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Sunnary

Concepts of generalised flux and thermodynanic forces, and
particularly the Onsager-Casinir reciprocal relations characterising
the phenomenological equations for general irreversible flow processes,
are shown to exist analogously in the fornulation of the linear optinal
control and estination problems. Characteristics of the energy function
used in the Lagrange and Hamiltonian representation of a systen reacting
with an environnent are discussed, and the condition of zero dissipation
in the fornulation of the optimal control problen defining the conbined
solution of the state and adjoint variables is illustrated. Concepts of
energy in the general linear systen based on quadratic functions are
discussed with reference to an electroncchanical systen, and thc solutien
of the optinal control problen with resulting cross-product weighting

terns in the performance criterion is illustrated.

The general electrical network problen is shown to include a Riccati-
type differential equation which represents a matrix analoguc of the
classical operator solution of the defining second-orler equations. The
scattering natrix of electrical network theory and the associated power
relations are also shown to exist analogously in the linear optimal control
problen. This can be formulated in terns of 'incident' and 'reflectcd'
variables which possess einilar properties to the scattering variashles of
network theory, and the scattering natrix is shown to be closely related
to the natrix solution of the Riceati equation associated with the optiual

control problen,
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Introduction

The phenonenological equations reprcsenting a large class of
irreversible flow processes involving energy dissipation and nass and
energy transport can be based on concepts of 'thernodynamic' forces and
fluxes, and entropy change associated with a dissipation function which
acts as a potential for the 'thernmodynanic' forces. The definition of
a state function based on concepts of energy and represented as a scalar
product of conjugate variables is also of fundamental inportance in
general systen theory. The existence of a dissipation function will be
governed by the form of representation used for the physical systen and
its interacting environnent or connected load source. 1In the classical
Lagrange fornulation of the non-conservative systen representing, say, the
electrical network problen, a dissipation function is defined and the
environaent is not represented inherently by the system equations. By
analogy, the optimal control problen nay be considered in terns of a
systen interacting with an 'environment' or adjoint systen, In this
case the Hamiltonian formulation combines the properties of both the
systen and its 'environnent' end reprssents an overall conservative-type

systen,

The basic laws of physical systems, such as representing the thermo-
dynanics of irreversible processes, are associated with theorens of
reciprocity and with the irvariance of tine reversal1n4. A unified
analysis of such processes may be fornulated in terms of the Lagrangian-
type equations of classical nechanics with generalised coordinates and
based on the concept of virtual workB. The Lagrangian analysis can also
be associated with a principle of nininun dissipation. In particular,
the general electrical network problen can be formulated in terns of' a
Lagrange equation and !'thernodynanic! properties, By analogy, the
concepts and functional relations for physical systens can also be
associated with the optimal control problen and also with the dual problen
of optinal filtering, A natrix Riccati differential equation based on a
transformation between the state and adjoint variables defines the
soluticn of the linear optimal control problenm. A sinilar matrix Riccati
equation can also be shown to exist in the electrical network problen, and
represents a natrix analogue of the classical operator solution. Other

properties of electrical network theory can be associated with the optinal
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control problem. Thus the incident and reflected variables in the
general theory of scattering applied to the behaviour of an evolving
systen, and particularly the scattering variables of electrical network
theory, can be defined analogously in the optimal control and estinmation
problens.

The Lagrange-type formulation and particularly the concepts of
electrical network theory are of fundanental importance and, by analogy,
can provide a physical basis for the nore abstract nathematical problens
of general system theory. The correspondence of the least-squares
problen with the steady-state behaviour of a physical systen has been
illustrated6, and the present study extends the analogy to consider the
relationships between the formulation of optimal control for the linear
dynanic systen and certain properties of the general phenonenoclogical
equations for irreversible flow processes. Such analogies, based
particularly on the electrical network problen, can lead to a greater

understanding of the optimal control problen.

Energy concepts

Concepts of encrgy and the definition of a state-function based on
the principle of conservation are of fundanental inportance in the state-
variable representation.of the behaviour of physical systems. The siate-
function nay be related to the transfer of active ( stored) power between
a physical system and its environnent, and partial differentiation with
respect to the state variables define the dual systen variables and also
an extrenun value which is associated with an eguilibriun condition7. A
state~function for an electromechanical systen consisting of an electric
notor (systen) driving a mechanical load (environment) illustrated in
Section 11 can be defined in terns of the active power stored in the
negnetic fisld and transferred to the envivonment, related to scalar
products of the state and input varisbles as in eqn 127. It represents
a conversion of energy related to a subtraction of 'input' and 'output' costs
defined on the basis of the first law of thernodynamics, The nininisatics
of this function associated with equilibriun conditions has been conpaied
with the mininisation of both input and output costs in the optinal

regulator problema.
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In the classical Lagrange fornulation of the general non-conservative
systen which interacts with an environnent and dissipates energy, such as
representing the particular electromechanical system or the general
electrical network of Section 3, a dissipation function is specified for
the environment. In the Haniltonian fornulation of the optimal control
pfdblem the systen interacts with an 'environment' or dual systen which
is included inherently in the overall representation of the 'closed!
systen, in a reference frane which includes both state and costate as
independent varisbles. The total output of the systen is effectively
balanced by the 'output' of the dual system or emvironnent, and the total
representation of the combined systen is conservative, as illustrated in
Section 4, By contrast, in the representation of total system enerzy for
a physical systen according to classical nechanics, energy is dissipated
and nay be converted into a forn which is not considered in the analysis,
that is, it is not transferred to an environnent which is represented in
the fornulation. For example, in the slecirical network, energy is
supplied, stored and also dissipated as heat losses. The general dynanic
systen nodel will include dissipation and a potential for traﬁsferring
energy to a load characterised by the level of certain state variables,
Thus, in the boiler-turboalternator nodel, input energy will be transformed
to available energy at the boiler stop valve characterised by outlet stean
pressure and tenperature, with energy loss in the flue gas and with rela-
tively small internal dissipation of fluid energy. The turboalterrator
will dissipate energy in turbine friction and alternator heat losses, and
will transforn the aveilable ~nergy in the boiler to mechanical and electrical
energy ueasured by the level of the operating variables such as turbine
speed and alternator voltage and current, for transfer to a load source.
In the electrical network problen, however, the dissipation to heat energy
and the action-reaction phenonens are not included inherently in the

