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The Design of Optimum Regulator Controls for Multivariable,

Class "0" Processes by Independent Optimisation of

Steady State and Dynamic Performance

1. Introduction

An important class of linear/quadratic optimal control problems, the
solution of which can reduce plant operating costs enormously, is that concerned
with the regulation of Class ”O"* processes. Such processes are very common in
the chemical, and process industries generally. Within wide limits, such a
process will often run smoothly, no matter what values of process input or type
of control strategy are employed. The economic performance of the plant can
be very far from satisfactory however if it is inappropriately controlled.

This i1s because the integral cost function for such a process usually involves
penalties on the variance of certain states, (e.g. product compositions), from
pre-specified constant targets, and also on the services, (inputs), consumed by
the plant in approaching these targets. Because of the sustained demand for
services in a steady-state situation, and because of sustained deviations from
the target states, this cost does not converge to a constant value, (as usually
happens with integrating type processes), but continues to integrate with time
after the process itself has reached a steady state. Any deviation from the

optimum cost is therefore very serious economically.

The term "regulator" is here employed to describe the control strategy
appropriate to this problem rather than using the term "reference tracking system"
since the reference signals in this particular exercise are constant, although
non-zero.  Many textsl restrict the term "regulator control" to the case of
zero references. In the case of integrating processes, (i.e. processes of class
greater than zero), the constant reference tracking problem can be reduced to
the conventional regulator problem2 by the use of error co-ordinates taken about
the reference signals. This is a very convenient procedure but relies on the
process integrators to ensure that steady-state and target wvalues of the state
variables approach equality as process time, Tf, approaches infinity. With

class "0" systems this condition is not satisfied and the steady-state values

*
A Class "O" process has no pure integration terms in any of the elements of

its transfer-function matrix.
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of the states are therefore unknown at the problem outset. Furthermore, they
depend, not only on the target values, but also on the optimal control strategy

yet to be designed.

The problem can, of course, be solved by augmenting the process
state—vectorB, xl, by a vector, Xy of reference quantities to yield an overall
state-vector, x, and then applying the conventional methods of optimal control
design, e.g. the matrix Riccati approach3, to the enlarged system. Some
problems arise in the case of class-0 processes however in that, as T, tends
to infinity, the optimised cost coefficient matrix*, P, does not converge to
a steady solution because the optimised process cost, XTPX, cannot settle at a
constant value, (except in the trivial case of input vector u = [O]), for the
reasons aforementioned. Thus, as state vector x reaches its steady state, the
matrix P must continue to integrate, at least in some of its elements. More
importantly, if the basic system has order n and is then augmented by m—constant
reference, (and/or constant disturbance), states, then the number of equations
to be solved, at each step of the integration of the matrix Riccati equation,
becomes (n+m) (n+m+1)/2.0. In many problems, m may well approach n in magnitude,
(particularly in the case of a multi-output system having relatively simple
transfer-function matrix elements), and if n is say, 18, then solution times
well exceeding 2000 seconds4 can be expected, if a wide range of process

eigenvalues exist.

A method of optimisation based on error co-ordinates is therefore

highly desirable since a reduction of up to 75% in the problem solution is made

3 - . ,
It can be shown™ that the optimised cost of a linear process X = Ax + Bu with

: . : Ic T T 5 3

an integral quadratic performance index, g f(x"Qx + u Ru)dt, is given by
T 5 5 . i S

x Px, where x 1s the state vector and P is a time varying cost coefficient
matrix found by solving the matrix Riccati equation

P = PBR 'B'P - Q- A'P - PA

and the optimal control vector is given by the equation -

u = —RnlBTP
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possible by the consequential reduction in the number of co-state equations

to n(n+l) /2.0,

The method to be developed is attractive as it reduces the exercise
to two independent stages; firstly the steady-state process is optimised with
respect to the steady—-state process inputs to yield the optimal values of these
signals and also of the steady process states, in terms of the known reference
and disturbance signals, and, secondly, the dynamic deviations about these
steady states are now formed, the process written in terms of these deviations
and the appropriate matrix Riccati equation, (of order n(n+l)/2.0), solved to

yield a control law in terms of the state deviations.

The method is therefore intuitively acceptable and straightforward
although it is in fact necessary to verify that the two optimisation exercises
‘do yield a control strategy which is optimum overall. This is shown to be true
in the development of the method which follows in section 2 of the report.
A formal statement of the method is given in section 3 and in sections 4 and 5 the

method is applied to illustrative problems.

