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Abstract 

Energy-water nexus studies have been increasing recently due to the significant 

linkages between energy generation and water consumption. Few studies have looked 

at both water quantity and quality impacts of electricity production. Using integrated 

hybrid life cycle analysis, this study examines the life cycle impacts of pulverized 

coal, wind power and solar power on carbon dioxide (CO2) emissions, water 

consumption and water quality in Inner Mongolia, China. Our research findings show 

that pulverized coal emits 1,213.5 grams of CO2 per kilowatt-hour (g/kWh) of 

electricity output, compared with 34.4 g/kWh for wind power and 67.4 g/kWh for 

solar photovoltaic. Water consumption for pulverized coal, wind power and solar 

photovoltaic are 3.3, 0.7 and 0.9 litres per kilowatt-hour, respectively. The water 

requirement to dilute the life cycle chemical oxygen demand (COD) discharge would 

increase water consumption during production processes of pulverized coal, wind 
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power and solar photovoltaic systems by 0.11, 0.09 and 0.19 litres per kilowatt-hour, 

respectively. Given that the State Grid Corporation of China aims to increase the 

power generation capacity that provide power supply to regions outside Inner 

Mongolia to 120 GW by 2020, electricity outflows could contribute to 520 million 

tonnes of CO2 emissions that would be similar to the CO2 emission in the UK in 2010, 

and 1,460.8 million m3 of water. This study reveals that substantial reductions in CO2 

emissions and water consumption can be attained only if the existing coal-dominated 

power generation was substituted by wind power in Inner Mongolia.  

 

Keywords: CO2 emissions, water consumption, chemical oxygen demand, integrated 

hybrid life cycle analysis, Inner Mongolia, China 

 

1 Introduction 

Energy and water are inextricably linked to one another. On the one hand, energy 

production emits greenhouse gases (GHG) that are considered one of the major causes 

of climate change which can have significant impact on hydrological systems, such as 

change in precipitation, an increase in sea level and flooding [1]. On the other hand, 

energy production requires substantial amounts of water during its production life 

cycle, including processes ranging from the mining of fuels to the cooling of power 

generators [2].  

 

A number of studies have been carried out to examine water requirements of energy 

production [3-5]. For the conventional energy production, water requirements can be 

substantial. For instance, in the United States (U.S.), thermo-electric water withdrawal 

for cooling purposes accounts for approximately 50% of total water withdrawal [6]. 

These considerable water requirements in energy production have caused water 

shortages. For example, Averyt et al. [7] highlighted that water requirements of power 

generation contributed to water supply stress in approximately 80 watersheds across 

the U.S.. The issue regarding water demands of energy production cannot be ignored. 

Furthermore, in recent years, transitions to a low carbon future have increased 

employment of renewable energy technologies around the globe. Some renewable 

energy sources require less water in energy production than conventional power 
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generation technologies. For instance, in the U.S., water consumption of photovoltaic 

power generation is only one eighth of water consumption for fossil fuel-based power 

generation [8]. However, some renewable energy technologies are also high water 

consumers. Burkhardt et al. [9] pointed out that concentrated solar power systems 

with wet-cooling can consume up to 4.7 litres of water to generate one kilowatt hour 

of electricity (kWh).  In addition, power generation can result in water quality impact 

during its life cycle phase. For example, according to Song et al. [10], there is 

significant relationship between coal production and wastewater discharge at the 

Yellow River of China, which has resulted in severe water pollution. 

 

China has become the largest electricity producer since 2011, according to BP [11]. 

Power generation is the second largest water withdrawal sector in China while the 

agriculture sector ranks the highest. However, there have been very few studies 

investigating water requirements in energy production in China. Li et al. [12], is one 

of the first energy-water nexus studies  to calculate the life cycle carbon dioxide 

(CO2) emissions and water consumption required by wind power in China. The 

authors concluded that wind power could be seen as carbon and water saving 

solutions to the coal-dominated power generation system in China. Although this 

study has provided a holistic view of the general relationship between energy and 

water for the country as a whole, a nationwide analysis may not be useful and 

effective to highlight the water situation at specific regions in China. Furthermore, the 

focus of the existing literature is largely oriented toward water quantity impacts of 

power generation [13-15], while very limited studies have aimed to examine the water 

quality impacts of power generation during its life cycle phase. To the best of our 

knowledge, no research study has been conducted to address both water quantity and 

quality impacts of electricity production in China. Last but not least, owing to the 

significant differences in the regional power mix, the extent to which the application 

of renewable energy sources could contribute to CO2 emission reduction in each 

region in China is not yet known.  

 

Due to the above, this paper aims to address these shortcomings by conducting a 

detailed regional analysis of the water requirements (both water quantity and quality) 

of different electricity generation technologies implemented in China, with a specific 
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focus on Inner Mongolia in order to better understand the “local” energy and water 

situations to aid future energy strategy and plan.  

 

Based on integrated hybrid life cycle analysis, our study is focused on three electricity 

generation systems, namely, coal power, wind power and solar power, with regard to 

their impacts on CO2 emissions, water consumption and water quality in Inner 

Mongolia, China.  