cverall sysism nodel,
Concepts of energy and power in the general dynanic systen
¥(t) = A x(t)+ B ult) (1)

with particular reference to energy exchanges between a systen and its
controller have been speciried in terns of quadratic forms and products

of the state and input variables, with appropriate scaling9. Thus
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(xtx)/z , ‘'absorbed power', P = x Ax 2)
t 8 (

1]

'stored snergy!, Ps g
'injected power', P, = X Bu , 'active power'= P+ P, = Ps = X X

In general, the A-natrix will define a non-conservative systen. For the

free linear conservative systen, A is skew-symnetric (= -At) representing

a self-adjoint systen10. The power forms of eqn 2 based directly on the

defining state variable representation do not correspond directly with the

power relations developed for the electromechanical systen in Section 11.

The active power or rate of change of stored energy (Ps) is similar to the

active power dslivered to the nmotor armature (Pn), obtained as the

difference between input and dissipated power. However, the 'absorbed

power! Pa and 'stored energy!' PS do not contain, for the particular

exanple, the quadratic input weighting and cross-product ternms resulting

from the voltage-current circuit relations of Section 11. In contrast to

the specification of quadratic energy forms in the electromechanical

systen, the conventional boiler nodel involving thermal energy transfer

and storage will include a change in stored energy for the tube metal

related to a linear function of a state variable (temperature) and will

not exist as a quadratic form, and also injected power may not be associatad

with a state variablez6.

Phenonenological equations for irreversible flow processes

A wified fornulation of the enpirical laws der"ining a physiecal syster
can be based on the concepts of thermal potential, dissipation, entropy
change and generalised thernal force. The basic laws of physical systens
also incorporate Onsager's principle of reciprocity and symnetry associated
with the thernodynanics of irreversible processes, and will be invariant
with respect to tinme :r'e*.rer'.'sal.JH A fundamental form of variational
principle based on sinilar concepts is also closely related to Onsager's

principle of reciprocity”.

The equations representing consexvative dynanical systens, without
external nmagnetic fields and Coriolis forces, are reversible in time such
that the state trajectory can be retraced with a reversal of all velocities,
and the total systen energy and entropy remain constant. ith digsipation,
the approach to equilibriun is irreversible and results in an increased

generation and flow of entropy and a loss of 'availability' of the systen
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SNergy. Irreversible flow processes, such as representing the conduction
of heat, electricity and diffusion, can be described in terms of nacro-
scopic operations using concepts involving fluxes of heat and nechanical
energy, and entropy production. Reciprocal relations can then be derived
on the basis of nicroscopic reversibility with flow assuned proportional
té a specified potential or state function defined in terms of generalised

state coordinates.

The 'thermodynamic' state or displacement of the flow systen fron
equilibriun is specified by a set of nacroscopic variables a = (a1..an)1-5.
Thernodynanic restoring 'forces', such as tenperature gradients and enf's,
are then defined in terns of a scalar entropy change s(a) and related
linearly to the resulting fluxes J(=a), which are propcrtional to the
flow of matter, heat or current, by the linear differential matrix equations

as "
n BB o BT J = GX
X ¥ ; (3)

Eqns 3 represent the phenomenological relations for a set of interacting
sinultaneous irreversible flow processes in terns of ccnjugate varisble
vectors X and J, where R = [Rij] and G = [Gij] are mxn mutually reciprocal
resistance and conductance matrices respectively. The condition for
nicroscopic reversibility leads to the reciprocal relations R = Rt, G = Gt.
A dissipation function acting as a potential for the thermodynanic forces
1s then defined in terms of a dissipation matrix R as a quadratic forn in
the '"fluxes', giving the rate of entropy production for irreversible

processes
. e L] - _,to (] . t L]
2D(0) = Had) = Xa = o RL = X GXj; X = 2D/ (&)

Irreversible processes in which the velocity or kinestic energy contribubicn
to entropy change nay be significent are defined in terms of the even and
odd variables g and & (=a) respectively2’5. Microscopic reversibility
then requires the conditions a{¥) = a(-%) «2d £(T) = =3(D), and the
reciprocal relations introduce opposite signs for the nutual coefficients
between the o, and # variebles. Tntropy, as an even function invariant
with respect to time reversal, nay then be consicered as a honogenasous

guedratic function with 'potential! snd ‘kinetic! conponents,

B 4
8 = =(a la+81L5)/2

—
\n
7]

For phenononological laws of the forn
: ¢
Ra = v (

=N
N
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2 g
Machlup and Onsager define the thermodynanic forces

& 28 8. 028y L. ~TA >
S et msp) = s laxLg (7)

The fornulation is thus associated with a second-order honogeneous systen
La +« Ra +la = 0 (8)
and the rate of entropy production

- t e t' ‘;t ° . e e t_1
8= wld-gog=7348-= iR = 20(6A) = LB

—~
\O
N

5

Now incorporating even and odd conjugate variables defined by
i
Y1= L rct,, "{2 ="3 (-10)

the systen eqns 8 nay be represented in the form

R - %
. AT P %
o !