2. Development of the Design Method

Processes of the type considered in this report are described by the

matrix differential equation

X, = Axl-I-Bu v v x 01D

where Xl is an nxl state vector
u 1is an rxl input vector

is an nxn plant matrix and is constant and non-singular

B is an nxr constant driving matrix.

The non-singularity condition on matrix A precludes the existence of
any pure integrations in the system transfer-function matrix, and also demands
the exclusion from state vector, xl, of any constant reference or disturbance
signals. These are accounted for later. The process need not necessarily be
completely controllable in that X, may contain non-constant external disturbances
although, as will be demonstrated, such signals must be stable, (i.e. tend to

zZero as Tf increases towards infinity).

It is required to control the process, by manipulation of the inputs,

u, in such a manner as to minimise
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Te 1 T
Lim J(Tf) " where J(Tf) = g (x'Qx + u Ru)dt v £2)
T oo
£
3&
where x = | wae £3)
=2
» T
and Q = —h
; __Q3 3 Q2

Vector x, is a mxl column matrix of constant reference signals and

constant process disturbances and therefore described by the matrix differential

equation

gz = [0] womems 0 )
and the cost coefficient matrices Ql’ Q2, Q3 and R are constant and Ql’ Q2 and
R are also symmetric. The matrices have the following dimensions

Ql esess TNXD

Q2 senss INXM

Q3 sesss MXN

R ceese LXT

L X1 g and u_ are the steady-states to which state and input vectors
% and u respectively converge as Tf + =, then dynamic deviations from these

steady states may be defined as follows

M T X g s wuilD §

- v w7
*
Thus if J denotes the minimised performance integral given in
equation 2 then, from equations 2, 3 and 4,
* Tf T T T T T
e =i
z%z) {7 (%,7Q;%; *+ 2%,7Q37x, + %,7Q,%, + u Ru)dt }

and therefore, writing %) and u in terms of y, x, , z and U using equations

1s
6 and 7, this cost becomes
T
* ; f T T T
J =
A { é (y Qly * les Qly N Xls lels

z(t),uS
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T T T T T iy
+
+ Zy Q3 x, + 2xl Q3 X, + X, Q2X2 z Rz + 2z Rus LR Rus)dt}
Noting that certain of the above integrand terms are dependent on only z, some

only on s some on both and some on neither, it is possible to rewrite the

expre551on for J in the form

T T
* E £ T T . £ T
J = min {g (v Qly + z Rz)dt +-[nun g (Xls 1%t 2x15 Q3 %,
z(t) u
T T T T T ; Tf
+u "Ru_ + 2y Q3 x, + les QY + =z Rus)d o+ g X sz dt ... (8)

It is therefore first necessary to minimise within the square brackets with
respect to steady state control vector u before proceeding to the overall
minimisation of J with respect to the control deviation vector z. If JS

denotes the contents of the square brackets in equation 8 then

T T
* 3 1 T T ‘L. "I T T
Jo = iln { g (xls lel Q3 ,tu_ Ru )dt + 2 f (y Qg xy*%, "Q,y+2 Rus)dt}
° .. (9)
and, since X and u, are constants in time, then
* s T E. T T f 1k
JS iln {(xlS lels+2xlS Q3 2+u Ru )T 2 (y Q3 2 X Q1y+z Rus)dtf
° . (10)

Now minimising JS with respect to u must be performed subject to the steady-
state process equation obtained by putting il to zero in equation (1), thus
giving

xg = - [T ei s (115

and hence, differentiating (10) partially with respect to each of the r controls
equating the resulting expressions to zero and grouping these r equations into

one matrix equation gives
; miF S AT B -1 -T T
-2[a "B]" qx, - 2[a7"E] Qy x, + 2Ru )T,
Te  -1aT
2 f (-[a "] Q¥ + Rz )dt = 0 v (12)

Now this report is concerned with long-term process optimisation, i.e. the
case of 'I'f + o, and as Tf becomes larger and larger so the first term of the
L.H.5, of equation 12 dominates more and more the second, integral term since

y and z, by definition, both tend to zero as T. increases toward infinity.




- 6 -

Hence the optimised steady state control is given by

=1, ~1 AT I _
A8 Qx + [ATB] Qyx, = Rug e (13)
and from (11) and (13), eliminating xls’ we get
-1.-T -1 el T T
[R + [A B] Ql[A B]]us = [A B:l Q3 X, eoe (14)

The optimum u  can therefore be calculated from equation 14 from a
knowledge of the reference signals, X5 and the problem parameters, The

associated steady—-state vector, x, , may then be calculated using equation 11.