2 Inner Mongolia – a future energy hub facing water 

challenges 

Located in the north of China (see Figure 1), Inner Mongolia has a total area of 1.18 

million square kilometres, which covers 12.3% of the territory of China [16]. Inner 

Mongolia is endowed with various natural resources, including rare earth minerals 

(first place in the world ranking list), wind power (one fifth of total wind power 

potential in China) and coal (largest reserve in China with 808.1 billion tonnes of 

reserves) [17]. Average annual Gross Domestic Product (GDP) growth of Inner 

Mongolia has been over 20% between 2004 and 2005 [18] and over 15% between 

2006 and 2010 [19]. 
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Figure 1 Location of Inner Mongolia in China  

 

2.1 Energy Production in Inner Mongolia  

Inner Mongolia is the largest coal producer in China. In 2011, total coal production in 

Inner Mongolia amounted to 979 million tonnes [20], which represented 27.8% of the 

total coal production (3,520 million tonnes) in China [21]. The growth of energy 

intensive industries, such as coal mining and processing, raw chemical materials and 

products and non-ferrous smelting and processing, has stimulated power demand in 

Inner Mongolia [22]. At the end of 2010, Inner Mongolia was ranked the third largest 

power generation capacity (64.6 gigawatt) (GW) among all the regions in China, with 

coal contributing 240.7 billion kWh out of the total 260 billion kWh power generation 

[23]. At present, Inner Mongolia has outpaced all the other regions in China in terms 

of growth in newly installed power generation capacity, power generation per capita 

and domestic power exports [24].  

 

Also, Inner Mongolia is one of the first regions to use wind power in China, which 

can be traced back to the 1970s [25]. Decentralized wind power was mainly used for 

providing electricity supply for herdsmen in remote areas during the early stage of 
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wind power development. Centralized wind power was not introduced until 1989, in 

which a wind farm with total generation capacity of 1 megawatt (MW) was deployed 

with financial support from the U.S. [26]. Wind power generation capacity increased 

from 8.2 MW in 1995 to 13,858 MW in 2010 (see Figure 2), which is projected to 

reach 31.2 GW by 2015 and 59.1 GW by 20201 [27]. Inner Mongolia also has one of 

the largest potentials for solar power in China [28]. Since the Chinese government has 

committed to promoting renewable energy sources, the percentage share of renewable 

energy to total energy supply will be considerable in the future, particularly in the 

region like Inner Mongolia. 

 

Figure 2 The growth in installed wind power capacity and share of wind power to 

total power generation in Inner Mongolia 

Source: for wind power [19]; share of wind power to total power generation capacity: 

own calculation, total generation capacity figures from various China Electric Power 

Yearbook [29-33]. 

 

                                                        

 

 
1 Our calculation is based on figures provided in reference [27]. In East Inner 
Mongolia, total installed capacity is projected to increase to 13.2 GW and 20.8 GW 
by 2015 and 2020, respectively. In West Inner Mongolia, total installed capacity is 
projected to increase to 17.95 GW and 38.3 GW by 2015 and 2020, respectively.  
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2.2 Water resources and consumption in Inner Mongolia 

Total water availability in Inner Mongolia amounts to 38.9 billion cubic metres, of 

which 52.7 % is surface water and 47.3 % is ground water [34]. Compared to other 

arid northern regions in China, Inner Mongolia has higher water availability on a per 

capita basis. For example, in 2010, water availability per person was 1576.1 m3 in 

Inner Mongolia compared to 124.2 m3 in Beijing and 195.3 m3 in Hebei [19]. Yet, it 

was still below the national average, which was 2310.4 m3 in 2010.  Water resources 

are unevenly distributed in Inner Mongolia, East Inner Mongolia, which covers 27% 

of the territory and accounts for 18% of the total population and 20% of the farmland, 

is endowed with 65% of water resources.  For West Inner Mongolia, which covers 

26% of the territory and has 66% of the total population and 30% of farmland,  

accounts for 25% of the water resources [35]. Total water shortage is expected to 

increase from 1 billion m3 in 2011 to 3 billion m3 in 2020 [36]. Furthermore, 

according to 2010 records, 54.6% of the watersheds in Inner Mongolia were severely 

polluted [34]. The problem of water pollution compounds the pressing issues of 

freshwater availability and distribution.  

 

Orszag [37] estimated that coal power generation would account for almost 40% of 

the increase in China’s water consumption over the coming decade. Inner Mongolia is 

ranked the third largest power generation capacity in China and the majority are coal-

fired power plants and yet, this region is not rich in water resources. Thus, it is 

necessary to examine the impacts of different power generation technologies on water 

(both quantity and quality) in Inner Mongolia in order to aid future energy strategy 

and plan.  

3 Methods and Data 

3.1 Integrated hybrid life cycle analysis: an introduction 

Integrated hybrid life cycle analysis is a combination of conventional process-based 

life cycle analysis (LCA) and input-output analysis. Conventional process-based LCA 

(PRO-LCA) often underestimates the environmental impacts of a product due to the 

arbitrary selection of the system boundary, which refers to processes that are included 

or excluded in the analysis [38]. Upstream impacts beyond the selected system 

boundary are often neglected [38].  
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Integrating LCA with input-output analysis (IO) has provided a viable means to 

complementing the system boundary of conventional LCA approaches. The early 

application of IO in LCA can be traced back to the early 1990s from the estimation of 

life cycle CO2 emissions of an automobile in Japan by Moriguchi et al. [39]. Later on, 

Lave et al. [40] presented an environmental input-output based life cycle analysis 

(EIO-LCA) to assess the environmental repercussions of five products in the U.S., 

including automobiles, refrigerators, computer purchases, paper cups and plastic cups. 