2.

r i §
f
5, o)

-

LYo I L P12

- -

§ 1i (11)
LE REY

4o = —m21 with the systen

equations defined in terns of odd and even quantities.,

Egn 11 illustrates the reciprocal relations m

The forn of egn 7 defining the thernodynamic forces is closely rclated
to the general Lagrangian representation for a non-conservative systen with

coordinates g referred to an equilibriun position, given by the vector

forn
2 _
Y - -g—- E,;.f.' . 2,2 {40
2 at (ad) 26 (12)

With forcing v included in the linear dynanical systen of eqn 8 the

Lagrangian state function is defined
4 . t oh . t .
Hlaid 7)oy (a Ia - a [a)/2 (13)
Therﬁo&ynanic forces or affinities uay also be defined in terns of a

i ; v
Hamiltonian-type formulation s, With generalised flux (nomentum) conponents
ﬁ1..ﬁn introduced with the vector transfornation

fowdlhd - 14 (ik)
The scalar Hamiltonian function is then given by '

i t. t_~1 t - t

Ha, B, v) & Fa-~L = (04 o Ta)lz =va (45)

Egn 15 is constant for a conservative systen and for the system with

forcing it may be equated with the function - s - vta. Thermodynanic.
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forces nay then be associated with the differential

dH = —atﬁa - btdﬁ - mtdv (16)
where a = v-la = -9H/3a = ﬁ + Ra (17)
B o o B w0 = -4 (18)

The rate of energy dissipation is given by the energy balance (input-rate

of change of stored energy)

t. d. t -bc t“
2D = ve - zz(H+va) = ada+Dbp
. ; (19)
= RCL = "'dH/d't o= ]

Egns 17, 18 represent a systen of 2n first-order Haniltonian canonical
equations for a non-conservative systen. The coefficient a is also
associated with a steady-state equilibrium condition of the dynamic systen
obtained as the extrenun condition of the Hamiltonian or Lagrangisn
function with respect to the state q. Tgn 17 can be associated directly
with the n-nesh voltage equation for the general RLC network, in terns of

nesh current coordinates d1..&n and inpressed mesh voltages v1..vn, where

I is a symnetrical reciprocal capacitance natrix and R, L are synnetrical

resistance and inductance natrices resPectivelyj2'1h,

The rate egns 17, 18 nay be expressed in the natrix forn

0 -I] '"a,"i Te,, ©
i
|

n 1 %2}| ®

-
o] "
|
!
i
i

(20)

| €21 e22’ LB

;

fooa o o

LA

I R b
n 1L L

Affinities a and variables o are even, and affinities b and variables #
are odd with respect to time reversal, The components €y 622 for the

linear systenm are symmetrical and represent Onsager coefficients, The
t
3 e
12* "2 $5. 7 TVope
Ths second-order-type systen with forcing uay also be represented in the

Casinir coefficients e define the reciprocal relations e

Z2n-dinensional companion mnatrix forn

| &

v (21)

|
|

l
t“; LT T -LRrjiF]




Reciprocal relations in the linear optimal control and filter problens

Reciprocal relations assoclated with the general phenonenological
equations representing a physical system can also be showm to exist in
the formulation of the linear optimal control problem. The problen nay
be concerned with determining the control vector u(t) in the n-state,
n-input linear dynamic system of egn 1, which nininises the quadratic

perfornance fuﬁctional
i t t t :
J = ’/ fo(x(t), u(t))as , £, = (x°Qx + uGu + 2x Wu)/2 (22)

,to
where Q is an nxn positive seni-definite matrix and @ is an nxn posgitive
definite matrix. A scalar product of the state and control varisbles is
included with the nxn matrix W, which nmay be required to represent say
the power functions of an electromechanical systen as in Section 11.
Similar ecross-product weighting also appears in the nodel Tollowing

1
problen 5. In the naxinun principle a Hamiltonian is defined

1

H(p, x, w) = pf +p¥ (23)
where the adjoint variables p satisfy the linear, homogeneous differential
equations '

n B

- J .

P, = =~ I —id p &y Tean (24)

% j:O axi J \
Thus x = 3H/3p , P = —-3H/ax (25)

For the linear system with quadratic perfornance and aprropriate boundgry

conditions
%
H = -f_+ p(Ax + Bu) (26)
. t
P = Qx~Ap 4+ Wu (27)

The naximun principle requires H to be a mawinun along an optinal trajectory,

and differsntiation of eqn 26 with respect to control u gives
=y - t
u(t) = G (B'p - W) (28)

The optimal Hamiltonian systen nay then be represented in terms of the state

and adjoint varisbles by the 2n-dinensional differential equations

| x(t) ] E(A—BGH1W%) e 'p" 1IHX(t)1 :
| or h(t) = Mh(%) (25)
p’t)J

oo i | =4 7% b~ t
| p(t) ] l (oG W) ~(4a -uG E: ) ;
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The optimally regulated trajectory is then given by the solution of
eqn 29 with the two-point boundary conditions, x(to) = 0, p(Tf) = 0.

Including a state-adjoint variable relation

p(t) = - Px(t) {30)
in eqn 29 gives the nonlinear matrix Riccati differential equatiqn

5 B [ - % t

P = (PFB+W)E (BP+W)-PA-AP-0Q (31)

where the nxn symmetrical matrix P is a unique positive definite solution
for all positive definite matrices Q, With asynptotic stability OH?'(D)
a solution of the algebraic nmatrix Riccati equation is given by

-1
— Lol T T
P = U, Jﬁ (32)

where U21, UH represent partitioned eigenvector components associated

with the stable nodes of the natrix i,

A dynanic progranming solution nay also be obtained with nmininisation

of the quadratic performance index
J
g = g(ut{}u
i~

g + x-[_; Qx. + 23{1; Wiu, ) (53)
i1 Ak 7

1~ 1 =

associated with the discrete-time dynanic system
*(ke1) = H1)x(k) + A(T) u(k) (3k)

