-;l(t)} Z,

FIG 12 Optimal combination of estimates in scattering form

The two-filter solution also produces a differential equation setl7 as defined .

by the scattering problem.

4.7.2 Discrete-time fixed-interval smoothing15’17’2o’23’24 The discrete-

time precblem includes the vecter difference equations

P

x(i+l) = o(i)x(1l) + A@)u(i) , =z(i) = H{E)x() + v(i)

where u(i),v(i) represent independent zero-mean white Gaussian noise sequences
with covariance matrices Q(i)ﬁji, R(i)éji respectively. A soluticn for the
minimum-variance estimate of the state sequence {x(i), i = 0..N} based on the
observed sequence {z(i), i = 0..N} is formulated by minimising the loss
function1

N-1
lz-u@=@ 2, +1 Gllu@ll®, o+

J =1 HX(O)”;OH
o) R (1) i=o Q0 (1)

b=

2
p "l

AT (1) (k(i+l) = o(L)x(i) - AG)u(iy]}
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Setting dJ = O then gives the two-point boundary value problem
"~ : ; PR . B -
x(i+1/N) o(1) A(L)QL)A™ (1) x(1/N) 0

= _ + N (24)
A(i-1) SEORTT DG o | aw | KR g

where x(i/N) represents the fixed-interval smoothed estimate of x(i). The

boundary condition is represented by
._1_ %
AMo) = -B ""[x - x(o/m)] x AfH) =

Then by induction, the smoothing solution reduces to the form

x(i/M) = x(@/0)+[5+2 OB OR T @R (o (rE) = #(i-1)x(i=1/i-1)+P (1) A (i-1)
| - (25)
p v T TR N SO ] URRRMSICES. | i T
P(i+l) = ¢(i)[8+P(i)H (i)R (1)H(1)] P(1)e" (L)+A(1)Q(i)A™ (1) (26)
x(i/i) = @(i—1)§(i—1/i—1)+[}+P(i)HT(i)R'l(i)H(i)]"1P(i)HT(i)R"1(i)[;(i)~ﬂ(i)¢(i-1)

x(i-1/i~1)] (21)

Equations 26,27 represent a forward recur51ve solution of the linear fllterlng
problem and the terminal stage estimate K(N) gives the smoothed estimate x(N/N)
and with A(N) = 0 for fixed N the solution is transformed to an initial wvalue
problem. Backsweeping using eqn 25 and A in eqn 24 then gives the fixed

interval smoothing solution.

The augmented system matrix of eqn 24 can be considered as a
scattering matrix, and combines with the current-stage covariance matrix to
give the relationship of eqn 26 in the star product

. 5 ; . S i
< P{141) = Pi) o (i) A(i) Q(L)A™ (1)

- * _ (28)
s el - ws —HT(i)R 1<i)H(i) @T(i)

The forward filtered estimate of eqn 27 incorporating the measured data and
previous-stage filtered estimate, and the backward smoothed estimate of eqn 25

incorporating the filtered estimate and vector A(i), may also be represented in

the scattering form

<CL]4Y T RME)2) HY (1) ~HL ()R (E)H (L)
-1, .~ . = T|. I T . -1
P (x(i/1)-0(i-1)x(i-1/i-1)}|  |x(i-1/i-1) H (i) -HT ()R L (E)HE)

P{i) o(i-1)]

P(i) ®(i-1)]




(i /M) A (L) ot @ W R T muE] P §
-1 ~ =T » T=1q T,.\ -1 *
P (i) {x(i/N)-x(i/i)} x(1/1) (i) -H ()R “(i)H() P(i) o

The system matrix of eqn 24 can be associated with the impedance matrix

7 of eqn 3. An orthogonal network-type matrix NO then exists in the linear
two-point boundary value problem with
Sy 4 : -1 T,...-1,. s
x(1/N) A(1) 0 7\(1)+ZLL H (L)R “(i)z(i)
- No - Tl 1 - N0 ° =1 I -,
A(i-1) x(i+1/N) H (1)R “(1)z(i) x(i+l/N)+ZZZ4 H ()R “(1)z(i)
~z. 71y 7
1 2 1 -
where N0 = -1 -1l =
24—2321 Zz 2321
= . « oD =], .oy
—¢ T(1)A)Q(1)AT (1) S % (1)

o (4 DR RO @A) - R Gy e o)

Closed~ and open-path response and source variables may then be related to the
smoothing problem variables. A similar representation has been considered as
the basis of a parallel filter-smoother algorithng, with the elements of a
matrix corresponding to Z forming sweep quantities which can be obtained from
a parallel step solution of a differential equation set similar to eqn 7.