1s

It is important to note that equation (14) would have resulted from
merely optimising the steady state cost-rate, = XlsTQ Xt uSTRuS, subject to
the steady—-state process equation (11), due to the insignificance of the

deviation contribution to JS, as Tf - o,

Equations 13 and 14 are however not feedback control laws since they
do not completely specify the feedback coefficients. They merely specify
certain relations between Xy gs Uy and %, which will hold once the controller
reaches a steady state. For an optimum control law, even for the case of
Tf -+ ®, we have still to optimise J by choice of z(t); (refer back to
equation 8).
Substituting back in equation (8) our optimised solutions for u and
X and noting that some of the resulting terms are independent of z(t) we are
leit with the task of minimising a dynamic cost Jg, where the optimised value,
Jg , 1s given by
® : T T T T

J o =min 4 f (y Q Ytz Rz)dt + f Z(y Q x X, Q y + z Ru )dt } s CI5)
g S lE) 1 s

Focusing attention on the second integral, (here termed 12), of the R.H.S. of

equation 15 we have that

Te o
Ty =L T Ay Q@ +Q, x ) + z Ru Gt

and using equation 13, which relates the optimum x, and u yields the result

1s

T
I, =2 g f(yT[[A 1B]T] k Ru_ + zTRuS)dt »as'C16)
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Now from equations 1, 6 and 7 we have

y = Ay + Bz + Axls * BuS
and since Axls + BuS = 0 , (steady state process equation),
y = Ay + Bz )
ey o= Al A B2
. LI ~14T Tr -1 4T
and hence yT = ¥y EA ] = & [} B] +uw(18)

- ; T :
Thus, eliminating y from equation 16, we get

H
]

2 ng T R (7 R T

—
It

, = 26O AT AT R) .. (19)

as T = «
£

I2 is thus a function of variables uS and y(0) which are both independent of

z(t) and therefore, to minimise Jg with respect to z(t), from inspection of

equation (15), it is merely necessary to minimise Jd’ where J is given by

d

T
%
I = Lim min g £ (yTQly + zTRz)dt .o« (20)
z(t)

T, » =

f

» ¥ and z being related by dynamic equation 17, i.e.,

y = Ay + Bz sl CET)

3. Summarised Design Procedure

This may be briefly specified as follows:-

Given an n'th order, r-input, time-invariant, class "O" process
kl = Axl + Bu (where A is non-singular)
to be controlled so as to minimise

Q Q L b4
e £ i S 7% oy 1 T
J Lim S ([xl s¥o ] [Q3= Qz } L{} + u Ru)dt
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where Q1 has dimensions nxn, Q2 - mxm, Q3 - mxn and R - rxr, and X, is a

column vector of m-constant reference signals and disturbances,

define y = % - Xls and z = u- u_

where X1 g and u_ are the vectors X and u at steady state. The optimum control

strategy may be found by, the following procedure.

Firstly, calculate the optimum u and X in terms of X, by minimising the

integrand of J with respect to us subject to the steady-state process equation

X = -A_lBu &
1s 1s

t

This procedure, in fact,‘yields the formula
-1 4T =1 -1 4T T
[R + [AB] Ql[A B]]us = [A "B] Qy %,

Secondly, write the dynamic equation of the process in the form
y = Ay + Bz
and minimise the integral

T

j, = Lim [ £ (yTQly + 2z Rz)dt

T <o
£
by appropriate choice of z(t), using the algebraic matrix Riccati equation

=1.T
PBR BP = Q1 + ATP + PA

, and hence find the optimum control law, in terms of state and input deviations,

in the form

z = Ky

R 1pTp

il

, where K

Hence find the overall optimum control law, in terms of states, inputs, and the

constant references and disturbances, in the form

Hocme - K(x1 = xls)

(uS and X1 g having been found in the first part of the exercise in terms of

3

XZ)'
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The technique is now applied to two simple examples for which analytic
solutions are obtainable. These examples illustrate the ease with which the
method may be applied and the results interpreted. The real advantage of the
method, over the 'hugmented state-space', approach, lies in the time saved in

computing large non analytic, problems however.