However, EIO-LCA is suffering from an aggregation problem due to the 

representation of data at sectoral level rather than individual process level. The IO and 

LCA systems have been treated individually until Suh [41] postulated a linkage 

between LCA and IO, which is now often known as the integrated hybrid life cycle 

analysis.  

 

Integrated hybrid LCA has been used in a number of LCA studies [42-45]. Suh and 

Huppes [43] provided a review of methods in life cycle analysis. The authors 

compared the computational structure of both conventional and hybrid LCA and 

concluded that results generated by integrated hybrid LCA are more reliable 

compared to its counterparts. A couple of studies applied integrated hybrid life cycle 

analysis to examine the environmental impacts of energy systems. For example, 

Acquaye et al. [46] demonstrated the application of the integrated hybrid life cycle 

analysis in the estimation of GHG emissions of rape methyl ester (RME) biodiesel in 

the U.K. Wiedmann et al. [47] compared three LCA techniques (i.e. PRO-LCA, 

input-output based hybrid LCA and integrated hybrid LCA) in assessing GHG 

emissions of wind energy in the U.K..  

 

3.2 A general framework of integrated hybrid life cycle analysis 

A general framework of the integrated hybrid LCA, which is developed by Suh [41],  

is given in Table 1. Two matrices are introduced to link input-output analysis 

(represented by A) and conventional life cycle analysis (represented by ܣሚ) in the 

integrated hybrid life cycle analysis. One matrix (represented by U) presents the 

upstream cut-off flows from the economic sectors in the input-output system to the 

process system. The downstream cut-off flows from the process system to the IO 

system is represented by another matrix (represented by D).  
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  Processes Industries Functional unit 

Products Physical flow matrix (ܣሚ) Downstream cut-off (D) 
Functional unit of 

process analysis  

Industries Upstream cut-off (U) Input-output matrix (A) Functional unit of IO 

Environmental 

Impacts 

Environmental impacts of 

LCA  

Environmental impacts 

of IO    

Table 1 A general framework of integrated hybrid life cycle analysis 

 

The mathematical formulation of the integrated hybrid LCA approach is depicted as 

in Equation 1: 

ூுܩ  =  ൤ܤ෨ 0

0 ൨ܤ  ൤ ሚܣ െܦെܷ ܫ െ ൨ିଵܣ ቂ0݂ቃ                                                                       (1) 

 

Where GIH is the total environmental intervention matrix, which describes total direct 

and indirect environmental impacts of the product system; ܤ෨  and B are the 

environmental intervention matrices for the conventional LCA system and the I-O 

system, respectively; ܣሚ represents inflows and outflows of products to processes in 

the conventional LCA system; A represents the flows among economic sectors in the 

input-output system; U is the upstream cut-off matrix; D is the downstream cut-off 

matrix; f represents the functional unit of the LCA system, which is one kilowatt hour 

in this study. 

 

3.3 Data 

Several types of data were used in this research study, including process-based life 

cycle data of selected power generation technologies, the input-output table of Inner 

Mongolia, and sectoral CO2 emissions, water consumption and chemical oxygen 

demand (COD) discharge data. Data source and compilation methods are depicted in 

the following subsections. 

 

3.3.1 Process-based life cycle data  
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The process-based life cycle datasets were taken from the Ecoinvent Database2, from 

which we obtained data on 300 MW pulverized coal power from China, 800 kilowatt 

(kW) wind power and 3 kW solar photovoltaic (PV) systems.  

 

Data on coal power plants (with total generation capacity over 1 GW) were drawn 

from the China Electric Power Yearbook [48]. For Inner Mongolia, 11 coal power 

plants with a total generation capacity of 23.7 GW (57% of the total power generation 

capacity in Inner Mongolia) were listed. Each coal power plant has a combination of 

different power generation units, ranging from 100 MW to 600 MW. 300 MW power 

generation units represent 21 out of 58 power generation units. Although 600 MW 

power generation units account for 23 out of 58 power generation units, process-based 

data of 600 MW coal power system is not available in China. Thus, in this study, we 

have chosen the 300 MW power generators instead.  

 

Estimation of impacts from 800 kW wind power system is based on wind power 

generation in Switzerland. The decision of using 800 kW wind turbine in this study is 

based on two reasons: 1) In 2007, Inner Mongolia had 1,736 wind turbines deployed 

with a total generation capacity of 1.56 GW3, which had a turbine size of 898.6 kW 

on average [49]. 2) Wind turbines produced in China are with licences from European 

partners and thus, we assume the material used and the manufacturing processes of 

wind turbines in China are similar to the ones described in the database for European 

countries. 