The smoothed estimate may also be obtained as an optimal combination of two
filtering estimates, as in Section 4.7.1. The corresponding covariance

matrices can then be obtained from

PLG) = -A"lE)BGE) Pz_l(i) = I L)kl
B(i) A(i) A1y HiE=1) B(o) A)] o "1
where = N (i) , = (29)
K(E) 3() J(i-1) K@E-1)] ° K(f) J(f) 0 &
with 22,23 symmetrical, Expansion of eqn 29 then gives ‘
, — . -1
Py =z, + 2P G- [8 - zp, (G-1)] z,
. . -1
P,(i-1) = -z, +2,P ()[s + Z,P,(1)] Z,

The covariance matrices are also defined by the star product of eqn 28 and by




_.28_.

z,(i+l) -z, (i+1) LF L. - =

—23(i+1) 24(i+1) 32(i+1) - fz(i) =

1

The corresponding transformation diagrams are illustrated in FIG 13.

Zl(i)

2, (1)
Z4(1)

I
f

Il

e P, (1)

FIG 13 Foward and reverse sweeps in scattering form

The scattering formulation and the solution of the orthogonal
electrical network problem which forms the basis of Kron's polyhedron model
exist within the two-point boundary value problem, and the sweep method of
solution incorporating a combination of forward and reverse-time optimal
filters appears to have relevance to the concept of wave propagation in Kron's
model. The formalism is also similar to the procedure of invariant imbedding
which has been applied in a number of different fields, including wave
propagation and neutron transport processes, and can be used for reducing
coupled differential equations subject to two-point boundary conditions to

T . 29
two sets of initial value problems using a sweep method ’30,

5. Conclusions

Kron made a significant contribution by formulating the electrical
network problem in terms of closed- and open—path variables and in proposing
a wide application for its basic structure. The resulting orthogonal network
was developed into a polyhedron model representing a geometrical structure
which could accommodate the dielectric and electromagnetic phenomena in
electrical networks and wave propagation in higher aimensional structures,

The general application of this work was discussed at an early stage, before
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the development of other aspects of system theory, essentially on the basis
of physical intuition and a deep understanding of the behaviour of electrical
networks and electromagnetic wave propagation. However, the relevance of
Kron's work has not been fully appreciated and accepted possibly because of
the eﬁphasis on physical reasoning and the apparent lack of an adequate

mathematical description.

The polyhedron model includes a cascade connection of multidimensional
networks and can be assoclated with the scattering representation of a flow
process incorporating a functional equation related to the behaviour of the
subunits, which also appears as an underlying concept in Kron's work, The
basic structure has also been shown to exist in the least squares problem,
and exists inherently in the linear two-point boundary value problem concerned
with optimal control and estimation. The forward and reverse integration
procedures forming the sweep method of solution then appear similar to the
process of waye propagatiou in Kron's model. The orthogonal networi and
scattering problems thus possess similar basic characteristics within an

- algebraic framework which incorporates a condition of optimality. They ‘are
also consistent with the concept of dynamic programming and invariant imbedding

. in which a complex system is represented as a sequence of lower dimensional
processes, and could have an important application in the structuring of

system problems for parallel computation.

The solution of the discrete optimal control and estimation problems
includes the updating of a priori information in a stage-wise procedure, and
“a similar recurrence-type process is incorporated inherently within the
general scattering problem. The subunits interact according to the prbperties
of reflection operators which introduce an implicit feedback or return-—
difference effect and in the continuum the solution reduces to a differential
law. Kron's network sequence is connected using the properties of incidence
matrices associated with a physical topological structure, and the a priori-
type information appears to be contained within the orthogonal network
solutions. The polyhedron model thus provides an improved least squares
estimate which Kron considered to be an essential property of the model,
particularly in its application to nonlinear curve fitting using divided

differences related to physical variables.

Kron introduced many concepts into the polyhedron model based on

a wide knowledge of physical phenomena, and although certain of these concepts
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v concerned for example with oscillatory behaviour and multidimensional
generalised machines lack an analytical basis, the relevance of the model
to the general scattering problem would support many of Kron's proposals.
The polyhedron now appears to have wide application, particularly in non-
linear distributed parameter systems, although further understanding is
required. The proposed application in nonlinear estimation, based on the
concept of introducing the structural properties of a physical system into

an abstract data fitting problem, is also of considerable significance.

Recent work indicates that the scattering formulation can provide
a unified reference frame for combining the interacting space~ and time-
coordinate vectors in dynamical systems. It introduces a recurrence form
in which the discrete-time response of mutually interacting subsystems evolve
as a stage-wise scattering process, Kron also used the orthogonal network
problem and spatially orthogonal sequences in the polyhedron model, combined
with the technique of tearing, as a space-time configuration for the analysis
of distributed parameter systems. The scattering formulation based on a
single-dimensional, mutually-interacting sequence, can also be extended into
a multidimensional cellular space and could have many interesting and
important applications in the analysis of cellular automata representing

large numbers of interacting elements.

Kron's work includes many original and inspiring ideas and concepts
relevant to the structure of complex systems., However, the potential of the
polyhedron model and also the extended scattering problem have still to be
realised, particularly in the study of large scale systems. This may
require the symbolic language of a tensor notation as used by Kron, in order
to group the vast array of space-time variables defined within a cellular
space. The polyhedron model and the general theory of scattering can then
provide a basic framework for the development of a theory of complex systems

which is required in many fields of study.
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