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Summary

Kron proposed a polyhedron network model or 'automaton' for
representing a wide range of physical system problems. The model
includes a sequence of higher-dimensional structures each formulated
by the form of an orthogonal electrical network with closed—- and open-—
paths. A set of electromagnetic waves is assumed to propagate across
the polyhedron, and many other physical concepts are introduced
intuitively into the model, including those concerned with multidimensional
'generalised' machines, thermodynamics, fluid flow and statistical
phenomena, The present work highlights the significance of the
orthogonal electrical network in the polyhedron structure, and it is
shown that a similar structure exists in the general scattering
representation of a flow process. The formulation of the scattering
problem would then appear to provide an analytical basis for many of the
physical concepts discussed by Kron. It is also shown to be associated
with the system problems concerned with the multimachine power system,
least-squares estimation and linear optimal control and filtering.
Kron's polyhedron model and the scattering problem thus incorporate
similar basic features which appear to be of fundamental importance in

general system theory.




1. Introduction

The basic equations of electrical network theory are of fundamental
importance and can be used analogously to represent many other physical system
problems. Kron has made significant contributionsl_14, and has used the
properties of electrical networks for representing distributed parameter

1,15,16

systems including Maxwell's electromagnetic field equationms. They

have also been used to represent heat flow, elastic field problems, fluid

2417 Branin18 has also illustrated the corres-

flow and neutron diffusion.
pondence between the algebraic properties of higher-dimensional electrical
networks and the gradient, divergence and curl expressions associated with

the operational form of the vector calculus.

The algebraic structure of the conventional electrical network is
extended by Kron into a multidimensional polyhedron containing points, lines,
surfaces and volume elements with superimposed electromagnetic parameters.
Such a model is proposed for extending the conventional least-—squares
problem of curve fitting and interpolation, and improved fitting is obtained
by introducing additional information in the vicinity of the data points
based on the physical properties of the polyhedron model. Kron generalises
the polyhedron by introducing the concept of multidimensional 'generalised'
machines in an oscillatory self-organising structure. Such an "automaton'
containing superimposed electromagnetic properties was proposed for the
solution of a wide variety of problems, ranging from multidimensional curve
fitting to the phenomena in molecules and crystals. A close analogy exists
between the polyhedral waves and the waves that propagate within a crystal,l2
and the possible application of crystals in computers and for the modelling
of 'artificial brains' was also discussed. A further extension was
considered by introducing an increased number of coupled polyhedra using
additional parameters associated with fluid flow, thermodynamics and other
physical phenomena.12 A statistical interpretation was also given to the
model containing random elements, with an ensemble of samples represented
as superimposed electromagnetic quantities.12 Although certain concepts
were apparently introduced intuitively into the polyhedron the model does
introduce a structure into system theory which now appears to be of

considerable significance.

There appears to have been little attempt to explore or extend

Kron's pioneering work on self-organising models and multidimensional space




filters, possibly because some of the proposals appear to lack analytical
principles in the published work. The present work attempts to illustrate
the structure of Kron's basic model and to highlight, particularly, the
significance of the electrical network problem in the polyhedron structure.
It is also shown that the model can be identified with the general scattering
representation of a flow process which can provide a framework for
investigating the properties of an interconnected sequence of multidimensional
networks, and thus provide a unifying theory for many of the concepts
introduced by Kron into the polyhedron model. The correspondence 1s shown
to extend to include the solution of the multimachine power system problem ~
and also the linear optimal control and filtering problems. This supports
certain aspects of Kron's proposals and provides further evidence of the
significance of the electrical network and scattering problems in general

system theory.

2. The structure of the polyhedron model

The concept of electromagnetic waves propagating across a polyhedron
network is used by Kron as the basis of a multidimensional space filter.
This provides a physical structure which can be used to represent the surface
of a function

i

e N F Fi(x (q))
and it§ higher~order divided differences.associated with a set of experimental
data xl(q), i=1l..n, q = 1..k. A conventional linear l-network is formed
by spanning the space between the n vertices representing the data points
which define a O-dimensional network in a k-dimensional Euclidean space.6’10
This can then be augmented by a 2-network with neighbouring branches forming
planes, then by a 3-network with tetrahedrons formed from adjacent triangles,
and so on until the k-dimensional space is spanned by a k-network. The
resulting polyhedron4’6’12 consisting of an interconnected set of k+l,
g-networks represents a topological structure which can provide additional
information concerning the geometrical properties of the surface passing
through the given points. Each q-network is represented by the transformations
associated with a conventional electrical network including closed- and open-
paths, which Kron refers to as an orthogonal network. Similar paths appear
in electromagnetic theory, fluid dynamics and in the topology of differentiable
manifolds which supports the validity of the representation used for the

g-network problem.l4
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2.1 The orthogonal electrical network In the general

electrical network problem, with individual branch variables defined in

Fig. 1, the primitive network with impedance matrix Z is represented by

E+e = Z(I+1i) or V = ZJ, J = YV (1)
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Fig. 1 rth primitive network branch

In the orthogonal formulation, the network structure is defined by square,
nonsingular connection matrices

‘ e e T, =1
c = [c.c]l . & = [A%,A7] = (¢

including components related to specified closed- and open-paths, with AO,CC
representing the usual branch-node-pair and branch-mesh matrices respectively.
Primed variables ic',ec' are then assumed to exist in the m closed-paths,
and IO',EO' in the p(=b-m) open-paths containing arbitrarily connected
branches. The notation (c,o0) defines closed- and open-paths, with
subscripts and superscripts signifying dual properties, as used by Kron.
A set of paths and designated variables are illustrated in Section 9.
The b 'coil' variables in the connected network are then given by
ic' m B e !

v = b [aA°A%] | € (2)

E‘t
6]

m P
g =nble_c]|
I

1l

g - 24 . 55 :
The orthogonality condition C A §, with partitioned components gives

b

where § represents the unit matrix.