4. Scalar Example

4,0 Problem
The class 0, scalar process
g ot :
% WX, + w.u
is to be controlled, by manipulation of the single input u(t) so as to minimise
the performance index

T
; = f - 2
Lim J(Tf) , where J(Tf) = g [(Xl X2) + Au ]dt

-0
Te
, where xz.is a constant reference and ) a constant weighting factor.
4.1 Solution
In this particular example, n = 1, m = 1, and r = 1 and the problem

matrices are, therefore

A = *ws 5 Q2 = 1
= ms 3 Q3 = -1
Q]. = 1 y R = A

4.1.1 Part 1 It is first necessary to optimise the steady-state cost-rate,

2 2 . ; ; i
(xls—xz) + lus , With respect to u to determine optimum steady-state operating
conditions. The minimisation must be carried out subject to the steady state
process equation

X = u
1s s

This may be achieved by direct substitution in the algebraic equation,
(14),

[R + [A'la]qu[A'lB]]us = [a7'8) e, x,

giving, in this case

1]

O+ Du (-1). (-1) x,

u

A x2/(1 + A)
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and, from the steady state process equation,

XS = x2/l + A)

Alternatively, rather than pre-supposing the general result given by equation 14,

the steady-state minimisation may be carried out from first principles thus -

i 2
d[{xls—xz) * M J = Z(x. % )dxls + 2\u
du 1s "27du ]
s s
= Z(Xls_XZ) + 2hus = 0, for optimum u

. . since u = X
s 1ls

I
o

2(us—X2) + Zkus

G S XZ/(l + A)

4,1.2 Part 2 It is now necessary to define the deviations of the process state

and input from their steady state values -

e el I and Z = U,

and note that vy = “uy toz
To optimise this dynamic system we substitute in the algebraic Riccati equation
=1T
PBR B P = Ql + A'P + PA

which in this case yields the single scalar equation

2.2
w,P /A = 1 mes

the solution of which is

p = vl +170 = l)?\/wS

The optimum z(t) is, in general, given by
z = Ky where K = -R_lBTP
and therefore, in this example the single coefficient k is given by

k= —wsp/l = —(/1L + 1/x - 1)

, the sign of the squaré root term being chosen to ensure negative feedback of y.
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Hence, z = =(/1 + 1/x - 1)y for optimum control.

4.1,3 Complete Control Strategy It is now necessary to combine the results of

the steady state and dynamic optimisations to obtain the complete control law

thus
= = ky +
u z +u y o+ oug
, hence, u = k(xl—xls) tu,o= kx1 + (1-k)uS
, (since Xg = U, in this example).

Now from part 1, uS = xz/(l + A) and therefore substituting for u

in the equation above we get

u = =(/1 + 1/\ - l)xl + x2/(A¢1 + 1/))

Note
The optimum control is thus obtained as a function of process state X, and
reference Xy The same result may be derived in the conventional manner by
optimising the augmented system
kl g 0 S W
= + u
kz 0 o0 X, 0

with the performance index

Te 1 2
Lim J(Tf) , Wwhere J(Tf) = g (xQx + Au")dt
T o
f
X 1. =1
and, X = and Q =
x -1 1

2

realising that the element b22 of the matrix P in the matrix Riccati equation

# 0 as Tf - o,
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5. Application to a 2-Input, 2-Output Process

5.0 Problem

The class 0, multivariable process

is to be controlled by manipulation of inputs ul(t) and uz(t) so that the
performance index

2

i
. s - . g
Lim J(T_.) , where J(Tf) = é [(xl x3) + (x2 x4) + uy

" + u22] dt
T

is minimised. X, and x, are constant reference signals.

5.1 Solution

The relevant problem matrices for this example are

-1, 0 g 1
A = B =
L 0, -1 1, 2
(1, o (1, O]
Q. = R, =
* [0 4 2 10, 1J
"1, O 1:0_
Q = R =
. 0, -1 0, 1]

5.1.1 Steady State Optimisation

The steady state optimal inputs are given by

R + [a7'8] qu [A_lB]]us

=] 4% T

5 i . T
where X, 1is the constant reference vector, in this example equal to [x3,x4]

; ; -1 ; ; ;
Now in this example A "B = = and therefore substituting in the above
1, 2
algebraic matrix equation we get

1 0 2 1l[1 o|l2 1

=
o
s
A
o
i

01 1 2]|0 1|1 2

e
=
(]
o
1
ot
Ll
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. 6 4 u ; 2x3 + x[+
4 6 u25 x3 + 2x4
Ys 1 4X3 i X4
and hence = 10
~p25 —x3 + 4x4
The steady-state process equation is
Xiq e -1 012 1 uls
XZS o -1||1 2 Uy
S Ha " zuls . Yos 1 7X3 * 2X4
10
XZS uls + 2u28 7x4 + 2x