Mininisation with backward tracing gives the coptimal control law

R N-r (35)
hare K S BT, i
wher r = (AP _A+6) (NP _ g4 W) (36)
% %
= A 'f 1 H JIC
Pog = F+0K )P (8 #BK )+ K gB  + K, + 0 (37)
PO = Q.- y I'= 1 (38)

Substituting the fornm of eqn 36 into eqn 37, the conirol algorithn nay
also be stated by egns 35 and 36 with

t t o
P iy = ﬁPr_2g+ g P. o0+ U)qu_,‘ + Q (39)

The discrete reverse-tine cont-ol algorithn developed by dynanic progranming
will reduce, in the linit, %o the reverse~time continuous solution. Thus

using the first-order approxinations, with small sanpling interval h,

£ = I+8h, A= Bu, Gt = Qb » W(t) = W h (43)
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in eqn 39 gives, in the limit h-—wo with [P(t+h)-F(T)1/h-= B(7),

g t o R t

P(T) = AP+ PA-(PB+VW)G (BP+W)+Q (%)
corresponding with the form of eqn 31 for integration in reverse time
with T = Tf - t. The control law of egqn 35 will reduce similarly to the

continuous-tine cptimal control solution.

The Hamiltonian formulation of the general system problen of Section
3 can be associated with the optimal control prcoblen formulated in terns
of the state and adjoint variables x, p with L= fo. In particular,
quantities analogous to the affinities nay be identified using eqn 26 to

give the differential forn

t % % ,
aH = —atdx ~-bdp+ (p B~ ut(‘r - x W)du (i2)
t N
where a = Qx-Ap+VYu = -2BBx = p (43)
b = =(Ax + Bu) = -3Hp = -x ()

With dissipation defined analogously to eqn 19

2D = ati+btf; = 0 (45)

Thus the forrulation of the optimal control problem incorporates conditions
which ensure that the combined optimally controlled systen is conservative.
Similar properties with reference to the nonquadrature net-phase-shift of
Hamiltonian systems have also heen discussed17. Thus the Hamiltonian
systen in the optinal control problen is formulated on the basis of equaiity
between energy supplied and stored energy in the overall systen, with
constant H.

The rates eqns 43, 4h nay also be represented in the form of eqn Z0,

0 ~IL || al §
n

X e a

T 2|}
T P
b | i S2 22J i

-—

(46)

I 0
n

|

e

Eqn 46 illustrates the existence of zero dissipation, with anslogous Onsager-—
type coefficients e

.]

= 0 and Casinir~-type coefficients e =

i T e Blocitnp =
Thus only Casinir-type reciprocal relations appear in the maximun principle
fornvlation of the linear optimal control problem. Analogous relations

also exist between the representation of the free conservative systen of
Section 3 and the linear optimal control problen based cn the correspondencs

b S e
xZa, pEh, Q+APS-[, BO B -4p = 1] (47)
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with a nonsingular Riccati solution matrix P, This equivalence forms the
basis of the analogy between the classical operator solution of the

general systenm and the algebraic natrix Riccati equation as discussed in

Section 5.

A similar correspondence nay be found with the dual linear optinmal
filter problem. Thus consider the dynamical system of egn 1 with outputs

y(t) and observed signals z(t) given by
y(t) H(t) =(t) (48)
z(t) y(t) + v(t) (49)

where the functions u(t), v(t) represent independent randon white noise

Processes with zero means and covariance matrices

t ~ -
[w()u’(2)] = Ae)3(+-D) , [W(H)HD] = R(£)S(t-2) (50)
where Q(t), R(t) are symmetric, positive definite natrices. The optinmal

estimate of the state ﬁ(t) is generated by the Kalman-Bucy filter equation518
X(t) = A(t) X(t) + K(t) [a(t) - H(t) &(t)] (51)

i -1
P(t) H(t) R '(t) (52)

where the covariance matriz P(t) = [x(t) - %(t)1[x(t) - i(t)}t is a

solution of the matrix differential variance or Ricecati-type equation

i

K(t)

il

% t -
P APy BPA S PH R 1H P+ BQBt (53)

The solution of the variance equation can be associated with the Hanmiltonisn

function, defined in terns of state and ad joint variables X; W,

_ B iff t t -
H(x, w, t) = ~(xB)B'x -wHR 1Hw)/z - W?Atx | (54)
and with the corresponding canonical differential equations
T = - = t Lo~ o e
¥ 3/ 5w { ~4 HR 1H} | x|
= & | & [ ST (55)
. [¥]
Wi | =3H/ax_ | BgB & L w
w(t) = P(t) x(t) (56)
The differential of the Hamiltonian Punction nay then be stated
t t
di = adx+ b dw (57)

. t
where a==Aw - BOB x = =-w

]

ul
oo
s

°

(
t t -
b==Ax4+HDR 1Hw = X (59)
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A dissipation function nay also be defined as previously

. t.,
2D = atx +bw = 0 (60)

The rate equatiens can then be specified in terns of 'affinities' by the

forn

: )
= at | (61)

W L—In (VI

Eqn 61 represents the dual form of eqn 46 and illustrates the existence

of the Casimii-~type reciprocal relations in the linear eptimal filtering

problen., The free conservative systen formulation is similarly related

to the linear filtering problen with the correspondence

-

t t_~1 t -
xTa, w=g, BB +AP= -, HR H-AP1&.—: L (62)

The matrix Riccati egquation in the electrical network problen

A natrix analogue of the classical operator solution of the general
systen eqns 21 can be obtained by fomulating an algebraic matrix Riccati-
type equation, with a solution matrix related to eigenvector components of
the fornm of egn 32. Thus defining the eigenvector matrix equation for the
general system, representing say the electrical network problen,