Trees and links can now be introduced as special cases of the

orthogonal formulation,la’m’22 with




Matrix C defines the open—paths or tree branches and A® the link branches
o
22,23

in the closed-paths. For the unit-tree and unit-link case , with
i
_ e e B 1 g b
By = 8, C o= 8., Cp o= BT, i - [IL} i [ T}
1 E
L
eqns 2 give ‘
.L " JB , & B : N e
i = 1 y i = CTl s EL = ALEo ) ET = ATEO = E0

Thus E ' and i represent tree branch voltages and link currents respectively.
o
The branch variables are related by Kirchoff's laws defined by
CCTE = 0, W% = @

Also

and equivalent induced mesh-voltage and nodal-current sources are given by

1 T
g = oghs . P = &%

. : T
In the orthogonal formulation, new equivalent sources e I" are referred to

L!
the links and open—paths or tree branches respectively, and specified by21’24’25
e 0 ) T - maaty
" T (. o T
é = = A e = T ,I = L=CI ==
e * C e T © 0
L c
Now from eqns 1 and 2
1] 1T
e ? i€ i% e !
T
€1 = c¢zc A o= alya | © (3)
E ! i i E !
o o
¢ Tzc ¢ Tzc A 2% Tya® (a%)Tya® Yy
T | & e i o . T . Sl 2
L T T B v & = UL TSR ) e
Y A
C0 ZCC CO ZCO 2324 (A7) YA™ (A7) YA Y3 Y4

L]
The solutions for tree—branch voltage drops EO'(ET) and mesh currents i° (iL)

related to the source variables in the equivalent network are then given by




B -1 -1 - -1 -1 (%)

Then assuming Z = dlag(ZT,ZL), Y = dlag(YT,YL)
=1 0.T_ oy-1 T I | o bl -1
v, = LeD Y] = 2 A A ZA ) A, S (2 A YA )

T -1 T -1
where 24 = BT ZTBT and Zl = (ALzaAL +ZL) p Eqn 4 represents the orthogonal

formulation of the electrical network problem, and with eqn 5 forms the

basis of Kron's work on network tearing and interconnection with added Iinks;zo

The usual mesh- and node-method solutions are included in eqn 4

with
. gt -1 - o', _ i
i = ¢ci =¢Z (e z,I" ) = L(e = 2I)

LT Lozt - v -y

T
where L @ (G ~2e )
c ¢ e

is the branch-admittance matrix and

1 -1 T =1 T
Moo= A% [@% a1 @) = AOY4 %) =z - 712
is the branch-impedance matrix. The branch voltages are similarly given by
= Op 1 _ I . _ ' _ e
E A Eo A Y& (I Y3ec ) M(I Y&)

Kron now assumes that each isolated network forming the polyhedron
model can be represented by the form of solution for the conventional

orthogonal l-network problem, with sources I induced variables

T 1

1! sy (q) (q)
@ *@) ¢ "

electrical network or electromagnetic variables associated with the gq-network

@)’ %(q)’

and 'branch' variables i(q)’ E(q), representing

in the general polyhedron model. In each g-network, matrices C(q)

A
ieea)
define the connection of volume elements,6 and closed- and open—path currents
and voltages satisfy Kirchoff's laws, withl1
(q)\T o i
(¢ ) E = 0, (A i = 0
e (@) @@ )

The transformations of eqn 4 associated with the orthogonal
l-network problem, and similarly with each g-network, are illustrated in
Fig. 2. The basic diagram for the conventional electrical networkl6 also
includes the boundary operators or partial connection matrices CC(O), Cc(l),

0 o L § i : .
A 1) and A (2)° The rectangular incidence matrices Mi+1 shown in Fig. 2

interconnect the simplexes or volume elements of a neighbouring i- and i+l-
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primitive network, such as the branches with nodes or planes, and relate two
different—dimensional variables. They also possess properties of divergence
and curl operators.ll_la The significant feature of the polyhedron model is
the use of the solution for the conventional orthogonal electrical network
problem as a basis for each higher dimensional network. The assumption is
supported physically by the properties of electromagnetic wave propagatioh

which Kron considered could be associated with a connected network structure.

The transformation diagram includes the basic characteristics of
Roth's diagram, with the impedance- and admittance-type operators directed
vertically across the diagram and the dimemnsionless or connection—-type
operators directed horizontally between similar variables. The diagram
illustrates particularly the properties of the projection-type matrices

L,M and Z =t Y = and of the interacting 'residual-type operators —zl_lz

1 % 74 2’
2321 L linking closed— and open-path variables, and their effect in

transferring the source components to the 'branch' variables.

The boundary operators and incidence matrices for the i-network
are related by

(i) ,,0 T i
Cc (A(i+1)) i+1

]

and possess the orthogonality properties

(33 L, 0 i-1. i
C N = ) = =
( ¢ "R (1) 0. M1 L i+l o
- ; 6 1=1.T
similar to curl grad = 0 and div curl = 0. Also Li(Mi ) = 0. For the
l-network,the relationships
- -, T -
L = Cz, lccT ; Loe Syt
(6)
o =l 0.8 =, T
M o= AT, ) : ¥, = ¢ MC,
indicate that the operators 21-1, L and Ya—l, M are associated directly with
the closed- and open-path variables respectively. The closed-path component

c : . ; =1 ;i
A~ transforms L and isolates the admittance matrix Z , and similarly, the

open-path component CO transforms M and isolates Y4 " The correspondences

._]_ =
Z % Ty L*—*’-Z1 and Y4 +r M, MHYZ‘

suggest a form of 'inverse' for (AO)T and CC defined by CO and (AC)T

are illustrated in Fig. 2, and

respectively. Similar forms are used by Kron to 'open up nonexistent
pathways of propagation in the open-circuited polyhedron', and are considered

to justify the requirement for an orthogonal network formulation.
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Kron also introduces a '2-phase' (primal and dual) structure for
obtaining a complete representation of the k-dimensional space, with the
q-simplexes of the dual polyhedron each orthogonal in space to a (k-g)-
simplex of the primal polyhedron.ll_l4 The hyperplanes of the dual network
form coupled closed- and open-paths that are orthogonal respectively to the
open- and closed-paths of the primal network. The dual (k-1)-network acts
as an external environment for the physical elements, and also provides an

; 4 . . 1 : .y
interpretation for the connection matrix A, 3 with columns defining closed-

and open-2 paths of an 'invisible', dual 2-network.

2.2 The polyhedron model with electromagnetic variables  The structure of

the polyhedron model can incorporate the concept of a combined transverse
electromagnetic wave with closed-path dielectric and magnetic variables
) and (h ) respectively, and a longitudinal wave with

E(i)) and (H

@iy )" (i)

open-path dielectric and magnetic variables

(D,. I Sy
(i)’ €L} )
respectively, i = 0..k, propagating from the O-dimensional points to the

k-dimensional network elements.”’