5.1.2 Dynamic Optimisation

Defining deviations of the states and inputs from their steady state

values we have

e o F I o e "
'y =1 =
Ty %y T ®og
Z 1 "'Ll = 11

and z = 1 = k 15

= Yy 7 Uag
-1 0 2 1

and we note that y = v + z

0o -1 1. 2

It is now necessary to substitute the known matrices A, B, Ql and R in the
algebraic matrix Riccati equation

PER I8P = Q + ATP + PA

This gives
5p 2 + 8p..p + 5p 4 Sp.sip + 4Ps 4P + 4 2 + 5
11 11P12 13 ; 11P12 11P22 P12 P12P22

2 2 9
+
SP11Pip * 4Pyy * APy1Pyy * SPyaPyy 5 5Py, *+ BPyoPy, + 5P,
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P v I
20y o 1By
From the symmetry of the problem, Piq = Pyy s s L)
and therefore, from the Riccati eqn., B e AR
2 2 .
5p11 + Spllplz + 5p12 = 1—2pll i v v (29 Equations
4 2 + 10 + 4 2 -2 (3)
P1i P11P12 T *P12 P1a e
The solution of these equations, (which yields the essential "positive-

definite" property of the P matrix) is

(-10 + Y10 + 9v2)/18

P11 Pao

(8 + /10 - 9v2)/18

I}

and p12

The control law, in terms of the deviations z and y is z = Ky where,

K = -R ‘B'P

and in the case of this problem we get, knowing Pyy = Pyge

iy Bgal [P v ARty

k91 *a2 2p19*P1; 0 2P *Ppa
The feedback coefficients acting on ¥y and Yy to produce z, and Z,

are therefore

by =Ky = (4 - Y10 - 3v/2)/6
TR (-2 - /10 + 3/2)/6

5.1.3 The Complete Control Law

Now z = Ky
o M
and therefore, u=u + Ky = u, + K

. (—LJ 4x3 . x4 =3 X~ 0.7x3 - O.2x4
10
~Xq + 4x X, ~ 0.2x3 O.7x4
Ty x1 + oy - O.7kll b= 0,2k12 x ™l e 0.2k11 = 0.7k12 x3
X, -.1 - O.7k12 -0 2k22 , ob O.2k12 - O.7k22 %,
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and substituting the values for the elements of K calculated in 5.1.2, we get

u 1|4 - V10 - 32 , -2 - /10 + 3/2 X,
u, O l-2- M8 +38, &=~ /IO~ 3,8 &
" 0.3v10 + 0.5¥2 , 0.3/10 - 0.5v2 X,
+ —
2 10.3/10 - 0.5/Z , 0.3/I0 + 0.5/ %,
u1 0.566 , 0,153 Xl 0.826 , 0.122 x3
and therefore, = = +
u, 0.153 , 0.566] [x, 0.122 , 0.826] |x,

This is the complete optimum control law for the system and simulation

of the process controlled in this manner produces the responses given below to

step changes in the references Xq and X, . The relatively low degree of
interaction between X, and %, and between %, and X4 verifies qualitatively the
validity of the optimum control law derived. Reduction of the R matrix

‘ elements yields a lower degree of interaction.

Lo
x,(t)
=
%, (£)
0.5 |
0 I} i 1 | Il 1 P
0 2 4 6 8 10 12
t (sec.)

OPTIMAT. STEP RESPONSES
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6. Conclusions

A convenient method for optimising the regulator control of multi-
variable class-0 systems has been derived theoretically, which requires the
separate optimisation of the steady state and dynamic performance of the system.
The latter paft of the exercise is based on error co-ordinates and therefore
requires the solution of only an nxn matrix Riccati equation, where n is the
number of basic process states disregarding any constant references and
disturbances which appear in the problem. As demonstrated in sections 4 and 5,
the technique may be applied with ease to analytical problems which would be
more laboriously handled by the conventional method of augmenting the state
space to n+m co-ordinates, (where m is the number of constant reference and
disturbance signals). The technique really scores in the area of larger problems
however where computer time prohibits Ehe increase in the number of co-state
equations to be solved by state augmentation. In some problems a time saving
of up to 75% is possible where m approaches n and n is very large. The method
presented also obviates the problem caused by the non-convergence of the P matrix

in the state augmentation method.

The results presented are in fact consistent with somewhat more
general results derived by Athens and Falb1 for reference tracking problems.
The merit claimed for this particular contribution lies not so much in the
advancement of control theory as in the development, from this theory, of a
practically convenient, readily understandable and intuitively acceptable design
technique, applicable to a wide range of practical processes which hitherto

presented considerable difficulty in control system design.
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