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Abstract

Lighting accounts for nearly 20% of overall U.S. electricity consumption and 18% of U.S.

residential electricity consumption. A transition to alternative energy-efficient technologies could

reduce this energy consumption considerably. To quantify the influence of factors that drive

consumer choices for light bulbs, we conducted a choice-based conjoint field experiment with

183 participants. We estimated discrete choice models from the data, and found that politically

liberal consumers have a stronger preference for compact fluorescent lighting technology and for

low energy consumption. Greater willingness to pay for lower energy consumption and longer

life was observed in conditions where estimated operating cost information was provided.

Providing estimated annual cost information to consumers reduced their implicit discount rate by

a factor of five, lowering barriers to adoption of energy efficient alternatives with higher up-front

costs; however, even with cost information provided, consumers continued to use implicit

discount rates of around 100%, which is larger than that experienced for other energy

technologies.
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1. Introduction

In 2008, residential compact fluorescent lamp (CFL) socket saturation1 was 10% nationwide

(D&R International, 2009), with the remainder being almost entirely incandescent bulbs. About

half of the total lighting service (in terms of lumens) was provided by incandescent bulbs, and a

little over 20% was provided by CFL bulbs (Navigant Consulting, 2010), suggesting that further

adoption of CFLs � or other efficient lighting technologies, such as light emitting diodes � could

achieve considerable energy savings in the residential sector. In many cases, these efficient

alternatives would also save money for households. The slow transition to CFLs does not seem

to be due to poor public awareness, since about 70% of Americans know about CFLs (Sylvania,

2010). These data suggest that there may be other barriers that keep consumers from adopting

CFLs.

Engineering economic analyses have long suggested that there is a gap between current

residential energy consumption and optimal levels that could be achieved if the most energy-

efficient and cost-effective end-use technologies providing the same level of energy services

were adopted instead (Hirst and Brown, 1990; Jaffe and Stavins, 1994). There have been

numerous studies analyzing potential reasons that prevent optimal efficiency from being

achieved (Anderson and Claxton, 1982; Golove and Eto, 1996; Brown, 2001), including low

price of energy caused by distortional regulation, misplaced incentives between tenants and

landlords (also known as the principal-agent problem), lack of access to financing options

1 Socket saturation is frequently used as a measure of market penetration of a specific type of light bulb. It is defined

as a percentage of total number of bulb sockets that contain a specific type of light bulb.
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(Blumstein et al., 1980), uncertainty in the future price of electricity or other fuels, low priority

of energy issues for consumers among other types of expenditures (Brown, 2001), consumers�

limited cognitive capacity (Anderson and Claxton, 1982), and the fact that energy efficiency

often is inseparable from other unwanted features in products (Golove and Eto, 1996). A recent

report from the National Academy of Sciences on �America�s Energy Future� (2009) states that

well-designed policies such as building energy codes, Energy Star product labeling, and

efficiency standards could help overcome these barriers and that these policy initiatives already

achieve primary energy savings of about 13 quadrillion BTU per year.

Researchers have taken various approaches to measure the relative priority consumers place on

energy efficiency versus upfront cost when making technology purchases, including implicit

discount rates (IDRs) (Gately, 1980; Meier and Whittier, 1983). The IDR, or hurdle rate, is the

value of the discount rate for a hypothetical net-present-value-maximizing consumer that best

matches observed choice behavior. When viewed from the framing of classical economic

discounting, consumers appear to behave as though they are using the implicit discount rate to

value current vs. future costs (with some error).

The IDRs are used as inputs in many energy-economy models to explain how the share of end-

use energy technologies evolves over time. For example, the Energy Information Agency�s (EIA)

National Energy Modeling Systems (NEMS), assumes hurdle rates for consumer appliances that

range from 15% (gas furnace) to 90% (electric clothes dryer) depending on the residential end-

uses considered (U.S. EIA, 2011). There are debates on the usefulness and appropriate ranges of

such estimates of IDRs as a means of describing consumer choices and behavior (Frederick et al.,
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2002). Attributing consumers� choices solely to their discount rates can lead to misunderstanding

consumer behavior, since other factors such as the effect of marketing and advertising, lack of

knowledge, or imperfect substitutability across two competing technologies also play a role in

choices (Mulder, 2005). However, in terms of energy system modeling, using high discount rates

to explain technology choices by consumers is still the standard approach.

To improve understanding of barriers to adoption of energy-efficient lighting, we perform

choice-based conjoint experiments and assess the following:

1. We measure consumer preferences and willingness to pay (WTP) for general

illumination, and we identify barriers to the adoption of efficient lighting technologies.

Specifically, we quantify the importance of product attributes (price, wattage, brightness,

lifetime, and technology type) and consumer characteristics (income, education, housing

characteristics, political views, perception of climate change, and perception of toxicity

issues) in determining bulb choice. Using WTP allows us to directly compare preferences

for distinct attributes that have different units.

2. We estimate IDRs for lighting technologies.

3. The Federal Trade Commission (FTC) implemented a new label that includes

estimated operation cost information and is required on lamp packages starting in 2012.

We measure the effect of labeling estimated bulb operation cost on resulting choices,

WTP, and IDRs.
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In the next section, we summarize the literature on IDRs and discrete choice analysis. Based on

this understanding, the method and the results of our experiment will be explained in Section 3

and 4 respectively, and in Section 5 we conclude.

2. Previous work on eliciting implicit discount rates for energy-saving

household appliances

Research on consumers� IDRs started in the 1980s using two general methods: 1) asking

participants hypothetical questions about the future savings they would require before making

investments in energy efficiency (see, for example, Houston 1983), and more commonly, 2)

building econometric models of consumer utility or other quantities and comparing coefficients

for price and/or annual operating cost variables. The second method can implicitly derive

discount rates without forcing participants to answer speculative questions like the first method

does. We use a variant of this second method with a nonlinear model specification explained in

the next section.