1 % . 5 u, 1A ]
01 In l ’ U11 12 ¢ | U11 12 1 : (63)
- _.1 1:
e |
Sl SR T R R O R T
Equating components and elininating eigenvalues A1 anﬂ/ig then gives

algebraic matrix Riccati-type equations of the forn

B - ;
PTL el Tl (6k4)
-1 d -1
where e B R 5 (65)
-—1 -—
and KL (K+XK TR+TI = 0 (66)
-4 ~1_ - -1
where K = U12U22 = U22A2 U22 = P (67)

Egns 64 and 66 represent a natrix analogue of the classical operator
solution of the defining second-order differential equations. The natrix
P introduces a transformation between the dual variables which is a basic
characteristic of the Riccati fornulation of the optimal control problen,

and corresponds to the differential operator transformatien of egn 1k.
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The algebraic nmatrix Riccati equation can also be associated with
the Zn~dinensional steady-state nultiple transnission line equationa19,
0 Z(x)”':r ‘mv_i rv 1

! I s ¥ ' (68)
BE | 1

l‘ dv/dx |

| ai/ax |

tY(x) ©

where v, 1 are the unknown conplex voltage and current n-vectors, and
z(x), Y(x) are continuous symnetric series inpedance and shunt adumittance
n-natrices respectively., Including a relation between the dual sets of

variables
i = P(X) v (69)

leads to the nonlinear matrix Riccati differential equation

CP - P(x) 2(x) B(x) - Ux), (= ¥/ax) (70)
Sternberg and Kaufman19 introduce the continuous synmetric nxm natrix
solution
=1
B(x) = Ux)V (x) (71)

where I(x), V(x) are nxn matrices of nutually conjugate solutions of eqn 68
with

™ v = o0 (72)
Similarly, the nxn natrix

K(x) = V(x) I '(x) (73)

is a continuous symmetric matrix solution of the Riccati-type matrix
dif'ferential equation

K' = K¥(x) K - 2({x) (7%)
With I(x), V(x) nonsingular, P(x), K(x) are nonsingular and

Py ok x) (7B}

The solutions oi’ egqns 71 and 73 are analogous to the eigenvector

solution of the steady-state matrix Riccati differential equation given by

-1
Faem Uy My (76)

where U U,, are eigenvector conponents of the matrix M. Thus the

2is -
eigenvalue problen related to the form of eqn 68 is defined by

[0 Z*I [ T34 Uz

!
Y 0] §U21 g

. 1A o
(77)

3
%
G20,k T Hogd L 24
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Expanding the conponents of egqn 77 in the eigenvalue A1 and then elininating
A1 gives the algebraic natxix Riccati equation

Y - (5 Tz (ny ) (78)
corresponding to the steady-state form of eqn 70 with PO = Ué1U;;.
Sinilarly, partitioning eqn 77 in terms of the eigenvalues ﬁ? leads to the
algebraic natrix Riccati equation

| -1 {
2 = (U, Upp)¥(U;0,0) (79)

corresponding to the steady-state form of ean 74 with KO = Zagns

-1

|

12 22

78 and 79 are sinilar to the forn of eqns 64 and 66 for the general loss-
less network (R = 0).

A natrix Riccati~type representation may also be obtained for the
synnetrical transmission line consisting of identical nulti-terminal
sections. The steady-state performance of the passive nth section with
input and output m-vector voltages and currents v(n), i(n) and v(n+1),

i(n+1) may be olLtained in the difference equation form”

v(n+1)] " C(n) -z(n)] {v(n)]
| | 1 it B N (80)
Line1)]  L-¥(n) c*(n)] !i(n)i

Then with an assumed transforration of the form of eqn 69

i(ne1) ~ i(n) = P(n)[v(ne1) - v(n)] & [P(ne1) = B(n)Tv(n)  (81)
and combining with egqn 80 gives

P(ns1) ~ B(n) = P(n)Z(n)P(n) + € (n)P(n) - P(n)C(n) - ¥(n)  (82)

In the limit, with a symmetrical coefficient natrix or with C = 0,48

natrix Riccati differential equation is obtained as in egn 70.

A transition matrix solution of the electricsl network problen

A tine selution of the clectrical network problen can be defined in
terns of transition natrix components and illustrates the tine invariant
properties of a particular lossless network. A time solution of the

systen egns 21 will be given by
- t

{1a(t) _ "a(to)l (, o . .
Lf’WJ_ s !_f"(toﬂ g Y Gl P M! v(ar (e3)

o}




—.—‘]5_

where the transition matrix;ﬁﬁt-t ) is defined by

NEACEFOIN

foen

, i ’ i
(t) = I Nt/ N = [ (aL)
el | B8 )| T e

Fof the lossless network, component expansions may be obtained in the forn
. g “1..k , 2,
B, (8) = £(8) = & (L0 (7)) /() (85)

k=0
3 (ST )t ;B e T (86)

B8 = 8 T (L@, By = T Of

The series expansions are associated with the natrix (L“1r) with the
diagonal conponents similar in forn to the exponential natrix, and with
the componentslﬁ12(t),.ﬁ;1(t) sinilar to the driving matrix for the
discrete linear system. With step voltage inputs v(kT), ths discrete-
tine response of the electrical network will be governed by a difference

equation of the form of eqn 34, with a driving natrix g%ven by

A1) = {;") Nkaﬂ/(kH)‘- - [g(T) - Izn! l s INj A0
k=0 L
| 'i (37)

iff‘,”z(ﬂ?)f1 1 I—F"1IJ(I o(TNL
—1J ’ B T)L1 1

With diegonal (primitive) inpodance matrices the transition matrix

conponents will be dicgonal and will determine the transient behavicur of
the individual nesh variables, The forn of eqns 85-87 illustratcs the cda
and even nature of the variables g and /“ respectively with respect to tinme
reversal which results essentially from the translation properties of the
transition matrix., Thus

By () = B (8), Bpp(=4) = B5(4), £, (%) = B,,(%), Bpr () = £y (%)