The variables can then be incorporated
in the polyhedron model as illustrated in Fig. 2. The propagation induces
electrical and electromagnetic variables consistent with the form of
Maxwell's field equations in all dimensions, represented by curl H = J+ﬁ,
div D = p, curl E = ~£, div B =0, B=yuH, D=¢E, J = oE, with the usual

notation.

The electrical network variables (i;E) and electromagnetic variables

. .

(H,?;?,E) are considered as responses or 'effects' of the sources (Ij;e) and
(h,D;B,e) respectively. In this correspondence, é behaves as a voltage
source although it exists essentially as a response variable in the
operational form of the 3-network ptoblem.l8 The even—- and odd-dimensional
networks are considered to possess magnetic and dielectric properties
respectively, and the square of each volume element forming the isolated
gq-network is used to define an impedance as a component of the primitive

impedance matrix Z Thus the square of the length of each branch

(@)
represents 'dielectric reluctance' and the 2-simplexes are considered as
magnetic networkswith the square of a triangular area representing 'magnetic

reluctance'.

For application in the estimation problem, dependent variables (y)
are assigned to the vertices of the O-network as rates of change of magnetic‘

flux lines or generated voltages B(O), and an open-path voltage or difference

of potential then appears on each branch of the l-network, given by




- 8 =

(0)yT div é

E . =A° @ B! )(C I3 o = (Mcl’)Tﬁ

(1) W (1) (o) fa (o) (o)

Dielectric fluxes given by the total displacement current D(1)+d(1) then flow
in each branch and an mmf produced by the displacement current appears on
planes of the magnetic network, and open— and closed-path magnetic flux lines

b appear across the planes. Propaczation thus proceeds with

@) @)

%+Eurea)+Wn°%n+h@rHu>+%’%

and the cycle of 'open-circuit' propagation of the electromagnetic wave is

assumed to continue similarly after each two dimensions, with the general

steps, for i = 1,3..k,6

) i i-1,T | }
beisry * Beian) = Zaan) M) Yy [b -1 * (‘1—1)] o = °
7

where (M )+ (=cur1_1) represents an equivalent or generalised inverse of the

rectangular incidence matrix M. e

6 : : 3 :
Kron® considers an equivalent inverse for the rectangular matrix

1 : s . .
M]._+1 related to components of the nonsingular connectlon matrices A,C, given

by
i A (1) (i+1)
Meoed - = [6 (&

i+l

(e i
T | (A (8)
The form of the inverse has physical significance in terms of the current
relationships in the orthogonal network problem given by

1 1 ] L
. . . . T
i = Cclc : i = (Ac)Tl , L = COI0 . 1° = (AO) I

: ; c . . §
The connection matrix components A, CO forming the equivalent i1nverse are

illustrated in the transformation diagram of Fig. 3.

I i i I A
) (8} i
M'MI (ith) (i)

FIG 3 Current relationships for adjacent orthogonal networks

(o)




2.2.1 Divided differences Kron associates the induced variables resulting

from the propagation of an electromagnetic wave across the polyhedron structure
with higher-order divided differences, representing generalisations of similar
quantities used in the calculus of finite differences. These are considered
to provide additional information in terms of geometrical properties which

can be used to obtain improved fitting in an estimation scheme, The divided
differences are defined, for i = 1,3,.., by the electromagnetic variables,

1

- y i i i+l i+
D(i)’ d(i) Ay /Ax = A" Ty/Ax

1

» Piany? B

which appear as combined 'response' and 'source' variables in the

" ’ ; a ; 8
transformation diagram of Fig. 2, and are related to the previous differences
as a discrete single-stage process. The first divided difference can be

identified with the conventional first-order difference defined for a

function f(x) specified at points Xp’ p =1,2..k. Thus
: . 0\T: _ 0 T _ B
Dy * 4y = Yy M) By = Yy (M) TEG) = [f(xi) f(xj)] /dij
k . :
where d,.2 = L (x 2o XJ }2. Then
1] o1 (p) (P)

M) ) = £0x) - £x)

The divided differences may also be derived using the scattering representation
discussed in Section 4. This would inherently include the effects of
interaction between the coupled networks, compared to Kron's 'open-circuit'
propagation across the polyhedron which apparently avoids the necessity for

considering such interaction.

The total stored electrostatic and magnetic energy in each network
can be related to a weighted quadratic form of the respective divided
differences, and the variables in each g-network will be associated with a

. s . 10,12
minimum overall stored energy condition. ’

3. The multimachine structure in the polyhedron model

Kron extends the polyhedron model by considering that each
stationary q-network and its dual k-q-network forms the 2-phase reference
axes of a k-dimensional 'generalised' rotating electrical machine, analogous
to the orthogonal reference axes of a conventional electrical machine (with

1 . . . ;
k=2, qg=1). 2,13 Each generalised machine introduces electromagnetic
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variables and also speed and torque variables which can be assigned to the
network branches in a dynamic polyhedron model. It is now shown that a
direct analogy also exists between the conventional multimachine system
problem and the propagation of an electromagnetic wave across the polyhedron
structure. The solution also exists within the scattering representation

of a flow process, as discussed “n Section 5.3.

3.1 Multimachine power system Consider the connection of synchronous

generators with an equivalent network of generator nodes represented by

where YN is a symmetrical matrix of driving point and transfer admittances.
The machine voltages referred to direct- and quadrature-rotor axes are given

by

= —Zi
v e M

where ZM = diag(ZMk) and ZMk represents the k-machine transient reactance

matrix with components Xdi’ Xék' With m machines connected to n network
nodes the machine-network voltages and currents are related by
v = A(®)v i o= alei
N’ N

where © represents a load angle between the machine field axes and the

common network refgrence axes, and A(®) is an mxn connection matrix with
]

elements Aki = (e k, 0) defining the generator—-node connections. The
network and generator voltages are then given by20’36
T =1 =
Ty = [YN + A (e)YMA(B)] A(@)Ye , Vv o= M(8)Y, e
where M(8) = A(8)[Y, + AT(S)Y (e)]_lAT(e)
N M

is a symmetrical mxm impedance matrix, which exists similarly in the electrical
network and least-squares estimation problem incorporating a priori information.