Table 1 provides a summary of several studies that elicited IDR for end-use energy technologies

over time. We provide more detail regarding the study from Hausman (1979), who constructed

an individual choice model for air conditioners (AC), as it has the closest formulation to our

model. In this model, each individual chooses a specific AC that maximizes his or her utility

function. The utility function posed is:
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௝ܷ = െߚଵ ή ௝ݐݏ݋ܥܱ െ ଶߚ ή ܿ݅ݎܲ ௝݁ െ ଷߚ ή ௝ݐݎ݋݂݉݋ܿݏ݅ܦ + ௝ߝ (1)

Where Uj is the utility gained by selecting product j, ௝ݐݏ݋ܥܱ is the annual electricity cost ($/yr)
due to AC use, ܿ݅ݎܲ ௝݁ is the initial purchase cost ($), ௝ݐݎ݋݂݉݋ܿݏ݅ܦ is the discomfort level that
increases as the temperature setting for the AC increases, and ௝ߝ is the error term. From purchase
records and capacity/efficiency information of ACs in the market, Hausman estimated the

coefficients in the utility function using maximum likelihood estimation. The author assumes

that the utility depends on annualized capital cost, so that ଶߚ is an annualizing factor. Then, the
implicit discount rate r can be computed using the capital recovery factor for a given AC lifetime

q:

መଶߚ = መଵߚ 1)ݎ + ௤(ݎ
(1 + ௤(ݎ െ 1 (2)

The resulting IDRs in the study ranged from 5% to 89% depending on household income level.

Frederick et al. (2002) emphasize that the intertemporal choices, such as investments in energy-

efficiency, are not only influenced by time preferences�what they define as �the preference for

immediate utility over delayed utility��which we measure with IDRs. Rather, they are

determined jointly by various confounding factors such as intertemporal arbitrage (e.g. imperfect

capital markets), uncertainty (i.e. uncertain about whether future energy savings will be

achieved), and expectations of changing utility functions (e.g. expecting increased future income
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or wealth). Azevedo et al. (2009) and Jaffe and Stavins (1994) also argued that IDRs include

factors such as lack of technical or financial knowledge, the role of marketing or advertising, or

habit formation. Despite this caveat, our estimation of IDRs for the lighting sector will contribute

to a better understanding of the energy efficiency gap regarding the adoption of energy-efficient

lighting.

3. Methods

3.1. Experimental Method

We observe choices made by participants in an experiment and construct an econometric model

of consumer utility as explained later in Section 3.2. In preparation for this study, we conducted

preparatory pilots and interviews and found the five most important bulb characteristics for

consumers were price, energy use, color, lifetime, and brightness. Some participants also

mentioned bulb startup time, headaches, and dimming as potential impeding factors for CFLs.

Although there is no scientific evidence that CFLs cause headaches (U.S. FDA, 2012), we

included health questions in our questionnaire because these reported subjective perceptions can

also influence choices.

The field experiment consisted of three main parts: 1) a conjoint choice experiment, 2) choices of

real light bulbs, and 3) questions on demographics, experience, knowledge, and attitudes. To

observe the effect of disclosing annual cost information, subjects were randomly assigned to

either one of two groups. Half of the participants were shown annual operating cost information
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in their choice tasks while the other half were not. From this point, the group provided with the

information is referred to as the with-cost group and the group without it as the without-cost

group.

Experiment setup: We designed a controlled experiment with a choice based conjoint survey.

The stated choices are then used to estimate several random utility discrete choice models. The

experiment was performed in a mobile laboratory2, using laptops set up with choice tasks (using

Sawtooth software) and a survey.3 We asked a total of 39 questions (15 choice tasks + 24

additional questions). Each choice task presented three alternatives among which a participant

chooses one, as shown in Figure 1.

[Figure 1 approximately here]

The attribute levels were selected to cover the ranges commonly available in the market, and

product profiles were selected from the full factorial of 2×35 potential permutations. For each

subject, 36 alternatives (12 tasks/subject × 3 alternatives/task) were generated using Sawtooth�s

complete enumeration strategy, which seeks to achieve balance and orthogonality for main

effects and first order interactions while minimizing overlap among attribute levels within each

choice task (Kuhfeld, 1997). Many of the profiles represent combinations of attributes that do not

2 The Center for Behavioral and Decision Research (http://www.cbdr.cmu.edu/datatruck/index.html)

3 Sawtooth is a software commonly used for marketing studies and conjoint analyses.
(http://www.sawtoothsoftware.com/)
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appear together for products in today�s market (e.g.: 75W CFL with a 1,000 hour lifetime), but

all represent plausible and understandable alternatives, and the enumeration allows elimination

of sources of bias like multi-collinearity.

Three fixed choice tasks were identical for all participants. The role of the first two fixed tasks

was intended to check whether participants are paying attention to the experiment. In the first

fixed task, the alternatives are identical except that one has a longer life than the others. In the

second one, one alternative had the lowest price and the longest life. Fifteen subjects out of 183

who did not choose the dominant alternatives in these two tasks were considered as not attentive

and removed from our analysis.

The third fixed task was used to determine the compensation to participants (hereinafter referred

to as �compensation task�). Jointly with the consent form, participants were given an instruction

page where it was stated: �Your choice from one specific question, placed randomly among the

fifteen choice questions you will answer, determines the compensation you will receive at the end

of the experiment.� Thus, one among the three types of real light bulbs was handed out to

participants at the end of the experiment depending on their choices from the compensation task.

Participants were informed beforehand that they would be compensated with a type of light bulb

decided based on their choices, but they were not told which specific task determined the

compensation. Ding et al. (2005) tested adding an incentive among the conjoint choice tasks and

observed that this method helps participants to make choices that are closer to their true

preference, reducing the limitation of observing stated preferences that differ from market

behavior, although the compensation may have also incentivized people who might otherwise
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have chosen lower priced bulbs to choose the expensive bulbs, which would lead to somewhat

deflated price coefficients.