 

                                                        

 

 
2 2010 Ecoinvent database v2.2 from the Ecoinvent Centre at 
http://www.ecoinvent.ch/. The Ecoinvent process database provides a process matrix, 
which includes almost 4000 goods and processes. 
3 There is a disparity in the statistical figures given by the China Electric Power 
Yearbook [48] and Shi [49] on the 2007 total generation capacity. The disparity may 
be due to the differences in the statistical methods used. The China Electricity 
Council only takes the wind farms in operation into account in calculating wind 
power generation capacity. The manufacturers of wind turbine use the sales figures 
instead of using wind power generation capacity. It is beyond the scope of this study 
to investigate the statistical methods used in these two studies. Since Shi’s study 
contains data on the number of wind turbines and the total generation capacity, we 
have opted for using these figures in our study. 

http://www.ecoinvent.ch/
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3kW Solar PV is based on electricity production with grid-connected photovoltaic 

power plants mounted on buildings with slanted roofs in Switzerland. 

 

3.3.2 Input -output table 

Following the standard compilation scheme established by the National Bureau of 

Statistics, 30 regional IO tables4 have been compiled in China since 1987. In this 

study, the latest 2007 input-output table for Inner Mongolia is used.  

 

3.3.3 Upstream and downstream cut-off matrix  

We adopted the methods used by Acquaye et al. [46] and Wiedmann et al. [47] to 

compile the upstream cut-off matrix (matrix U). First, physical inputs of the examined 

product system (e.g. coal-fired power, wind power and solar power in our study) were 

extracted from the physical flow matrix. Monetary value of the product system was 

then estimated by multiplying physical inputs with cost of the product system. The 

cost data were extracted from the China Price Yearbook [50]. Since all physical 

inputs were covered in the IO system, the estimated monetary value of the physical 

inputs was deducted in order to avoid double counting with the remaining values 

representing elements of the upstream cut-off matrix. We assumed that all the power 

outputs were consumed by the electricity sector in the input-output table. Thus, 

downstream cut-off matrix D was set to zero, which meant the goods inputs from the 

process system to the IO system were negligible. The uncertainty and limitation of 

setting matrix D to zero are discussed in section 3.4. 

 

3.3.4 CO2 emission data 

Following the compilation method introduced by Peters et al. [51], we estimated the 

sectoral CO2 emission data for Inner Mongolia by using the sectoral energy 

consumption data from the Inner Mongolia Statistical Yearbook [52].  

 

3.3.5 Water consumption data  

                                                        

 

 
4 It includes 22 provinces, 4 municipalities and 4 autonomous regions. Hong Kong, 
Macao, Taiwan and Tibet are not included.  
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The water consumption data of Inner Mongolia was extracted from the China 

Statistical Yearbook [18]. However, only seven sectors were recorded, which are 

agriculture, forestry and fishing, industry, services, households, and ecological 

compensation. As suggested by Yang and Suh [53], the incorporation of 

environmental impact indicators from other sources could help to improve the results. 

Hence, in this study, we incorporated the sectoral wastewater discharge data, which 

was extracted from the Inner Mongolia Bureau of Statistics [52], and the water 

recycling rate, from the Industries Water Requirement Quota and Standards of Inner 

Mongolia [54], to compile the sectoral water consumption data. The compilation of 

sectoral water consumption follows two steps. Firstly, sectoral water withdrawal data 

was estimated using sectoral wastewater discharge data and water recycling rates. 

Sectoral wastewater discharge data has 38 industries included, which provides more 

detail than the water consumption data from the China Statistical Yearbook. 

Secondly, the results were multiplied by water consumption rates for industry, which 

were obtained from the Inner Mongolia Water Bulletin [55], to generate the sectoral 

water consumption data.  

 

The water recycling rate presents the percentage of water that is available for reuse 

[54].  For example, for coal mining and processing, the water recycle rate is 90%, 

which means 90% of the water withdrawal can be reused in the coal mining and 

processing industry. For other industries such as manufacturing of food, there are 

large variations in the water recycle rate ranging from 35% to 70% dependent on the 

food product. Equation 2 depicts the calculation of the recycling rate. 

 

ܴ =
௏ೝ௏೔ା௏ೝ  ×  100%                                                                                            (2) 

Whereas R represents recycling rate in percentage; Vr represents total amount of reuse 

water at a given time period; Vi represents new water intake at a given time period.  

 

The denominator of Equation 2 represents total water withdrawal of the industry (V); 

thus, we have Equation 3 depicted as below.  

 ௜ܸ + ௥ܸ =  ܸ                                                                                                          (3) 
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In this study, we assumed that water losses from evaporation were negligible. 

Consequently, new water intake Vi was equivalent to wastewater discharge for each 

economic sector, which can be obtained from the Inner Mongolia Statistical Yearbook 

[56]. Since the water recycle rate included almost 400 products, we aggregated them 

in accordance with the sectoral classification of wastewater discharge data. A list of 

water recycle rate for industries5 are given in Appendix A. Then, sectoral water 

withdrawal was calculated using Equation 4 which is derived from Equations 2 and 3. 

 ܸ =  
௏೔ଵିோ                                                                                                         (4) 

The calculated total water withdrawal with lower recycle rate was 17.2 billion m3, 

which is not far from the total water withdrawal (17.5 billion m3) recorded in the 

Inner Mongolia Water Bulletin [55]. Then, the sectoral water withdrawal data were 

multiplied by the water consumption rate, which was extracted from the Inner 

Mongolia Water Bulletin [55]. Based on the bulletin, the industrial water consumption 

rate was 61.4% of total water withdrawal. The sectoral water consumption data can be 

found in Appendix B.  