The invariance of time reversal in the particular lossless electrical
network problen nay also be illustrated in the discrete solutisn, with

a sign reversal on the 'velocity' coordinates /.  Thus

a(ket)(-1) = f, (Da(E)(=T) = £, (D)p(k)(-T) + [ 7 11, Fpp())¥(k)(-2) (88)
Al )(-T) = —p’21(T)a(k)(--'r) +ﬁ22(m)p(k)(-fz) —p’_m(T)L" v(k)(-T) (83)
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In the control problem the systen egns 29-31 are invariant with

respact to backward time, or time-to-go to final tine Tf, defined in
terns of the variable T = Tf-t, with a sign change included on the

derivatives. Thus
B(T) = -Mh(t) , p(t) = ~P(7) x(7) (90)

B(r) = BT+ AR(D) + Q- (BB + W (BR(R) + W), B(T,) =0 (91)

The scattering nmatrix of electrical network theory in the linear optinal

control problen

The scattering parameters of an electrical network are related to a
transfornation betwsen linear combinations of network voltages and
currents, and have an important application in the definition of energy
constraints and power transfer in passive network321’22. The parancters
are analogous to the reflection and transnission coefficicnts used to
describe wave propagation in transnission line theory. Parameters with
sinilar properties can also be established in the lincar optinal control

problen,

Por the n-port passive network N of FIG. 1, a square scattering

natrixz S is defincd by the transformation

N

)

where vr, vi represent vecters of normalised 'reflected' and 'incidence!

V.= 57, or (v-i)/2 = 8{v+i)/2 (S

voltages or scattering variables at the network ports.

i
=1
Dy gacf T
Y.‘l - I‘ﬂ———-— -vi_ !
e SR |
i, T T 4
) . - FiG. 1. n-port network
=y 1
v » S S l 1
o1 4 i

The normelised voltage and current varisbles v, i ars related to actual

voltage and current vectors v, i by

———

2 .
V:RE, i = R

<
i
3
B
N
\D
AR
~—"

g

O M
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Combining eqns 92 and 93 gives the1sca$tering natrix related to the

nornalised inpedance matrix 4(= R;§ZR;§),
=4
(2 -1 )2+1) (9%)
“
(95)

S

(z+1)7(2=1)

G (1, + ST, - §)

(= s)'“'(xn + 8)

The total network power is defined by

By= P+ JQ = ™5 e (s /2 (- S0/ (96)
with real dissipated power

Pd = Pi - Pr = vimvi - vitvr = vsth Vs F = In » Sxts (97)
and reactive power

9 = viﬁvi - vjtvr = vth v, o L = Sﬁt w8 (98)

where F i1s a nonsingular positive hermitian dissipation matrix, and L is
a skew-hernmitian matrix. For the reactive lossless network Pd = 0,

) . ar

S = &8 , and represents e unitary natrix. For maxioun delivered power,
3=0, P, = v%bv_, Z=1I,5%=R, where P_ is equal to the sum of the

d IR n e} d

available powers at the network ports with the network natched to the
source impedance Ro' The coefficients of S thus measure the deviation
of the circuit impedance or load from the normalising numberiRo or fron

natched maximum power transfer conditions,

The linear optinal control problem nay also be fornulated in terns of
a transformation matrix 3 which is analogous to the scattering operator
of electrical network theory. Thus we nay consider defining new 'state!
(incident) and 'adjoint' (reflected) variables related by a transfornation

or 'scattering' natrix 8,
x, = (x=p)/2 = (L+P)¥/2, x, = (x+p)/2 = (I-P)x/2, %, = S, £29)
Then S (z-p)(1+p) " (102)

(2:8) (1-9) (101)

o
It

Thus the P-matrix of the Riccati solution in the optinal control problen
nay be considered to possess properties analogous to the scattering matrix
of electrical network theory. Similarly, the assumed transformstion or
symnetrical 'scattering'! matrix in the control problen corresponds with

the normalised network impedance matrix Z. Also with P defined in teras
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of the eigenvector matrix components of egn 32,
. =
3 = (Upy + Up)(Uyy = Uyy) (102)

Other scattering variables may be defined using corbinations of the state
and control variagbles together with an interrelating transformation

matrix. By analogy with the network problen a 'power' function may also

be defined by the product

t t t B, & t
e i o = - 3 = A8 i = : ’ 1
P, = %p = (xixi xrxr) xl(a S I)xi x, Fx, (103)
and 'injected power'
t, b -1t -1_t ,
Pi = XtBu = Xi(s BG 13 S - BG& 1B )xi ('104.)

The free system is then associated with the condition S = I. A concept

of maxinun 'delivered power' nay be considered with the condition 8 = 0,

P = I, with the sign convention deternined by the form of egn 99. Thus

it nay be possible to relate the coefficients of S to a deviation fron
natched or maxinum 'power transfer! conditioms., Fron the algebraic natrix
Riccati equation such a condition would define the relation

f i ¢
Q = B& B - (A4+4%) (105)

and is associated with an incidence variable X, = X and zero reflected
variable X The solution of the Ricecati equation for the electromechanical
systen of Section 11 using the Q natrix of eqn 105 is shown to reduce
correspondingly to the unit wutrix. However, in general, the solution

of the algebraic matrix Ricecati equation for a positive-definite natrix P
requires an assuncd positive-definite Q natrix. Thus Q nust be censtrained
to be a positive-definite form, which may not always exist in eqn 105.