Physical choice task: once the computer-based choice tasks were finalized, participants were

asked to follow the experimenter to another room, where they were asked to choose among five

pairs of real light bulbs in their original packaging. Price information was provided on a tag next

to each lamp package. These choices were not used as compensation to participants; these

choices were simply used to compare physical light bulb choices with the predictions from our

model to assess external validity.

Demographics, experience, knowledge, and attitudes: After the choice tasks, each participant

was asked to fill out a survey with questions on demographics, prior experience with lamps,

environmental attitudes, political views, basic understanding of bulb characteristics, perception

of climate change, and perception of toxicity issues.

3.2. Analytical Model

Consumer utility model: We estimate a mixed logit model, which models heterogeneity of

consumer preferences via random coefficients and mitigates the restrictive substitution patterns

(i.e. independence of irrelevant alternatives (IIA)) of a multinomial logit (MNL) model and

improves fit.4 Logit estimates using categorical variables for all attributes (discrete conjoint

levels) suggest linear or quadratic utility functions for numerical explanatory variables (price,

4 A likelihood ratio test between a MNL model and our basic mixed logit model gives Ȥ2(8)=457.1 and p<0.000
(Model 1 and Model 2 in Table 3).
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brightness, power, and lifetime), and we use these throughout. 5 The utility ௜ܷ௝ that consumer i
draws from product alternative j is modeled as:

௜ܷ௝ = ௜ܸ௝ + ߳௜௝ = ෍ ൭ߚ௞ ή ௝௞ݔ + ෍ ௞௡ߛ ή ௜௡ݖ ή ௝௞ேݔ
௡ୀଵ ൱௄

௞ୀଵ + ߳௜௝, (3)

where ௞ߚ is the preference coefficient for attribute k,ݔ�௝௞ is the k-th attribute of alternative j, ௞௡ߛ
is the coefficient for interactions between consumer attribute n and product attribute k, ௜௡ݖ is the
n-th attribute of consumer i, and ߳௜௝ is the random error term, taken as an iid standard Gumbel
distribution (Train, 2003). The interaction terms ௜௡ݖ ή ௝௞ݔ reveal how individual characteristics
can affect preference for bulb attributes. We assume continuous numerical bulb attributes unless

otherwise noted, as shown in Table 2. For the mixed logit model, both ௞ߚ and ௞௡ߛ are random
variables, assumed to be normally or log-normally distributed with distributional parameters

estimated via likelihood maximization.

[Table 2 approximately here]

Specifically, our base model (Model 2 in Table 3), which excludes respondent covariates ,௜௡ݖ is:

5 Additional results for alternative model specifications are available from the authors upon request.
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௜ܷ௝ = ൫ߚҧଵ + ௝୘ଢ଼୔୉ݔଵ௜൯ߥଵߪ െ exp൫ߚҧଶ + ௝୔ୖ୍େ୉ݔଶ௜൯ߥଶߪ + exp൫ߚҧଷ + ௝୐୍୊୉ݔଷ௜൯ߥଷߪ
+ ൫ߚҧସ + ௝୆ୖ୍ୋୌ୘ݔସ௜൯ߥସߪ + ൫ߚҧହ + ௝୆ୖ୍ୋୌ୘൯ଶݔହ௜൯൫ߥହߪ

+ ൫ߚҧ଺ + ௝୛୅୘୘ݔ଺௜൯ߥ଺ߪ
+ ෍ ൫ߚҧ଻௠ + ௠௝େ୓୐୓ୖଶ௠ୀଵݔ଻௠௜൯ߥ଻௠ߪ
+ ௜୓୔େ୓ୗ୘ܦ ൬ߚҧଵେݔ௝୘ଢ଼୔୉ + ௝୔ୖ୍େ୉ݔҧଶେߚ + ௝୐୍୊୉ݔҧଷେߚ + ௝୆ୖ୍ୋୌ୘ݔҧସେߚ + ௜௝୆ୖ୍ୋୌ୘൯ଶݔҧହେ൫ߚ
+ ௝୛୅୘୘ݔҧ଺େߚ +෍ ҧ଻௠େߚ ௠௝େ୓୐୓ୖଶ௠ୀଵݔ ൰+�߳௜௝

(4)

where m indexes the discrete levels of the color attribute, ҧߚ and ߪ are the distributional
parameters for the random coefficients, ߥ is a random variable with an iid standard normal

distribution. We assume that preference for type, brightness, and wattage varies normally in the

population and preference for price and life varies log-normally, since a change in sign for

preference of price or life would be counterintuitive and theoretically problematic. For

interaction terms, we use fixed coefficients for ease of interpretation. In our final model (Model

3 in Table 3), we test the interaction between lifetime and income levels, which was the only

significant interaction term in several variants of the model we tested. Other interactions between

bulb types and perception/attitude variables are included to understand whether consumers

would differ in their choices for incandescent or fluorescent technologies as a result of their

perceptions or attitudes towards climate change, toxicity associated with certain lighting

technologies, participants� awareness of the relationships between bulb characteristics, and

participants� political orientation.
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Model for estimation of implicit discount rates: To estimate IDRs, many conventional studies

including Hausman�s (1979) assumed a single exogenous value of average lifetime. This

assumption was inappropriate in our case considering our use of lifetime as an independent

variable determining consumer utility and also the vast difference between a lifetime of a CFL

and that of an incandescent bulb in the market. Instead, we estimated the IDR explicitly in the

estimation procedure using annualized cost:

(annualized capital cost) =
1)ݎ + ௫ై౅ూు(ݎ
(1 + ௫ై౅ూు(ݎ െ 1 ή .୔ୖ୍େ୉ݔ (5)