We may also define a dual transformation matrix
L = Y, -% - (z. +azaDHt
M MMYM M N

Machine current is then given by

1l

i =l
i YM(e v) = YM(G—MYM)e = YMF e = Le

-1 T
F - =
where (68 MYM) § + AZNA YM

represents a return—difference-type matrix. Also




L, = A Te . v o= MYML" i = (AZNAT)i

The general steps defining the propagation of an electromagnetic
wave across adjacent networks in the polyhedron model can now be associated
with the solution for the multimachine problem. The properties of the
orthogonal network form a basis for the correspondence which highlights the
importance and validity of the orthogonal concept as discussed by Kron.
Each cycle of open-circuit propagation of the electromagnetic wave, as

defined by eqn 7, may be stated in the form

1 - _ _ (i) ,,0 T + R L R WL
YeiayPany By = Paany =[G @uay) 1 Ygy[e @Gy ]

[bio1y * Beny)
Then using the equivalent inverse given by eqn 8,

T

5 R I (i-1).T
Aeia1y) Baany = L@GY) YiyAyl €, [

; + B ..
Bojay * Begeiyl ()
Equation 9 now corresponds to a current relationship in the electrical
network problem. It is interesting to note that the equivalent inverse
for the rectangular incidence matrix suggested by Kron leads to a solution
which can be identified with the network problem. Now with specified
c E o 4

closed- and open-paths the term (A ,. Y sl g which appears as a

ReeR ; (1)) (1" @)’ BE
component in eqn 3, can be stated in the form

w2 -1 1 -1
Yy = "2y Z,Y, = Iy Z,(Z, = 232 Z,)

Equation 9 then gives the equivalent form

T

O = =
Aia1y) Dgary = "2

“1. -1 . (i-1).T’ ;
1 'z 2 i) %y T 2321 29 5y (€, Ybei-1y * Bra-nl

; : 5 o3 g ; ’ T
which can be identified with the solution for network current (1N = A Le)
in the multimachine problem, This gives a correspondence between the

polyhedron wave and machine system variables represented by

o _ (i-1).T ~ N
Ay Bgay = Iy e € ) [5(1—1) * Byl E °
’ . . .
i o ik L (1).T (L) = (l) (L) T
By “Bdegy = T TF ByyC, 17 e By = AR
) R (i) (i), T (1)
@y = © TV ZhC 7T = B ) 2igyBr T = 2y

(i).T (1) (l) (1)
=03 1y T TC Y ZgyC, -L g Z;yrlr * Z(i)i
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The form of the machine impedance matrix ZM thus suggests the existence of a
machine structure associated with the polyhedron tree components. The
network impedance ZN includes a correspondence with both tree and link
elements, and the comnection operator AT(G) can be identified with a
scattering-type transmission component S(i) (as discussed in Section 4).
Kron refers to the concept of an electrical machine structure existing in
the polyhedron model without illustrating the analytical details. The
correspondence now shown to exist between the conventional multimachine
problem and wave propagation in the polyhedron based on the solution of the

orthogonal network would support the validity of this concept.

4. Interconnection of the multidimensional network sequence

In the overall polyhedron structure, the waves in the various
spaces4 and the induced variables in adjacent networks will interact, and
it will be necessary to consider the effects of such coupling. The structure
of the orthogonal electrical network solution and the interrelationships of
the variables in adjacent networks, would now suggest that the physical
variables appearing in the polyhedron will interact according to the general
scattering representation of a flow process incorporating coupled obstacles
or distributed comnstants. The interconnection of the network sequence can
be formulated within the framework of the scattering problem, and Kron's
proposals for introducing the properties of a wide range of physical systems
and also statistical concepts into the polyhedron model would now appear to
be particularly relevant to the general scattering problem. Thus Kron's
network sequence and the scattering representation of a flow process are
closely related, and both developments are of considerable. importance.
It is also of interest to note that the original mathematical work on
scattering by Redheffer, Reid, Bellman and others, and Kron's independent

study of multidimensional networks was being carried out during the same

period, although the important concept of the orthogonal network which forms the
basis of the polyhedron model was conceived by Kron much earlier, in 1937.

4.1 Scattering theory An overall flow process incorporating a series of

obstacles or distributed parameters can be represented by an interconnected
set of scattering matrices which relate the incident and reflected waves
appearing at the boundaries of the obstacles. The resulting algebraic
framework based on the combined scattering matrix has been used particularly
to represent propagation through a stratified dielectric medium, radiative

transfer, neutron diffusion and transmission line theory. A diffusion




...]_3_

problem has also been interpreted as a probability model which includes a
set of matrix differential equations similar to those associated with the
6,27

scattering problem for the general flow process.2 The problem of

wave propagation in inhomogeneous media has also been studied using

. . - : : ; 2
invariance principles and functional equation techniques. 8

An obstacle containing 2n~terminal pairs, with incident and
reflected n—-vectors Vi,VM, can be charactarised by the nxn transmission
L
and reflection matrix functions Sj(x,y), Rj(x,y), Uj(x,y), W.(x,y) with
J

spatial coordinates (x,y). Then

With two adjacent obstacles, as represented in FIG 4, the reflected and

incident waves are related by

2
oty
——— | //’-/ -———’-‘vs
3 Ao
v A
4 At
i g eawmmn—wvﬁ
| :
X y v %

FIG 4 Propagation through adjacent obstacles

The cascaded process may also be represented by the transformation diagram

or signal flow graph of FIG 5.
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FIC 5 Transformation diagram representing the scattering process

Then for the combined structure

-1 -1
v, 5,(8-UW,)" "8 , U,#8,U, (8=W,U) "R,| [V, A

=l -1
V2 W1+R1W2(5 Ulwz) Sl, Rl(S—WZUl) RZ V6 V6

(10)

where Tl*T2 defines the star product or combined scattering matrix for two
adjacent obstacles. For a series of obstacles, the overall scattering

matrix is given by the continued star product T = T1*T2*...*Tn.

The orthogonal electrical network solution of eqn 4 corresponds
to a transformation of 'input-output' variables similar to (Vzvl) -+ (V4V3)
across each 'obstacle'. However, if the solution is compared with the
properties of a scattering-type matrix relating Vl,V4 as 'source' variables
(Io',eC,) and V3,V2 as 'response' variables (ic',EO'), the resulting
transformation diagram corresponds to the form of Kron's sequence of
g-networks, and possesses similar dual properties. This correspondence
can then be used to develop an analytical basis for investigating the
properties of the polyhedron structure, including particularly the effects
of interaction between the coupled g-networks. The components of eqn 4
can also be identified with the form of eqn 10 and will partition according

to the properties of the star product.