For example, such a condition is not ensured for the system represented

in companion matrix form with a single non-zero B-natrix elenent, as
illustrated in Section 11, In application to the optimal control of an
electric arc furnace mod6127; a Q-matrix defined by egn 105 has been

found, however, to give relatively good stable response with a controlled

system matrix of the form (4 - BG_1Bt) = -(At + Qs
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t
If the variables x are constrained by the condition xixi = 1 then

the power function of egn 103 will be bounded by the inequalities

Lol L P xmax(F). This follows, as in the electrical network

t
23’24, using the transfornation F = T AT, where T is a real

problen
orthogonal matrix and A is a diagonal matrix of eigenvalues. Then
% - 2
= i = F 106
P, = (Txi) f\(lxi) j§1 (Txi)j KJ( ) (1086)

The 'injected@ power' function cf sgn 104 will possess ainmilar properties.

The optimal control problem may also be formulated in terms of the
'incident' and 'reflected' variables of eqn 99. Thus from egn 29 with

W=0,

a - i_
<
oy

:
oy (107)
x|

=l

PR (D (. - A
, | (A-A°-BG B-Q) (A+A +BG B -Q)

= 2

o b1 )
s ol
|
i
1

. t = % t . -1t
% | (Ash -BG '8%0) (a-a%me "B +Q) |

g

This representation retains the same form as eqn 29 with synnetrical off-
diagonal components. 'Affinities’ may also be identified in the

'scattering' fornulation with

t £ t
dH = -atdx. ~-bax_ + [(x - %)B-nuglau (108)
& Ir r 1 :
't t o
Wbore 8 w (Rw Le 803 (R4 A4 0x o= sHAX a2, (105)
‘ - : % -
b = (§-4A+A )xi + (9 -A~-4A )xr - Bu = ~3H/axr = ~2%, (119)
m t' t'
Then 2D = & X, + b X, = 0 (111)

Eqn 111 illustrates the conservative-type conditions in the optirmal contrel
problen defined in terms of the !'scattering' variables. The overall
systen may also be associated with a matrix Riceati differential equation.

Thus ronbining the 'scattering® matrix with egn 107 gives

2 é’ = "S}.‘I

s w{ ?J u) B T 9
405 Sn11 + M8+ (148)

where Mij represent the natrix components of egqn 107. Also
2%, = a+ b {113)

It is interesting to note that the Riceati ¢ifferential egn 112 nay now
be decomposed dirsctly into components associated with skew-synnetrical

and synnetrical matrices.
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The general theory of scattering is concerned with the behaviour of
an evolving systenm as tine t tends to -co conpared with its asymptotic
behaviour as t tends to +ce., In this respect similar basic concepts
nay exist with the transformation between the state and adjoint variables
in the optimal control problem. Also, in the dynanic theory of scattering
applied to the wave equation a scattering operator is defined in terms of
forward and reverse wave operators (S = W:1W_)25 which nay be identified
with the solution of the Riccati equation in the optimal control problem

16
related to 'forward' and 'backward' transition-matrix conponents , thus

B(T) = (O, () (114)

Conclusions

The basic laws of electrical neiwork theory and properties of the
linear optinal control and filtering problens have been shown to be closely
associated with the general phenomenological egquations of irreversible
physical processes, Similar reciprocal relations exist, and the nmatrix
Riceati equation in the optimal control problem associated with a trans-
fornation between dual sets of variables has also been shown to exist in
the electrical network problem as a natrix analogue of the classical
operator solution. The scattering natrix ef electrical network theory
which is of inportance in defining power transfer in passive networks has
also been established by analcgy in the linear optimal control problein
using 'incidence' and 'reflected' variables which possess similar properties
to the scattering variables of network theory. Such concepts and
relations originating in electrical network and general systen theory are
of fundanerntal inmportance and can provide greater physical insight and

understanding of the optinal control problem.
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11. Appendix

11.4 Power relations in an electromechanical systen

FIG. 2 represents a separately excited dc motor connected to a

variable voltage supply and driving an inertia load with damping.

R
i i
PEpRt A .04
Variable
voltage es(t)
de supply -

a

PG, 2, Electronechanical system with danping and inertia loading

Systen equations: es(t) = (RS i3 Rm)i + e_, neglecting field inductance

(115)
o, = kw, kconstant (116)
T = ki = J8« Td.é , T is developed notor torque
(117)
State variable representation:
e I 'li—e“i 7o .
| = o+ ie , X=Ax + Bu {118)
w | 0 a 3] w | B P
W) b ppii™ ] L "2
2
where 8y = [Td.+ k /{Rs + Rm)lfJ . b2 = k/J(RS 4 Rm)

Input power to systen Pi’ to notor armature Pm as active power and total

dissipated power Pd

in the form

+ t.... —
P = uGu+ xAx+zBu, u = 6, , X = {e:w)t (119)
2
Thus P, = =2 = -
us P, Si/J ( e - ek uJ)/J(RS + Rm) (120)
/3 ) o A B i Y | )
G, = 1/JR +R ), A, = 0, B, = b= =B (121
G 8 n 1 il :
. k/ J(R5+Rm)d..
poowl v (e_ =8 )?/(3 + R )1/ 122)
d i s n s - Ly I
.. Ta 0 S i,
i S i B ‘
G, = Gi,Ad_! i,Ba_.zzsi (123)

2
f e !
o (T, k/(RS+Rm))/JJ

referred to units of the state equations are represented




- Bk =
i - - - (1
P = (ei-To)/5 = P, -P, (124)
= A = -A B = =B, = 2
Gm =5 Am &d 2 Bm Bi B (125)
Also, notor input and dissipated power
; 2 . 2 3
P‘t = vi/J , Pdm = (wa + CJ.RH)/J (126)

A state function associated with equilibriun conditions based on the
theoren of least power may also be defined in terms of power transferred

to the environment. Thus

= e
t= t - ‘
P = 2xAx+xBu s A = l
4 0 o
2
= %0 8y, + bzesm (127)