Here, ୐୍୊୉ݔ is expressed in years.6 The base model specification for estimating IDR is
௜ܷ௝ = െ݁ߚ)݌ݔ଴ + ଴௜)൭ߥ଴ߪ ଵ(1ߚ + ଵ)௫೔ೕై౅ూుߚ

(1 + ଵ)௫೔ೕై౅ూుߚ െ 1 ௜௝୔ୖ୍େ୉ݔ + ௜௝୓୔େ୓ୗ୘൱ݔ + ଶߚ) + ௜௝୘ଢ଼୔୉ݔ(ଶ௜ߥଶߪ
ଷߚ)+ + ௜௝୆ୖ୍ୋୌ୘ݔ(ଷ௜ߥଷߪ + ସߚ) + ௜௝୆ୖ୍ୋୌ୘൯ଶݔସ௜)൫ߥସߪ

+ ෍ ହ௠ߚ) + ௠௜௝େ୓୐୓ୖଶ௠ୀଵݔ(ହ௠௜ߥହ௠ߪ + ߳௜௝ ,
(6)

where ȕ0 represents average consumer sensitivity to annualized cost of ownership and ȕ1

represents the consumer�s IDR. Other ȕs can be interpreted in the same way as in Equation (4).7,8

6We assume that consumers accept the lifetime information written on packages as true, i.e. they do not anticipate

an early failure or a defective bulb.

7 Because the IDR model is nonlinear in parameters, the log-likelihood function may have multiple local maxima.
We seek global maxima via randomized multistart.

8 Wattage is perfectly correlated with operating cost, so their effects cannot be determined independently. By
removing wattage from the utility function, we treat consumer preference for low wattage as though it is entirely
preference for low operating cost. If consumers also prefer low wattage for other reasons (e.g.: environmental), then
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Because the conjoint task is randomized, the estimate of IDR should be independent of the

presence of other attributes in the model. Through maximum likelihood estimation, we can

estimate the population�s average IDR (i.e. (መଵߚ employed when making purchasing decisions for
any lighting products.

4. Results and Discussion

4.1. Summary statistics and sample characterization

Fifteen among the 183 subjects were removed from the analysis as explained in Section 3.1, and

the remaining 168 subjects were used for this analysis.

Figure 2 shows age and income distribution of the participant group in this study, juxtaposed

with country-, city- (Pittsburgh), state-level (Pennsylvania) statistics retrieved from the 2010 U.S.

Census (U.S. Census Bureau, 2010). Since the neighborhood where the study was performed has

a large student population, the age group under 34 and the income group under $10k appear

over-represented. Median tiers for income, education, and age were $30-50k per year, bachelor�s

degree, and age group 25-34. 56% of participants were male, 41% owned their houses, and 17%

have children.

we may be overestimating preference for low operating cost. Thus, our estimates of implicit discount rate may be
biased downward.
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[Figure 2 approximately here]

Ratings on seriousness of climate change were observed to be correlated with political view, but

not with education or income: Liberal participants believed that climate change is a more serious

issue than participants with different political views.

We also asked participants to rank the ten major technical factors that would affect their choice

for light bulbs. When rankings of these factors were averaged numerically (a rough assessment),

both with- and without-cost groups showed the same decreasing order: Brightness ظ Price ظ
Lifetime ظ Energy Cost ظ Color ظ Wattage ظ Type ظ Wattage Equivalent ظ Time to Full

Brightness ظ Shape.
4.2. Main Results

Table 3 shows our main results. Models 1 and 2 show the results for a model that does not

include consumer specific attributes, while Model 3 in the second column includes consumer

attributes.

[Table 3 approximately here]

We also compute mean willingness to pay (WTP) derived from draws based on the parameter

vector of the model and the variance covariance matrix from the estimation process

incorporating the sampling variance (Hensher and Greene, 2003). We do not report all WTP
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results due to space limitations, but we discuss key findings, and additional information is

available from the authors upon request.

WTP for a unit increase in variable X can be calculated taking ratios between ȕX and ȕPRICE.

However in our case, since many ȕX values and ȕPRICE are assumed to be random, we cannot

simply divide one with the other. Instead, we use a Monte Carlo analysis, where we draw mean

beta values from their joint distributions incorporating sampling variances and calculate the

ratios for each draw. The mean of the ratios yields the population mean WTP of attribute X9.

4.3. Analysis

4.3.1 How do bulb-specific factors affect consumer choices?

From Model 2, we observed that, all else being equal, consumers generally prefer CFL

technology and a relatively high level of brightness. Preferences for color and wattage are

diverse: the standard deviations in the population are significant while the means are not,

implying that some consumers prefer warmer color and lower wattage while others prefer the

opposite. Preferences for low power (p<0.01) and long life (p<0.1) increase when operation cost

information is provided.

9
I.e., given an estimated vector of beta from our model is B (K×1) and the estimated variance-covariance matrix is

V (K×K), we take N draws from MVN(B, V) (multivariate normal) distribution, which results in a matrix, D (N×K).

For each draw i (i=1, 2, �, N), we keep b௜ଡ଼ = ௜ଡ଼ if ȕX is assumed normal or convert it to b௜ଡ଼ߚ = ௜ଡ଼ߚ)݌ݔ݁ + ௜ଡ଼ଶ݀ݏ
2Τ )

if ȕX is assumed log-normal. We calculate ܧ ቂb௜ଡ଼ ௜୔ୖ୍େ୉ߚ)݌ݔ݁ + ௜୔ୖ୍େ୉ଶ݀ݏ
2Τ )Τ ቃ over the N draws and use it as a

mean WTP for attribute X.
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Participants are willing to pay $2.63 more for CFL bulbs than for incandescent bulbs on average,

all else being equal; however, there was considerable variance, with some consumers willing to

pay more for incandescent bulbs. Consumers are willing to pay $0.52 more for every 1,000 hours

of lifetime increase within the range tested in the experiment (1,000 ~ 12,000 hours), and that

amount increased by $0.14 when they were shown annual cost estimates. They are willing to

pay $0.46 more for every 10W decrease within the range of 9~75W when the annual cost

information is shown.