The transformation diagram of FIG 2, incorporating the scattering
representation and components of the orthogonal network solution, is of the
same general form as Kron's network sequence, with similar closed- and open-
path dual relationships. It includes response variables i?;), Esq)' as
direct summations of transformed source components which do not appear in

Kron's diagram and introduce the analogy with the scattering representation.
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The properties of the combined scattering matrix could now be used to
investigate the coupling effects between the isolated g-networks, which

Kron referred to as a problem requiring solution.

The dimensionless transformation introduced by the components of
the orthogonal network solution, given by

o -1 1 et c.T. ¢ T
S-UW, = 62 ) 5y (0, ) g4y = 6-[@HT1AT] g [e me ] 54y

1 2
represents a residue effect appearing at the junction between adjacent
networks and introduces coupling between the orthogonal networks or
scattering obstacles. It has the characteristics of a return difference
matrix resulting from a feedback-type connection. It does not
appear to exist in Kron's analysis of wave propagation across the 'open-
circuited' polyhedron, although it must be closely associated with the
concept of an 'interconnection' network introduced into the process of
tearing. The condition § = U.W,, in which the star product for two connected

1°2°
" 2652
obstacles does not exist, has been related to a state of resonance.™ ’ ;

The significance of the components of the combined star product,
including the existence of the residue-type transformation §-UW, and the
corresponding structural properties of adjacent orthogonal networks, is
illustrated in FIG 6. The response variables result from the direct

horizontal transformations SZ(SHUIWZ)_lS Rl(ﬁ—wzﬂl)_le together with

>
direct vertical components including a tiansformed source contribution
directed through one of the interconnecting residual blocks. The direction
of the incidence matrix transformation Ml2 illustrates the 'pathway' of
propagation used by Kron, which was assumed to avoid essentially the effects
of interaction existing between adjacent networks. The connected zone
between adjacent obstacles is characterised by the unit-matrix block § and

by the transformation (G—UW)Fl, depending upon the source of propagation.

Tt thus introduces a return-difference matrix operator which is included
inherently in the components of eqn 10. Kron also refers to a concept of
feedback in relation to the sequence of orthogonal networks, which thus
possibly relates to the properties of the return difference matrix associated

with the operators U, ,W,.

1272
Equation 10 may also be considered as a lattice-type structure with

unsymmetrical elements, relating outputs V to inputs Vl,V The

2'Vs 6°
resulting internal crossover connection could then be replaced by an ideal

(-1:1) transformer which would correspond to Kron's application of an ideal
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transformer between adjacent orthogonal networks and between the primal

and dual polyhedra.12 A transposition of the transformation diagram will
also produce a generalised 2-input, 2-output system with cross connections
or interaction which would indicate the importance of this type of system

structure.

The star product with a condition of matching including a lossless

tuner represented by a unitary scattering matrix (SS* = §), is given by

=1
- % = %
S1 Ul . S2 U1 B 82(6 U1U1 ) Sl, 0
- = el
* % (6= % —-U.*
Wy R1 Uy 52 wl+RlU1>(6 U1U1 ) Sl’ Rl(S U, Ul) S2
. \E * - 5 = % o . . - - !
with 6 Ul U1 SZSZW, 82U1 Ul Sz>. Such a condition introduced into the

interconnecting 'network' induces a cancellation of the contribution from the
adjacent incident variable in the response or reflected variable. A .
Y ; o _terminal scattering matrices which can be asgociated
similar matching-type condition with zero reflection appears 1n the /with the linear
> : ; . . 35
optimal control problem incorporating a terminal constraint. A
scattering matrix can also be diagonalised to include zero reflections

using unitary transformation matrices.

The algebraic structure of the star product extends to form a set
of functional equations, for arbitrary points (x,y), {(v.2); (®yz) in the
flow process.BO The results then generalise and give the matrix differential

29-31
system

S U (D+UC)S, A+DU+UB+UCU

T (x,y) = y oy o= ; T = 9Ty (11)
¥ W R RCS R(B+CU) v

where A,B,C,D are complex nxn matrix functions of the real variable y given by

DA
(T ) = and T(x,x) = §
¥y 9 c B 2n
since no coupling or reflection occurs for a zero thickness medium. The

transformation diagram of FIG 6 illustrates that the vertical admittance-
and impedance-type operators U and W, which also possess properties of
projection and covariance operators,39 combine with fhe connection matrices
CC and A° and provide a pathway related to the respective closed- and open-

paths, from source to response variables. They represent solutions of
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quadratic Riccati-type equations, and the dimensionless-type
operators S, R in the continuum represent solutions for the
diagonal incident components of the differential equation system of eqn 11.
This would also suggest that Kron's sequence of orthogonal networks would
extend with coupling to include transformations which could be associated

with a differential system including a matrix Riccati equation.

A linear matrix differential equation also exists in the scattering

problem with31’32
-B -C R_l , —R_lw
H =GH , G(y) = , H(x,vy) B N , H(x,x) =6 .
? A D w, s-uRhw 2n
Also
i R-ws y, WS ]
L = H = i -1
-s U, s = |
satisfies
v, Vs
L(x,y)L(y,z) = L(x,z) with = 1
_Vl V3

The matrix L transforms the disturbance along the line in terms of input-
output variables,29 whereas the scattering matrix specifies the outputs at
each end in terms of the inputs, and the correspondence represents an
isomorphism.Bo It is interesting to note that the matrices.H,L can be
identified with the orthogonal network solution of eqn 4, and the scattering
matrix components S,U,W,R then correspond to the impedance and admittance
matrix components Zi and Yi in eqn 3. Such a correspondence indicates the
significant role of the orthogonal network as a basic structure associated
with all g—-networks in the polyhedron model. The same structure and also
the form of the matrix G appear similarly in a variational problem which

includes an integral of an hermitian form in the dependent variable and

its derivative, given by33’34
| v, n'1x[F H] [n' n'|*[z
?(n;yl,yz) = [ Jdy, J = . (12)
yl n H* G n 1 g

where * denotes conjugate transpose and F(y), G(y), H(y) are complex nxn
matrix functions of real y, with F(y) non-singular and F(y), G(y) hermitian.