 

3.3.6 Chemical oxygen demand (COD) discharge data  

The concentration of COD is higher than the Class IV water quality standard6 in 

Songhua River, Liao River and Yellow River that flows through Inner Mongolia. In 

this study, we use COD to assess the water quality impacts of power generations in 

Inner Mongolia due to two reasons. Firstly, COD is one of the most important 

indicators in assessing water quality. Secondly, data on COD is available at sectoral 

                                                        

 

 
5 The input-output table assumes that industries have homogeneous products within 
each sector. However, detailed information about the classification of industries for 
water recycle rate can be obtained. For example, manufacturing of food has a wide 
range of water recycle rates - from 35% for manufacturing of canned meat to 70% for 
manufacturing of milk. Thus, we listed the lower and higher recycle rates and 
estimate the lowest and highest water withdrawals for each industry. 
6 In China, water quality grading is based on two standards: the water quality 
standard, which refers to the quality of watersheds such as rivers and lakes; the 
wastewater discharge standard, such as COD concentration. To clarify, the Class IV 
water quality standard is for the quality of water bodies in watersheds such as rivers 
and lakes, which is different from the industrial wastewater discharge standard. Water 
quality level higher than Grade IV is considered not suitable for direct human contact. 
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level from the Inner Mongolia Statistical Yearbook while other pollutants, such as 

heavy metals, are only available in total discharge volume. However, it does not 

imply that power generation leads to COD discharge. Since this study aims to 

examine the life cycle water quality impacts of power generation, upstream activities 

such as coal mining and processing can have significant COD impacts are taken into 

account.  

 

Guan and Hubacek [57] presented a hydrological model to investigate the relationship 

between COD and water availability in North China7. The authors calculated the 

water requirements to dilute COD discharges so that the mixed water (wastewater 

contains COD plus dilution water) can be used for other purposes. However, this 

model is not feasible in this study as the data recorded in the Inner Mongolia 

Statistical Yearbook [52] on wastewater discharge does not separate into surface 

water and ground water. Due to this, in this study, we only incorporate the general 

principle of mass balancing in Guan and Hubacek’s model and our estimation 

procedures are depicted in detail in Appendix C. 

 

3.4 Limitations   

Firstly, since the detailed sectoral water withdrawal data is not available in most 

regions in China, the use of wastewater discharge data in the compilation of sectoral 

water withdrawal data has been adopted by a couple of studies [58, 59]. The 

assumption of using wastewater discharge in this study is that water loss in production 

and from evaporation is negligible. Although such an assumption is valid as only a 

minor fraction of water is consumed in industries at the present time, this study can 

further be improved by incorporating detailed water data when they are available in 

the near future.  

Secondly, we do not take into account the use of inputs from the process system to the 

IO system by setting downstream cut-off matrix to zero (D = 0).  The compilation of 

downstream cut-off matrix requires sales information (e.g. the distribution structure) 

of the product that is not always accessible to an LCA practitioner using commercial 
                                                        

 

 
7 In China, North China (also known as Northern China) refers to those provinces and 
regions which are found around the Yellow River plain and north to the Middle and 
Lower Yangtze River. 
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databases [60]. In fact, the contribution of downstream cut-offs on total environmental 

impacts is minor, especially if a demand on the functional unit is used [61]. Thus, for 

simplicity, we do not take into account the downstream cut-offs in this study. 

However, we acknowledge that the results can be improved if relevant information for 

compiling downstream cut-offs is available.  

Thirdly, the choice of representative power generation technologies might lead to 

uncertainty in the estimation of their environmental impacts. It is due to the following 

reasons: 1) the selected power generation technologies (i.e. 300 MW coal power, 800 

kW wind power and 3 kW solar PV) may not fully represent the power generation 

system; 2) In general, process-based life cycle emissions of power generation 

technologies in European countries are lower than those produced in China. Hence, 

the use of PRO-LCA data based on European countries (in this case study, we use 

800kW wind turbine and 3kW solar PV manufactured in Switzerland) could 

underestimate the environmental impacts of the power generation technologies in 

China. However, since these Chinese data are presently not available, our approach is 

regarded as the most viable means to estimate the life cycle environmental impacts of 

China’s power generation system at the moment.  

4 Research Findings  

4.1 CO2 emissions  

 

Figure 3 Life cycle CO2 emissions of pulverized coal, wind power and solar PV 

systems per kWh in Inner Mongolia, China. 
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Figure 3 compares the life cycle CO2 emissions of pulverized coal, wind power and 

solar PV systems. Pulverized coal emits 1,213.5 grams of CO2 per kilowatt-hour 

(g/kWh) of electricity output, compared with 34.4 g/kWh and 67.4 g/kWh for wind 

power and solar PV systems, respectively. The significant differences in CO2 

emissions between different energy production systems reveal that substantial 

reduction in CO2 emissions could be achieved through a substitution from the existing 

coal-dominated power generation technology to renewable energy technologies.  