4.3.2. How do consumer-specific factors affect consumer choices?

At the p<0.05 level, liberals have a stronger preference for low wattage bulbs than non-liberals.

At the p<0.1 level, high income consumers have a stronger preference for long life than low

income consumers, liberals have a stronger preference for CFLs than non-liberals, and people

who correctly answer CFLs contain toxic materials and rate toxicity as �very dangerous� have a

stronger preference for incandescent bulbs over CFLs than people who incorrectly answer or rate

it as �not at all dangerous�. Gromet et al. (2013) supports the finding that political ideology

affects one�s tendency to invest in energy efficient technology. Between Model 2 and 3 in Table

3, the significance of most coefficients for main technical features of bulbs did not change. The

only change was that the mean coefficient of type variable becomes statistically insignificant

suggesting that mean preference for this attribute is mainly induced by different levels of toxicity

or political view, while the standard deviation remains significant meaning that the distribution

itself is still significantly different from zero.
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The relevance of various personal attitude variables in consumer decision making has been

emphasized in multiple discrete choice studies, especially in the transportation sector (Ewing and

Sarigöllü, 2000; Choo and Mokhtarian, 2004; Vredin Johansson et al., 2006; Domarchi et al.,

2008). For example, Ewing and Sarigöllü (2000) investigated the effect of personal attitudes

toward environment and technology on preferences for alternative fuel vehicles through a choice

experiment. They found that while the attitudinal factors were significant, the increase in log-

likelihood of the model due to the factors was not large. Teisl et al. (2008) suggested that

consumers� perception or subjective concern for environmental problems together with eco-label

information affected consumers� �eco-behavior� such as purchasing greener vehicles. We

observed that the findings from these studies applied similarly to lighting purchase decisions as

well.

4.3.3. What is the right level of model complexity for policy analysis and for energy models?

Table 3 presents the three models we test for this analysis. Among them, the MNL model (Model

1) is the simplest and the easiest to understand, but it has the highest AIC/BIC values compared

to the other two models. A likelihood ratio test between Model 1 and 2 gives Ȥ2(8)=457.1 and

p<0.001, while a similar test between Model 2 and 3 gives Ȥ2(18)=30.8 and p=0.03. Considering

the relativity of statistical significance (depending on the significance level decision), the

AIC/BIC results, and also the understandability of the model, we suggest that Model 2 addresses

choice complexity and has the benefit of modeling consumer heterogeneity and avoiding the

restrictive substitution patterns (i.e. IIA).
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4.3.4. How does disclosing annual operating cost information impact choices?

Model 2 and 3 show that having operating cost information is related to preferences for longer

lifetime and lower wattage with no significant influence on choices for color, brightness, type,

and price. According to the values in Model 2, and holding all other attributes constant, when the

operating cost information was given a consumer was willing to pay $0.14 more for a 1,000-hour

increase of lifetime and $0.46 more for a 10W decrease of power compared to the case where

s/he did not see the information. A potential explanation for this is that when the annual

operating cost information is given, consumers tend to pay more attention to the implications of

lifetime and power on future savings10 The fact that lower power and longer lifetime affect

consumer choices less when operating cost information is not shown is a potential reason why

CFLs have underperformed in the market prior to introduction of packaging labels that

incorporate operating cost estimates.

4.3.5. What are the implicit discount rates (IDR) that consumers use when making choices for

lighting technologies?

We fit a nonlinear model as shown in Equation (6) above including just the bulb attributes and

the indicator of operating cost availability. We fit it separately for with- and without-cost groups

and for three different income brackets (low/middle/high) to see the relationship between income

and IDR. The discount rate estimates from this model are presented in Table 4. We found that

average IDR is 100% for the with-cost group (i.e. with operation costs information) and 560%

10When operating cost information is presented, respondents also have more information to process. However, this
information appears to affect only preferences for power and lifetime without significantly affecting other attributes.
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for the without-cost group (i.e. without operation costs information), and IDR decreases as

income increases. Among the with-cost group, the IDR of the low income group was about five

times larger than that of higher income consumers. However, in the without-cost group, the

standard error of the low-income group was so large that we could not clearly say the low

income group�s IDR is higher than others. The high income group�s IDR was significantly

smaller than the mid-income group�s value. Thus the higher up-front cost and delayed benefits of

CFLs relative to incandescent bulbs is particularly pronounced for low to medium income groups

and less of an issue for high-income groups.

[Table 4 approximately here]

In the experimental setting, the without-cost group was not provided with operating cost

information, but with just the wattage of the bulb and the number of hours of operation. We

assumed in Equation (6) that consumers� utility is represented by the annualized cost of

ownership, such that the participants are inferring annualized operating cost from usage and

power information during the choice process. The estimated IDRs in Table 5 4 suggest that

consumers are pessimistic about (or pay little attention to) future economic savings delivered

from the energy efficient alternatives. It is possible that respondents who were not shown

estimated cost information made different assumptions about energy prices or frequency of bulb

use than the assumptions used to compute estimated annual operating cost information for the

label, and it is not known which estimates are more accurate for individual consumers.
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All of these estimated discount rates are on the high side in the ranges of discount rate values

used in the NEMS (U.S. EIA, 2011). Savings from individual energy efficient light bulbs are

normally smaller than savings from other energy efficient appliances, which may contribute to

consumers choosing to use higher IDRs. This behavior was reported by Green et al. (1997). This

finding suggests that lighting can face a higher barrier than other technologies with regard to the

perception of operating cost information and potential reductions in energy bills. It also implies

that while disclosing operating cost information as in the new FTC label will contribute

significantly to further adoption of efficient light bulbs, it alone is not likely to be sufficient, and

other policies with minimum efficiency standards (e.g. Section 321 of The Energy Independence

and Security Act (EISA)) will be needed to achieve more savings.