Then the condition PP/3w = O defines the steady-state systeﬁ equaticns.
The state function is associated with power transferred to the mechanical
load (environment) as the difference of equivalent injected and dissipated
power (with R = —a22), and corresponds to the forn of active power Pm'
The state function includes no weighting of the system input cost with =
term,utGu as would be required in tha optimal control problem, say for
deternining the supply voltage es(t) for control of mntor shaft position.
In this case a performence criterion associated with an output state and
dissipated power may be considered in the fornm

fo 5

J =J (v8" + 1 P )at (128)
0

Dissipation and entropy-type functions may also be defined for the
electromechanical system, as in Section 3, Thus with the correspondence
S IR ~8pps I = 0 and with state variables (8,0) and input b , the
entropy function of eqn 5 which acts as a potential for the thermodynamic

forces is
85 AT L)/2 4+ b2 8 = -u'/2 4 b0 (129)
F, 8 o E b7

with &_ = B [ 2,
R o ]
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The forn of s is sinilar to the state function with a unit dissipation
factor and with coupling c¢f the input and state variable ©. The equiva-

lent Onsager 'thermodynanic' force with forcing is

38 d ,28 .
3’: R = 55 + 550 = “b+ne, (130)
and the rate of entropy production
B s3 8 = (be, - ®w = Ro : A = | | (131)
2k & | 0 -8,
| ;2“.!

Thus the rate of entropy production is included as a conponent of the
dissipated power Pd'
By analogy with the electrical network problem of Section 3

the Lagranzgian function

2 2
;f = a}/2 + bzese = 84+ W (152)
and the Haniltonian
. 2
H(e, w, es) = 03 -JC, = o /2 - hzese = =E (133)
Then di = —bzesde + wdo - b2sdes (13%)
= -2 d8 - b dv - bbde (135)
where affinities
""BH [
a = bzes = -é—e— 2 w+Ré (156)
..;H .
b = =-w S = -6 (137)
Then rate of cnergy dissipation
- " Z | B
2D = aB+bh = be 0 -wb = -a,,0 = 3 (138)

Optinal control of the electromechanical systen for min J basad on the
forn of egn 128 with infinite-tine settling may be obtained by direct

solution of the steady-stete matrix Riccati equation obtained from ogn 3.
"o i
1

The particular forn of the matrices A, Band W = leads to a soluticn

['0
LWy
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of the P-matrix conponents given by the equations

2 2 i
= G 1)9)
by Pyo 4 . (
: - - a = 0 11!‘0
By P PpPps + Wy) = G2y = G P8y, (140)
2 .
(yoby + W)~ = 26(py, + BppPpp) = G 4y = O (141)

where the cosfficients G, q1, q2 and w2 are identified with the conponents

of eqns 119-126. The control input is then given by

- 5 -1
e = =& 1(BtP + W )X = =& (bzp

b.p,.. + W)X (142)
5 2

127 "

With the single-input system, component p11 is not required. The optiral
control laws and resulting dissipated power functions obtained for various
perfornance criteria related to dissipated and input energy with weighting
on output notor position are illustrated in Table 1. The coefficient o
represcnts the ratio of mechanical to electrical power dissipation, and
also defines the ratio of voltage drop to back enf ((es"em)/em) in the
steady~state equations. The coefficientfﬂ is associated with the

neasurenent of position and is predoninant in the coefficient v.

In terms of the scattering variables of Section 7 a maxinum 'power!
function condition is defined using the state weighting matrix of egn 105.
For the electromechanical systen this reduces to the form

0 - 2, -1 2
Q = "y s XQx = o (G b,-2a,,) - 26w  (143)
T8 2 722
|t (& 2a,,)

i

Solution of eqns 139-141 then gives the condition Pyy = Py = i p12 = 0,
However, for the particular systen representation, Q is not positive
definite with zero weighting on position 8, and thus cannot be used to
define the position control problen. The forn of Q associated with a
conpanion A-matrix will only permit control of the single variable corres-
ponding to the nonzero element of matrix B. In this case @ intrcduces

positive weighting only on notor speed with the elenent q22, similar to

f |

1o @ | » P = *0 O]. For
[_0 q 2] { g

ney be introduced- which will lead to

the quadratic power functions, and with Q =

control of position € a tern CJ[JH
control of the form given in Table 1 based on calculation of the elements
Pyo and I A weighting of the variable 6 may also be introduced by

including a cross-product matrix W with a unit P-matrixz solution of eqn 31.
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Then
( B+W) (:‘.r.-1 ('Btﬂ‘v’ t} - (A—l—At) (144)

15t vy x (145)

Q

and u

1

For the electronmechanical systen this gives

A i ¢ e (b +w,) =1
¢ =] 4 -1 2 (1
é_-G- W_1(b2+w2 -1 3 G' (b2+wlz "23-:22_.a
-1 i = X =« -
Then u e A [w, ,b2+W2]x = ~(w,RI/1)e ku>(1+w2/b2)/7\, ¢ = V(RJ)
(147)
and the controlled systen matrix
I o 1 |
-1+ % ]
.ﬁ.c: A -~ BG 1(B +W) ::i -1 _1§ (11.-8)
| =& ey, by(bw, )G |

Eigenvalue locations and dissipated power functions may then be deternined

based, say, on sensitivity to the cross~product weighting coefficients “&

and w2.

e, = =m0 4 ko 1+a=¥) @ Py = [a + (%g? +a - ¢)2]m%/((1+@)T)

J o 1.I!2 ﬁ

[ea]
f (lPd+‘r92)dt? , :
P S BT M I (SR OV
£ (WP, +¥8")at (2o )

(o0]
/f (lPdn+Y92)dt ' 1 2 B 1
o i = = 3
A 2 ™y (R/R )7 s ARR)S B
] (AP +YE7)at n .
s} &-;4.

TABIE 1. Optimal control law and dissipated power

function coefficients for various nerformance criteria

It 2 -
a = R.Ld/k'. ,T: --1/3,22 % (J/T&)a/(1+u) s R = RS+RYJ