 

 

Figure 4: A breakdown of sectoral CO2 emissions generated from pulverized coal, 

wind power and solar PV systems in Inner Mongolia, China. 
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more than 50% of the total CO2 emissions and it is followed by steel production due 
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to the large input of steel for wind turbine. Similar results are found in Li et al. [12], 

which provides a national level analysis on CO2 emissions of wind power in China.  

4.2 Water consumption 

 

Figure 5: A comparison of life cycle water consumption of pulverized coal, wind 

power and solar PV systems in electricity generation in Inner Mongolia, China. 

 

Figure 5 presents the life cycle water consumption required by pulverized coal, wind 

power and solar PV systems to generate electricity in Inner Mongolia. Pulverized coal 

consumes 3.3 litres of water per kilowatt-hour (l/kWh) of electricity output compared 

to 0.7 l/kWh and 0.9 l/kWh for wind power and solar PV systems, respectively. 

Therefore, a switch from a pulverized coal power generation to wind power and solar 

PV not only reduces CO2 emissions but also decreases water consumption of power 

generation significantly. 
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Figure 6: Breakdown of sectoral water consumption of pulverized coal, wind power 

and solar PV systems in electricity generation in Inner Mongolia, China. 

 

As shown in Figure 6, the electricity input accounts for approximately 60% (or 2.13 

l/kWh) of the life cycle water consumption for pulverized coal based electricity 

generation technology. Most water sources are consumed for cooling purposes. 

However, electricity input accounts for about 40% of total life cycle water 

consumption in wind power (0.28 l/kWh out of 0.71 l/kWh in total) and 30% in solar 

PV (0.27 l/kWh out of 0.90 l/kWh).  
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Figure 7: Dilution water required for electricity generation in pulverized coal, wind 

power and solar PV systems in Inner Mongolia, China. 

COD discharge is estimated as additional water consumption since the discharge with 

excessive COD contents needs to be diluted in order to achieve the water quality 

standard. From Figure 7, dilution water to purify the discharged wastewater from 

pulverized coal, wind power and solar PV amounted to 0.11, 0.09 and 0.19 litres per 

kWh, respectively. COD discharge from paper production uses most of the dilution 

water for pulverized coal (0.08 l/kWh) and wind power (0.07 l/kWh) due to the 

concentration of COD in the paper industry’s wastewater (1659.9 grams/m3), which is 

higher than all the other industries in Inner Mongolia (See a full list of sectoral COD 

concentration in Appendix D). By contrast, mining of metals accounts for the highest 

proportion of dilution water for solar PV (0.13 l/kWh), and it is followed by paper, 

chemicals and food production. 

 

5 A scenario analysis of CO2 emissions and water impacts 

of power generation in Inner Mongolia by 2020  

Presently, Inner Mongolia is the largest coal producer in China, which is located at a 

considerable distance from the demand centres on the east coast. The uneven 

distribution of energy sources in China has called for the construction of a long-

distance power transmission system, which has been initiated by the State Grid 
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Corporation of China (SGCC). One of the primary targets of Inner Mongolia is to 

increase power generation capacities that provide power supply to regions outside 

Inner Mongolia to 120 GW by 2020. Since the changes in outflow power generation 

capacity would have significant impact on carbon emissions, water availability and 

water quality in Inner Mongolia, we adopt the scenario analysis technique to project 

the total amount of CO2 emissions and water requirements in 2020 based on the 

projection from SGCC.  

 

 

Figure 8 Total electricity outputs in Inner Mongolia (TWh) and shares of exports 

Source: Various Inner Mongolia Statistical Yearbooks [56, 62-66] 
 

Figure 8 gives the total electricity outputs and shares of domestic outflows to total 

outputs in Inner Mongolia between 1985 and 2010. Total electricity outputs increased 

from 80.46 terawatt hours (TWh) in 1985 to 2571.82 TWh in 2010. Shares of exports 

increased from 13.4% in 1985 to 41.7% in 2000 and have remained stable around 40% 

since 2000.  

 
 
We assume that domestic outflows would remain at 40% of the total power outputs in 

Inner Mongolia by 2020. Thus, total power generation capacity would reach 300 GW 

by 2020. According to Li et al. [27], 58.1 GW of wind power would be deployed in 

Inner Mongolia by 2020. Solar power has been at its early stages of development. 

Total power generation capacity was 0.02 GW by 2010. The Inner Mongolia Energy 

Bureau projected that total power generation capacity of solar PV would reach 0.8 

GW by 2015 [67], with 0.155 GW of solar PV installed annually between 2010 and 
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2015. We assume that annual installed capacity would be identical between 2016 and 

2020. Thus, solar PV would have total installed capacity of approximately 1.6 GW by 

2020. Hydropower accounts for a minor proportion of total power generation capacity 

and has remained stable for years in Inner Mongolia. Hence, we take the contribution 

of hydropower to total power generation capacity for granted in 2020. Besides wind 

power and solar PV, the remainder of the 300 GW power generation capacities would 

come from coal power. Table 2 shows the power generation capacity, total CO2 

emissions and water requirements of each power generation technology by 2020.  