4.3.6. Model validation through physical choice observations

To examine the predictive accuracy of the estimated model, we first calculated population-wide

choice probabilities of the three alternatives that were shown in the compensation task. These

probabilities were computed using a variant of Model 2, which was estimated excluding the

choices made by participants in the compensation task. Choice probabilities for each alternative

were averaged over the distributions of the random coefficients to yield these probabilities.11 In

Table 5, we display the frequency of chosen alternatives in the compensation task and the

population-wide choice probabilities predicted from the model respectively for all subjects,

without-cost, and with-cost group.

11 Numerical integration was used with 1000 draws from the random coefficients.
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[Table 5 approximately here]

Concurrent to this, we used our model to predict choice probabilities for the five physical

samples presented in the second part of our experiment to test how our model predicts physical

bulb choices. Physical choices and predicted choice probabilities are presented in Table 6.

[Table 6 approximately here]

In Table 7 we compare the results from estimates of choices using Model 2 with the choices

made by participants in the compensation task, and with the choices made in the physical choice

task. We further compare each of these with what the choices would be if one uses simply a

random model that treats all choice alternatives as equally likely.

[Table 7 approximately here]

We use several metrics to compare across the choice probabilities estimated by our model,

choices in the compensation task, choices in the task where participants were exposed to physical

light bulbs, and the random model:
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 The log likelihood: Log of the product of predicted probabilities for all observed choices.

It indicates the goodness of the model fit.

 The equivalent average likelihood (EAL): The geometric mean of likelihood per choice

made. It can be interpreted as the likelihood normalized to the size of the data. This

metric was referred to as average hit rate by Feit et al. (2010), although it is more closely

related to likelihood than hit rate.

 The average hit rate (AHR): The average probability that a draw from the model would

match the choice observed for a randomly selected individual.

 The average share prediction error: The average value of the differences between

predicted share and actual share.

Not too surprisingly, our model is better than a random model, offering a basic validity check.

The improvement in EAL and AHR over the random model appears relatively small. However,

these comparisons should be viewed with understanding that random utility choice models are

not intended to predict every individual's choices separately, since individual choices themselves

are stochastic. Rather, these models are intended to model aggregate behavior when integrated

over the population, and the average share error of the model, an aggregate measure, is

substantially better than random.

Our model predicts the choices for the compensation task with an average of 4.2% error,

compared to 10.4% error for a random model. In the physical choice task, which involves

unobserved technology attributes such as packaging, brand, etc. that were not present in the

conjoint study, the model predicts share with an average of 5.7% error, compared to 9.6% error
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for a random model. These metrics suggest that attributes such as brand, packaging, shape, or

size may play significant roles in choices, which we are not capturing in the model we estimated.

[Table 7 approximately here]

5. Conclusions and Policy Implications

We examine reasons for limited adoption of compact fluorescent bulbs using a choice-based

conjoint experiment to quantify the effect of product and consumer attributes on consumer

choice in conditions where annual operating cost estimates are disclosed vs. withheld. A caveat

is that the subjects collected in this experiment over-represent young low income consumers.

Our results suggest that consumer choices are significantly affected by most bulb characteristics

tested, including color, brightness, lifetime, power, type, and price. Perceived danger of toxicity

in CFLs and political view are the consumer-specific factors that have significant influence on

preferences for bulb attributes. Perceived severity of climate change or basic technical

knowledge in lighting did not significantly affect preferences. This result suggests that

educational efforts such as communicating the low risk of mercury in CFLs can be effective in

driving CFL adoption, while linking CFL use and climate change mitigation is less to be helpful.

However, our results suggest that these consumer-specific characteristics are not as significant in

predicting consumer choices as bulb characteristics.
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We find that providing operating cost information induces stronger preferences for bulbs with

longer lifetime and lower energy consumption. Implicit discount rates (IDRs) decreased from

over 560% to around 100% when respondents were provided annual operating cost estimates.

The IDRs were observed to decrease as household income increases. This suggests that

consumers weigh future savings more strongly when the information is given. The combination

of these two findings put the new FTC labeling rule on a strong footing. The relationship

between IDR and income suggests that higher-income consumers are more likely to adopt CFLs,

and the high IDRs used by middle and lower income consumers presents a particularly large

barrier to adoption.

Even when cost information is available, the estimated IDR for individual lamp choices of

around 100% is still larger than most values used for other technology types in the NEMS model.

Our findings can be meaningfully used to update such models. Future studies can examine why

the discount rates are so high for lighting and whether alternative models such as hyperbolic

discounting or models that account for satisficing behavior can explain consumer choices better

than traditional economic discounting.
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Figure Captions

Figure 1. Example of a choice task seen by participants. The attribute values in the table change

in each choice task following our randomized design. Each subject answered 15 tasks similar to

this one on a laptop. The annual operating cost in parentheses in the third row of the table was

shown only to half of the participants.

Figure 2. Distributions of age and income (N=168). City and state data are from the 2010 U.S.

Census (U.S. Census Bureau, 2010).



Highlights

 Light bulb choice models are estimated through a choice-based conjoint experiment.

 Implicit discount rates drop fivefold when operating cost information is provided.

 Bulb features and cost drive choice more than consumer demographics or awareness.