The definition of variables z,z' in eqn 12 represents an L-type operator
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which can be transformed to a scattering T-form to give the Euler differential
equation in the canonical variables n,z associated with the wvariational
integral, thus

I

L

n' -B ~C|[n n! A B G-HAF

= = G(y) s = o
i 1

Ty A D||zg CD F L, mwel

The matrix differential system of eqn 11 also exists in the optimal tracking
problem and in the optimal regulator problem incofporating a terminal
constraint.35 The form of the scattering matrix and star product and the
orthogonal network solution, and also the L-form transformation in the

Euler differential equation, appear similarly in the corresponding state-
adjoint variable relationships. Thus for optimal control of the system
represented by

x(t) = Ax + Bu , vy = Cx , X(to) =

with performance index

t

1 T T T
J(u) = 4 /7 (y Qv + uwRu)dt + 3y (£,)Fy(t))
o
and terminal constraint, z = Zy(tl), the boundary conditions are defined
by the transversality condition
p(e) = C'FC x(t)) + cizia
where A is a vector multiplier. The state-adjoint variable relationship

and the terminal constraint are then given by

p(t) = P(O)x(t) + G(EDA , z = G ()x(t) + N(E)A
giving
A W o 2 p(t)) ¢zt cre A
p(t) i e p-an 6| |x(o)] z ) 0 zC |[x(t))

By analogy with the scattering formulation, the interconnecting 'network'

is represented by a unit matrix with W2 = 0, The relationships can also

be illustrated in a time-domain transformation diagram,36 the structure of
which appears as a component of Kron's polyhedron model. The wvariables
A,p(t) can be identified with the closed- and open-path response variables

i@ i =0

1 1
i ,ED', and x(t),z with the closed- and open-path source variables e. I

respectively. A form of the optimal linear feedback control problem thus
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appears within the structure of the orthogonal network and scattering problems,

and thus similarly in Kron's polyhedron model.

5. System concepts in the scattering problem

The scattering problem includes a connection of adjacent obstacles
which incorporate the effects of a priori information into each successive
stage of a multi-stage process, in contrast”to the connection of adjacent
orthogonal networks in the polyhedron model based on the incidence matrix
Mi+1. The representation also provides a unifying framework for a wide .
range of physical system problems which can be associated with a least power:
or minimum quadratic function condition, and include the properties of a

return difference operator.

5.1 Least-squares estimation The classical least-squares problem concerned

with obtaining the 'best' estimate of a parameter vector associated with a
set of overdetermined linear equations is defined in terms of a measurement
equation

y = Hx + v
where v is a residual error or zero-mean random noise vector with covariance

matrix R. The minimum-variance estimate for

min (3 = Ef|y-u<]* ] )

R
2 -
where ||v|| 1 = vTR,lv, is given by
x = @R R Yy and y = Hx = wr ! (13)
where M = HER TE) THL.  Also
4 -1 T
y-y=((-MR )y=Ry, J=yLy

The error covariance matrix is given by

P = E[(ex)(-x)"] = (@R w7

which has a correspondence with the matrix Y4 in the orthogonal network
and W in the scattering problem. With a priori information available for

the vector x, represented by E[xg?] = 5, E[vf?] = 0, the linear estimate for
; 2 2
min (J = ||Y_HXH =1 * ||X|| _1)
R S

is given by
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x = s Ry = pufRYy
and ; = Hx = MR_ly , M = H(STl + HTR_lH)“lHT
=, 1 1

N e W S , M =R - RLR

-
1]
=

We can also define

st s R L = s - sulLES

g
]

and

The least-squares solution of eqn 13 incorporating the operators
M,L corresponds to the solution of the general electrical network problemzo,
and can be identified as a vertical transformation existing within each of
the component blocks of FIG 6. Thus Kron's vertical propagation across
the polyhedron model, without additional source terms, and directed towards
the induced variables representing divided differences, effectively
introduces a least-squares operation, with the measurement and covariance
matrices defined by the properties of the higher—dimensional elements and
connection matrices. The physical variables representing divided differences

in the polyhedron model will thus inherently introduce regression-type

properties within each component of the network sequence.

It is now significant to note that the solution of the least-
squares problem incorporating a priori information (S) cannot be identified
with the solution of the conventional electrical network problem. A
similar property does however appear to be introduced with the connection
of adjacent orthogonal networks, as illustrated by the correspondence of
the multimachine problem with the wave propagation discussed in Section 3.

It also exists inherently within the framework of the scattering problem,

and is introduced with the inter-connection of adjacent networks or obstacles
at the level of the induced variables in FIG 2. The scattering representation
includes vertical operators with covariance properties, as shown in FIG 6,
together with a return-difference contribution from the adjacent stage which
introduces the effects of a priori information. The scattering representation
would appear to provide a more basic structure than Kron's polyhedron model
with regard to its ability to incorporate previous—-stage covariance-type

information in terms of a feedback-type operator.

The correspondence of the a priori least-squares problem with the
scattering formulation is illustrated in FIG 6, and exists with the analogy

between the estimated measurement y and error y-y and the components of the

response term V2 in eqn 10, given by
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T -1 .~1,.T , -1 -1
' 3y = b
H(s + SHR H (SH)(R 'y) = R (8 - W,U) "RV,

|

y

Yy

]
11

T =1 = Wi oA -1
[R-HS(s +HR HS) H]® 'y = [W +RW(s-TUW) sV
The elements of the least—squares solution can then be represented in a
scattering form with

[Sl U, ul glR H s mo s U L e

. =
i
Lwl R1 R Il R & 0O H W2 R2 =5 SH

(14)

gimilar reflection relationships can be derived with y identified with the

response VS'

least-squares solution by incorporating a priori or previous-stage information.

The star product of the scattering problem thus updates a

5.2 Discrete optimal control Optimal control of the linear discrete dynamic

system
e

for minimising the N-stage index
N
T T
JN = iE1 (xi Qxi + u i-lRui—l)

by dynamic programming is given by the standard recursive relationships

A + R) ke £Tp o s, T =1,2..N

T
UN-r B ’ Kr SR =l

r N~ =1

T, -1 -1 T, -1
P = 9 (Pr2 + AR A7) O+ Q, P0 =0

The covariance matrix P ) can now be identified with the component of the
5

star product associated with the transformation Vl e V2 in eqn 10. Thus

I -1 T -1 _ . -1
B =0 % or P_,(8 + AR AR _,) @ =W +RW, (8 - U,W,) 'S,

We can then define the scattering-type matrices

5. U s -ar'AT 5 0] [s -ar" AT 5, U - -
1> =1k - _ % 2 2 -
T T i
Wl Rl Q @ Q6 0 o W2 R2 Pr_2
The covariance matrix P includes a current-stage component (Q) and a

=1
contribution from the previous (right) stage (Pr-Z) which is updated by the




effects of a return—-difference-type operator. A similar correspondence

exists in terms of the previous (left) stage components. The form of the
control law also fits within the scattering representation and can be

associated with a propagation, say from right to left (V6 +-V2), with

ARflaT)_lP ®

=1
@ = Ry - WUDTR

<1
AR = -AR AT(s & P

=l 2

The dynamic programming algorithm thus operates ‘according to the properties
of the star product in the scattering process, which essentially effects a
summation of the effects of a priori information by updating the previous— .

stage covariance operators.