 

  Coal power Wind power Solar PV 

Power generation capacity 
(Gigawatt = 109 watt) 

240.0 58.4 1.6 

Total power generation 
(Gigawatt hour = 109 watt hour) 

1,070,718.4 103,660.4 2,080.0 

Total CO2 emissions (million 
tonnes) 

1,299.3 3.6 0.1 

Water consumption (million m3) 3,533.4 72.6 1.9 

Dilution water (million m3) 117.8 9.3 0.4 

Total water consumption 
(million m3) 

3,651.1 81.9 2.3 

Table 2 Total power generation capacities and annual power generation by source in 

2020 

Source: For total power generation, own calculation. Operating hours for coal power, 

wind power and solar PV are from [68] and [69]. 

 

Jin [70] estimated that coal power generation would contribute to 680 million tonnes 

of CO2 emissions in Inner Mongolia by 2020. However, Jin’s study might 

underestimate the CO2 emissions from coal power generation since it does not take 

life cycle emissions into account. The CO2 emission coefficient was set at 810 g/kWh 

in her study, which is almost one third lower than the calculated life cycle CO2 

emission coefficient (1213.5 g/kWh) in our study. From Table 2, total CO2 emissions 

from coal power generation would reach 1,299.3 million tonnes by 2020. 40% of the 

emissions (i.e. 520 million tonnes) would result from power supply to regions outside 

Inner Mongolia; this would be similar to the total CO2 emissions in the U.K. in 2010 

(547.9 million tonnes) [71]. In addition, coal power generation would consume 

3651.2 million m3 of water by 2020. For wind power and solar PV, the estimated 
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water requirements are 81.9 and 2.3 million m3, respectively. According to the Inner 

Mongolia Ministry of Water Resource, total water consumption was 12,080 million 

m3 in 2010 with an annual growth rate of 2.3% [34]. If annual growth rate remains 

constant in the coming decade, coal power generation would represent 24.1% of total 

water consumption (3,651.2 out of 15,164.3 million m3) in Inner Mongolia by 2020. 

Again, 40% of the water consumption would come from power generation for regions 

outside Inner Mongolia, which amount to 1,460.8 million m3 of water. 

6 Discussion and concluding remarks 
 
Renewable energy technologies are regarded as carbon and water saving solutions for 

the existing coal-dominated power generation system in Inner Mongolia. It shows that 

wind power and solar PV have considerable environmental advantages to coal power 

in terms of CO2 emission and water consumption, and wind power has the lowest 

impact on water quality among all the energy production technologies. Results from 

our scenario analysis reveal that electricity outflows would contribute to a significant 

amount of CO2 emissions and water demands in Inner Mongolia. Switching from coal 

to wind power not only significantly reduces CO2 emissions but also relieves the 

pressure on local water resources and the ecosystem in Inner Mongolia.   

 

This study also reveals that, other than carbon emissions, different power generation 

technologies have different impacts on water in terms of both quantity and quality. 

Our result shows that solar PV has higher COD levels than wind power due to mining 

of metals. Presumably, the environmental repercussions of solar PV can be more 

considerable if emissions of other pollutants such as cadmium are taken into account.   

 

There are many factors that need to be considered in optimizing the power system 

from a technical point of view, such as system operation to environmental issues and 

mitigation of CO2 emissions. A coherent energy policy should consider as many 

sustainability indicators as possible. For example, besides carbon emissions and water 

impacts examined in this study, coal-fired power plants are the most significant 

contributors to mercury emissions in China, which amounted to 304 tonnes in 2010 

according to Yang et al. [72]. Whether the switch from coal to renewable energy 

sources can deal with mercury emissions needs to be examined from a supply chain 
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perspective. Further investigation of other sustainability indicators are required to 

ensure the current choice of power generation technologies will not compromise 

sustainability in the future considering the substantial life-span of power generation 

systems.  

 

The existing LCA database does not have much information about China’s power 

generation system, regardless of the fact that China has the second largest power 

generation capacity in total, the largest wind power generation capacity and is one of 

the most pioneering countries in solar power in the world. Considering the significant 

environmental impacts of China’s power generation - both domestically and 

internationally - it is necessary to compile the LCA database for the Chinese power 

generation system in the near future. 

 

We conclude this study by highlighting a future research direction. In this study, we 

assume that the selected power generation technologies are produced in Inner 

Mongolia, and ignore the environmental impacts of imports from and exports to other 

regions. Establishing linkages between Inner Mongolia and other regions in China by 

using multi-regional input-output analysis would be an important step forward to 

further understand the environmental impact of power generation technologies from a 

consumption perspective. In addition, as constrained by data availability, we have to 

use COD as our water quality impact indicator. Other pollutants such as heavy metal 

can also be used as indicators to demonstrate water quality, which can also be a future 

research direction when data is available.  
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8 Appendices 