 Toxicity awareness and political leanings also affect bulb preferences.
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Tables

Table 1. Selective reviews of studies on implicit discount rate implied by purchases of energy efficient goods

Study Product Data source Year of data

retrieval

Range of estimated

discount rate

Method

Hausman

(1979)

Room AC 46 samples from an MRI

energy consumption survey and

AHAM product directory

1978 5.1% ~ 89% (with

income effect

added)

Econometric

model (Discrete

choice analysis)

Gately

(1980)

17 cu-ft.

refrigerator

Price data of models from three

major manufacturers

Jan 1978 45% ~ 300% Unspecified

Houston

(1983)

Hypothetical

device

Mail survey (1081 samples

from Indiana)

1979 10% ~ 50% (given

as choices in the

survey): with mean

of 22.5%

Direct inquiry

Meier and

Whittier

(1983)

17 cu-ft.

refrigerator

Price data from a nationwide

retailer

1977 - 1979 1% ~ 102% Price and energy

use comparison

Dreyfus

and Viscusi

(1995)

Automobile Residential Transportation

Energy Consumption Survey

by DOE (1775 observations)

1988 11% ~ 17% Econometric

model (Nonlinear

least square)

Ruderman

et al. (1987)

Heating and

cooling

equipment,

refrigerator

Appliance purchase cost and

efficiency data from DOE and

other reports, and historical

shipping data from DOE

1972 - 1980 18% ~ 825% Lifecycle cost

minimization

Doane and

Harman

(1984)

Thermal shell,

window and

door, water

heating, space

heating

Customer energy use survey by

an utility (GPU, now

FirstEnergy) (882 households),

cost and savings estimates from

Lawrence Berkeley Natl lab

1982 0% ~ 400% Econometric

model (Discrete

choice analysis)

Mau et al.

(2003)

Hybrid electric

car and

hydrogen fuel

cell vehicles

Mail survey (916 for HEV,

1019 for HFCV)

2002 21% ~ 49% Controlled

experiment

(Discrete choice

analysis)

This study Light bulbs Choice-based conjoint

experiment with 183

participants

2011 Explained below Controlled

experiment

(Discrete choice

analysis)
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Table 2. Descriptions of variables.

Variable Description Valueݔ௜௝୘ଢ଼୔୉ Dummy indicating bulb type
0: incandescent, 1: CFLݔ௜௝୔ୖ୍େ୉ Price of the bulb j in subject i�s choice task
$0.49 / $2.49 / ௠௜௝େ୓୐୓ୖݔ$4.49 Dummy for color, where ଵ௜௝௖௢௟௢௥ݔ is bright white andݔଶ௜௝௖௢௟௢௥ is daylight 0: No, 1: Yesݔ௜௝୐୍୊୉ Lifetime of the bulb j in subject i�s choice task 1,000/8,000/12,000
[hours]ݔ௜௝୆ୖ୍ୋୌ୘ Brightness level of the bulb j in subject i�s choice task 500/1,200/1,800
[lumens]ݔ௜௝୛୅୘୘ Power consumption of the bulb j in subject i�s choice

task
9/25/75 [watt]ܦ௜୓୔େ୓ୗ୘ Dummy indicating whether annual operating cost

information is provided to subject i
0: No, 1: Yesݖ௜୉ଡ଼୔୉ୖ୍୉୒େ୉ Dummy indicating whether subject i has used CFLs

before
0: No, 1: Yesݖ௜୆୙ଢ଼୆୙୐୆ Dummy indicating whether subject i buys light bulbs

sometimes
0: No, 1: Yesݖ௜ୌ୉୅୐୘ୌ Dummy indicating whether subject i has experienced any

health issues related to CFL use
0: No, 1: Yesݖ௜୆୅େୌ୉୐୓ୖ Dummy indicating whether subject i has a bachelor�s

degree
0: No, 1: Yesݖ௜୑୍ୈ୍୒େݖ௜ୌ୍୍୒େ Dummy indicating subject i's annual household income,

where mid-income is between $30k and $75k and high-
income is above $75k

0: No, 1: Yes

௜୘୓ଡ଼୍େେ୊୐ݖ Dummy indicating whether the subject believes only
CFLs contain toxic materials

0: No, 1: Yesݖ௜୘୓ଡ଼୍େ୆୓୘ୌ Dummy indicating whether the subject believes both
bulbs contain toxic materials

0: No, 1: Yesݖ௜୘୓ଡ଼୍େ,୩ Dummy indicating whether subject i�s belief of
seriousness of toxicity issue related to light bulbs is in
category k
(base = not at all serious, k = not very serious / somewhat
serious / very serious / not aware)

0: No, 1: Yes

௜୏୒୓୛୐୉ୈୋ୉ݖ Number of correct answers among the four questions
regarding basic lighting technology

௜େେ,୩ݖ0-4 Dummy indicating whether subject i�s belief of
seriousness of climate change is in category k
(base = not at all serious, k = not very serious / somewhat
serious / very serious / not aware)

0: No, 1: Yes

௜୐୍୆୉ୖ୅୐ݖ Dummy indicating whether the subject is politically
liberal

0: No, 1: Yes
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Table 3.Main results

Model 1 Model 2 Model 3

VARIABLES ҧߚ ҧߚ ߪ ҧߚ ߪ
M
ai
n
ef
fe
ct
s
o
f

b
u
lb
at
tr
ib
u
te
s

CCT=3700K -0.141 (0.0796) * -0.140 (0.120) 0.678 (0.112)*** -0.147 (0.120) 0.679 (0.106)***
CCT=5000K 0.00369 (0.0774) -0.00439 (0.130) 0.771 (0.0858)*** -0.0103 (0.130) 0.805 (0.0899)***
Type=CFL 0.434 (0.0689)*** 0.571 (0.136)*** 1.110 (0.101) *** 0.227 (0.537) 1.070 (0.103)***
Watt -0.00229 (0.00117) * -0.00310 (0.00220) 0.0161 (0.00161)*** 0.00724 (0.00918) 0.0162 (0.00171)***
Brightness(x10^3 lumens) 1.373 (0.374)*** 2.200 (0.470)*** 0.619 (0.145)*** 2.190 (0.473)*** 0.654 (0.128)***
Brightness^2 -0.478 (0.159)*** -0.839 (0.200) *** 0.195 (0.0659)*** -0.836 (0.201)*** 0.188 (0.0569)***
Life(x10^3 hours) (log-normal) 0.0603 (0.00748)*** -2.655 (0.184) *** 0.916 (0.122)*** -2.845 (0.255)*** 1.070 (0.177)***
Price (log-normal) -0.151 (0.0200)*** -2.231 (0.240)*** 1.438 (0.149)*** -2.198 (0.245)*** 1.414 (0.148)***