5.3 Multimachine power system The solution of the multimachine power system

problem in Section 3.1 corresponds directly with the least—-squares solution
incorporating a priori information. It also includes properties of a ‘
return~difference matrix, with the matrix L defining the effect of implicit
feedback introduced by the machine-network "interconnection and the machine
voltage—current relationship. A correspondence then exists with the
scattering problem, with machine terminal voltage v and voltage difference

e-v analogous with the estimated measurement y and error y-y respectively in the

least-squares solution. Thus
v = MLe =y and e-v = (ZM = M)(YMe) = y=y
and from eqn 14 we can define
S YM AT(e) 0 o -
1 T : e 'y
Zy 8 0 A(®) -2 ZyA ()

The machine-network system may thus be considered as a 'flow' process with
the properties of the star product producing an interconnection of the

machine and network parameters by means of the connection matrix A(B).

5.4 Multivariable control problem For the general multivariable control

5ystem.1nclud1ng a plant transfer function matrix G(s), forward controller
C(s) and feedback controller K(s), the closed-loop response of output y(s)
to a reference input r(s) is given by

y(s) = (8 + GCK)_lccf(s)
By analogy with the least-squares problem, transformation operators may

now be defined by
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- -1
M(s) = K(§ + GCK) ‘g, L(s) = C - CMC = CF
=1
where F(s) = & + KGC , F "(s) = §-M
represents a dimensionless return-difference matrix. A correspondence with

the components of the star product can then be identified by analogy with the least-
squares solution, with .

: =1 N
Ky(s) = MCr{(s) =y and r-Ky(s) = (C "-M)Cr(s) = y-y
provided Cwl exists, A scattering structure can then be defined for the

multivariable feedback control problem with

G GCK § C GO = =
o b = = N * . T = . (15)
Pt x ctsl ok . -8 G
The scattering formulation could now possibly be used to investigate conditions
of matching specified by an overall zero reflection produced by a control design

say for the forward controller C(s).

It is also of interest to note that the transfer function matrix for
the linear state variable system can be identified with the components of the

star product. The Laplace transformed output for the system

®(t) = Ax(t) + Bu(tr) + T'w(t), y(t) = Cx(t) + Du(t)

where w(t) represents a disturbance input, is given by
=1 =
y(s) = {C(s8-A) "B + D}u(s) + C(s8-A) "{I'w(s) + x(o)}
A scattering formulation can then be obtained, say in terms of the transformation

Vl, V6 +—V2 in eqn 10, with

L T 35 ’ I, = _—1 _—1
D ¢C _ﬁs Ss

The transformation diagram is illustrated in FIG 7.

- s®(s)
B
Vl et Loan T o el + r""‘“vs
Sy 5,
W Ll L)
D ® 1 il u, !
? A (SS 2 il
- Ry Rs ;
g —= ; Bty - S i T, |
C X =] b -
v §s r'w(s)+x (o)

FIG 7 Transfer function matrix as a

scattering process
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The component §s appears as a variance-type operator introducing a priori
: i ) the system matrices
information into the following stage or obstacle represented by /{A,B,C,D}.

The interconnecting structure is defined by s® (s) where resolvent

-1
o(s) = (s6 - A) = y(s)/a_(s)
¥ (s) is the adjoint matrix of sé-A and Ao(s) = ‘sG—A| is the open-loop
characteristic function. The poles of the open—-loop transfer function

matrix are the zeros of Ao(s) and are thus associated with the interconnecting
component of the star product. The form of the interconnecting structure

will thus determine the stability properties of the coupled system.

5.5 The stationary Kalman-Bucy filter The transfer function representation

of the stationary Kalman-Bucy filter problem includes a feedback structure
which exists similarly in the multimachine system problem, and also in the
orthogonal network and scattering problems. In the filter problem, a
random process x(t) is generated by the system

%x(t) = Ax(t) + Bu(t)
and includes an observation

z(t) = Hx(t) + v(t)
where u(t), v(t) represent zero-mean random noise vectors with covariance
matrices Q §t-t) and RS (t-T) respectively. The minimum-variance estimate

of the state x(t) is generated by the Kalman-Bucy filter equations

e

X(£) = Ax(t) + K()[z(t) - Bx(£)] , K(t) = P(E)HR

where the covariance matrix P(t) = [x(t) - x(til[x(t) - %(tI]T is given by a
solution of the matrix Riccati differential equation

P = AP + PAL - PH'R 'HP + BQBT

For the stationary filter problem, the Laplace transformed solution is

represented by

x(s) = [6 +o PR e(e)PE R T2(s))

v(s) = Hx(s) = MR L2 (s)
where M = H[a + @(S)PHTR_lﬁ]—lg(s)PHT = H[P_l¢_1(s) B HTR—lﬁ]_lﬂT
and L=rRY-rIr- @R+ H@PHT)—l

The machine system relationship i = Le can then be identified in the filter

problem, with

R_le(s) = Lz(s) or e(s) = RLz(s) = F_l(s)z(s)

where e(s) represents the 'tracking-error' and F(s) is the return-difference
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matrix given by

F—l(s) = § - MR_l or F(s) = § + Ho(s)K

The solution of the stationary filter problem can also be associated
with the scattering representation and may be considered as a flow process
from observation to state estimate. ., With the covariance operator 9P

representing a priori information in the 'previous' stage, the estimate y

and z-y can be identified with the transformations V, + V_, and V. = V2 in

6 2 1
the scattering problem giving, similar to the form of eqn 14
0 gRH s R 1] [ o - - roin) B o~
T = = * 3 T = = *
L R H R & 0O H 2 -oP @PHT 0 0] ) HT

The scattering representation now incorporates a priori information from the
second-stage 'obstacle', represented by the transformed error covariance
matrix P, This corresponds with the unit-matrix a priori information
introduced into the multivariable control problem in eqn 15. The condition
of optimality for the filter problem in the frequency domain is represented

by the spectral density for the observation, given by40

iy
F(s)RF. (-s) = R + G(s)QG'(-s) , G(s) = Co(s)B
It is also significant that this quadratic condition of optimality may now
be considered as a component of.a star product given by

L, R+G(s)QG" (&) = §] T &ts) R = & [ ool eey n

- - - -] L ] -] [se] [T et es)

The structure of the scattering problem thus incorporates a condition of
optimality in the frequency domain. The optimal filtering and control
problems introduce a constraint of minimum quadratic performance which exists
inherently in the electrical network problem as a minimum power conditiom,

and such a condition also appears in the formulation of the scattering problem.