E
ff
ec
t
o
f
p
ro
v
id
in
g

an
n
u
al
o
p
er
at
in
g

co
st
in
fo

(CCT=3700K)*Dopcost 0.138 (0.114) 0.0788 (0.169) 0.0792 (0.169)
(CCT=5000K)*Dopcost 0.128 (0.111) 0.197 (0.179) 0.233 (0.181)
Watt*Dopcost -0.00674 (0.00171)*** -0.0100 (0.00303)*** -0.0123 (0.00308)***
Life*Dopcost 0.0293 (0.0108)*** 0.0292 (0.0156)* 0.0320 (0.0151)**
Brightness*Dopcost -0.161 (0.533) -0.216 (0.656) -0.218 (0.663)
Brightness^2*Dopcost 0.0437 (0.228) 0.0856 (0.279) 0.0988 (0.281)
(Type=CFL)*Dopcost -0.148 (0.0989) -0.164 (0.187) -0.0337 (0.190)
Price*Dopcost 0.0147 (0.0284) -0.00270 (0.0366) 0.00749 (0.0377)

In
te
ra
ct
io
n
ef
fe
ct
s
o
f

co
n
su
m
er
at
tr
ib
u
te
s

Life*High-income 0.0357 (0.0196)*
Life*Mid-income 0.00139 (0.0169)
(Type=CFL)*(CC=not very
serious)

0.652 (0.543)

(Type=CFL)*(CC=somewhat
serious)

0.185 (0.444)

(Type=CFL)*(CC=very serious) 0.426 (0.418)
(Type=CFL)*(CC=not aware) -0.0639 (0.756)
Watt*(CC=not very serious) -0.00447 (0.00859)
Watt*(CC=somewhat serious) 0.000507 (0.00740)
Watt*(CC=very serious) -0.00275 (0.00711)
Watt*(CC=not aware) -0.0174 (0.0136)
(Type=CFL)*(toxicity in
CFL)*(toxic=not very dangerous)

-0.347 (0.360)

(Type=CFL)*(toxicity in CFL)*
(toxic=somewhat dangerous)

0.506 (0.332)

(Type=CFL)*(toxicity in CFL)*
(toxic=very dangerous)

-0.806 (0.480)*

(Type=CFL)*(toxicity in CFL)*
(toxic=not aware)

-0.870 (0.810)

(Type=CFL)*knowledge -0.0518 (0.0897)
Watt*Basic knowledge -0.000954 (0.00147)
(Type=CFL)*Liberal 0.370 (0.200)*
Watt*Liberal -0.00746 (0.00329)**

Observations 6,552 6,552
-1,936

6,552
-1,921Log-Likelihood -2,164

AIC/BIC 4361/4470 3920/4083 3925/4210

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 4. Estimates of implicit discount rates depending on income level and the availability of

operation cost information.

Implicit discount rates

Income level

Low
(below $30k/yr)

Middle
($30k-75k/yr)

High
(over $75k/yr)

Overall

Operating cost shown 182% (38%) 57% (19%) 36% (35%) 100% (22%)

Operating cost not shown 764% (315%) 491.2% (49.2%) 203% (73%) 560% (70%)

Note: standard errors in parentheses
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Table 5. Distribution of choices of light bulbs in the compensation choice task and predicted

choices. The first two rows are for all 168 participants, the two rows in the middle are for the 83

participants who were not shown the operating cost information. The last two rows are for the 85

people who were given the cost information. Attribute values of these alternatives are shown in

Figure 2.

CFL #1 Incandescent #1 CFL #2 Total

All Subjects

Observed # of
Choices

59
(35.1%)

30
(17.9%)

79
(47.0%)

168

Predicted %
of Choices

31.1% 24.2% 44.7% 100%

Without-Cost
Group

Observed #
32

(38.6%)
20

(24.1%)
31

(37.3%)
83

Predicted % 30.4% 29.0% 40.6% 100%

With-Cost
Group

Observed #
27

(31.8%)
10

(11.8%)
48

(56.4%)
85

Predicted % 31.8% 19.6% 48.6% 100%
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Table 6. Distribution of actual choices by subjects (in the order of popularity) and of predicted choice probabilities (in

the order of size of probability) for physical sample choices.

CFL #2 CFL #1 CFL #3 Incandescent #1 Incandescent #2 Total

Observed # of
Choices

74 (44.1%) 33 (19.6%) 32 (19.0%) 23 (13.7%) 6 (3.6%) 168

Predicted %
of Choices

30% 27% 19% 15% 9% 100%
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Table 7. Estimation statistics calculated for the three types of data with Model 1. The first column

shows how well the estimated model fits with the observed data. The second column is about the

predictive performance of the model. The last column indicates how well this model behaves in a

realistic setting with additional unobserved attributes.

Estimation data Compensation task Physical choice

Model Random Model Random Model Random

Log-likelihood -1936 -2399 -173.7 -184.6 -243.1 -270.4

Equivalent average likelihood 41.2% 33.3% 35.3% 33.3% 23.5% 20.0%

Average hit rate 36.3% 33.3% 24.5% 20.0%

Avg. share prediction error 4.2% 10.4% 5.7% 9.6%

N 2184=168*13 168 168