The correspondence of the multimachine system with other system
problems concerned with least-squares estimation, linear control and
filtering exists within the unifying framework of the scattering problem.
The correspondence is also illustrated in the general feedback arrangement
of FIG 8. The dynamic elements in the control problem are seen to be

included within the structure of the system compared to the power system
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problem in which the machine units appear external to the structure of the
interconnected network and includes a diagonal machine admittance matrix YM

compared to the more general forward controller matrix C(s).

The scattering formulation, aad similarly Kron's network sequence,
includes a connection process associated with the properties of the reflection
operators U,W appearing between the adjacent units of a connected system.

This forms a basis for decomposition, which can be applied to the above system
problems, and the subunits will appear as components of a scattering matrix

in a star product representing the overall system.. It is believed that the

" scattering formulation and Kron's polyhedron model will thus play a

r(s)

e(t)

significant role in the decomposition of general large scale dynamic system

problems which presently lack an adequate theoretical basis.

e(s) ) u_(s) e y‘(s) y(s) y(s)

ZMi | U Vi 8“ Vi

L

=) >y, T Alp) —> Z, | L
z(s) ></\\ &s) R&(s) ) HRe(s) Ke(sg 0 : X = i

. R"" H-r =) @(S)
Ky(s) K(s)
v(t)
H

FIGH Basic feedback structure repreSenting the multivariable
control system, muttimachine system and the stationary
K-B filter




6. Conclusions

Certain aspects of Kron's pioneering work concerned with the
polyhedron model which have important applications in many system problems
have been highlighted. A unifying algebraic framework is provided by the
orthogonal electrical network which forms the basis of the polyhedron model
and also by the general scattering representation of a flow process, The
scattering problem and the properties of the star product would now appear
to have a direct application for interconnecting adjacent networks
incorpérating electrical and electromagnetic variables in the polyhedron
model. Such concepts and relationships originating in electrical network
theory and in the general theory of flow processes are thus of fundamental
importance and can provide greater physical insight and understanding of
Kron's polyhedron model. The application of the model in nonlinear
estimation, based on the concept of introducing the structural properties
of a physical system into an abstract data fitting problem, appears to be of
considerable significance. However, Kron's published work is difficult to
comprehend and appears to lack an adequate analytical basis which is required
for extending the application of the work, although all the concepts appear

to be particularly relevant and valid.

The formulation of the system problems concerned with linear optimal
control, filtering, least-squares estimation and the multimachine power system
requires a framework which incorporates the effects of a priori information.
This exists inherently within the scattering representation of a flow process
including a sequence of obstacles, and the resulting star product introduces
an implicit feedback or return-difference effect associated with the inter-
action between obstacles. A similar type of structure exists in Kron's
polyhedron model consisting of a sequence of orthogonal networks which are
connected using the properties of incidence matrices associated with a
phyéical topological structure. A correspondence then exists with the
stationary Kalman-Bucy filter problem which would appear to support the
proposed application of the polyhedron in the statistical estimation problem.
Both representations incorporate basic features which are fundamental in system
theofy, and provide a unifying framework of dimensionless- and impedance/
admittance- or variance-type operators required to obtain a stage-wise
solution procedure which evolves by updating a priori information. °~ It 1is
evident that such evolution is inherent in the concept of dynamic programming

and also in the theory of statistical estimationm. Such a procedure will
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also be relevant to the flow of material, energy and information, and no
doubt Kron appreciated the significance of this phenomena in proposing the
application of the polyhedron for brain modelling. The scattering
formulation now also appears to provide a suitable analytical framework for
the decomposition of large scale dynamic systems which may include nonlinear
elements. It incorporates a functional equation representation for a
connected system related to the behaviour of the subunits, which also

appears as an underlying concept in all of Kron's work.

The theory of scattering may also be applied to the interaction of
waves of different frequency and also to the interaction between waves of ,
the same frequency associated with different forms of energy, such as electro-
magnetic and pressure waves in a plasma.37 The n-mode process can be
formulated similar to the l-mode problem and the overall system can be
represented by similar sets of functional equations. The multimode problem
may then suggest a structure for extending the polyhedron model to accommodate
many other system concepts with additional physical variables, such as
mechanical, elastic, hydrodynamical, chemical, thermodynamical and transport
phenomena propagating within a transmission-type system as envisaged by
Kron.7’12’38 The scattering representation and the polyhedron model thus
possess certain similar basic characteristics which provide a unifying

structure which is of considerable significance and importance in general

system theory.
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9. Appendix

Tn the electrical network of FIG 9, five branch currents can be

related to the two closed- and three open-path currents by
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The 'coil' and closed- and open-path voltages are also given by .
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The connection matrix CC relating the O-cells and the node pairs, may be
» defined by selecting three independent node pairs, say D-A, D-B, D—C.16 Then
D-A D-B D-C
A =1 i 5
B =1 .
C (©) = C ” . =],
3 p |1 1 1

The incidence matrix relating the 0- and l-cells, with columns indicating that

each branch extends between two nodes, is then given by

D-A D-B D-C 1.2 3 4 5 12 3 4 §

o I Y T Y B I S
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For the connection matrix A(Z)’ with meshes 4',5' bounding areas 4,5 with
clockwise orientation,

4! 5!
o _ 4 |1 &
A2y T s [ —1}

Then the incidence matrix relating lines to planes, with columns indicating

that each plane extends between three branches, is given by

. 4' 5! 4 5
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FIG 9 Closed- and open-paths
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