Appendix A: Industrial water recycle rate 

  
Economic sector 

Recycle rate 
Lower Upper 

Coal mining & processing 90% 90% 
Petroleum & Natural Gas Pumped 90% 90% 
Mining & Dressing of Ferrous Metals 50% 85% 
Mining & Dressing of Non-ferrous Metals 35% 90% 
Mining & Dressing of Non-metal Minerals 95% 95% 
Processing of Agricultural Side-Line Food 75% 85% 
Manufacturing of Food 35% 95% 
Manufacturing of Beverages 70% 80% 
Tobacco Products 85% 85% 
Textile Industry 50% 65% 
Textile, Clothes, Shoes & Hats 50% 65% 
Leather, Furs, Down & Related Products 50% 65% 
Timber Processing, Bamboo, Cane 90% 95% 
Palm Fibre & Straw Products 90% 90% 
Paper-making & Paper Products 60% 85% 
Printing & Record Pressing 90% 90% 
Petroleum Processing, Coke Products & 
Processing of Nuclear Fuel 50% 95% 
Chemical Materials & Products 60% 95% 
Manufacturing of Medicine 80% 90% 
Plastic Products 70% 85% 
Non-metal Mineral Products 60% 70% 
Smelting & Pressing of Ferrous Metals 95% 95% 
Smelting & Pressing of Non-ferrous Metals 90% 95% 
Metal Products 80% 90% 
General-Purpose Equipment 70% 80% 
Special Equipment  35% 80% 
Transported Equipment  60% 60% 
Electric Equipment & Machinery 60% 80% 
Manufacturing of Telecoms, Computer & 
Other Electronic Equipment 30% 90% 
Instruments, Meters, Cultural & Office 
Machinery 30% 90% 
Production & Supply of Electric Power 92% 95% 
Production & Supply of Gas 92% 95% 
Production & Supply of Water 92% 95% 

Source: [54] 
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Appendix B: sectoral water consumption and water coefficients 

Economic sectors 

Water 

consumption 

(10,000 m3) 

Economic 

output (10,000 

yuan) 

Water consumption 

coefficient 

(m3/10,000 yuan) 

Agriculture 779200.0 6421574.0 1213.4 

Forest, fishing, livestock 127500.0 6342863.0 201.0 

Coal mining & processing 20558.3 7629806.4 26.9 

Petroleum & Natural Gas 

Pumped 
12.4 630965.8 0.2 

Mining & Dressing of Ferrous 

Metals 
349.4 2341200.7 1.5 

Mining & Dressing of Non-

ferrous Metals 
2338.7 2021735.9 11.6 

Mining & Dressing of Non-

metal Minerals 
212.5 1628769.9 1.3 

Processing of Agricultural Side-

Line Food 
4666.1 912753.5 51.1 

Manufacturing of Food 2161.3 8914647.1 2.4 

Manufacturing of Beverages 3006.5 1254994.5 24.0 

Tobacco Products 28.5 386674.8 0.7 

Textile Industry 440.9 1425883.0 3.1 

Textile, Clothes, Shoes & Hats 49.7 1639205.6 0.3 

Leather, Furs, Down & Related 

Products 
34.6 108823.2 3.2 

Timber Processing, Bamboo, 

Cane 
2398.7 859677.6 27.9 

Palm Fibre & Straw Products 548.5 196560.3 27.9 

Paper-making & Paper Products 5469.6 374270.4 146.1 

Printing & Record Pressing 93.7 390490.8 2.4 

Petroleum Processing, Coke 

Products & Processing of 

Nuclear Fuel 

206.0 1587319.4 1.3 

Chemical Materials & Products 2660.0 3867593.5 6.9 



 

 

 

 

30 

Manufacturing of Medicine 1817.0 575195.6 31.6 

Plastic Products 45.2 453652.5 1.0 

Non-metal Mineral Products 376.1 3773112.8 1.0 

Smelting & Pressing of Ferrous 

Metals 
41496.8 7032359.4 59.0 

Smelting & Pressing of Non-

ferrous Metals 
2202.8 10513854.2 2.1 

Metal Products 2.2 38571.3 0.6 

General-Purpose Equipment 19.8 760220.0 0.3 

Special Equipment  174.3 840643.9 2.1 

Transported Equipment  25.2 2065849.2 0.1 

Electric Equipment & 

Machinery 
15.4 421611.8 0.4 

Manufacturing of Telecoms, 

Computer & Other Electronic 

Equipment 

8.2 845809.3 0.1 

Instruments, Meters, Cultural & 

Office Machinery 
5.9 162573.1 0.4 

Production & Supply of Electric 

Power 
31938.7 7780758.0 41.0 

Production & Supply of Gas 26.5 751728.3 0.4 

Production & Supply of Water 2131.8 146129.5 145.9 

Construction 5852.9 11705703.3 5.0 

Transport and warehousing 3123.5 10075826.0 3.1 

Post and telecommunication 309.7 1290483.6 2.4 

Wholesale and retail trade 1538.4 6992825.7 2.2 

Eating and drinking places 566.2 2573768.2 2.2 

Passenger transport 136.8 427536.0 3.2 

Finance and insurance 709.7 3226008.0 2.2 

Real estate 321.6 1461761.7 2.2 

Social services 263.2 1461970.6 1.8 

Health Services, social welfare 1186.7 3596116.6 3.3 

Education and culture 617.5 1992087.5 3.1 
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Scientific research 45.8 190703.1 2.4 

General technical services 100.9 252170.8 4.0 

Public and other services 3141.9 6283872.6 5.0 

Total 1050136.1 136628711.7 76.9 

Source: Water consumption data are own calculation. Economic output data are from 

the 2007 Inner Mongolia input-output table. 

 

Appendix C:  

We incorporate the general principle of mass balancing in Guan and Hubacek’s model 

which is the quantity of COD in wastewater (݉ଵ) equals to the quantity of COD after 

dilution (݉ ଶ) as depicted in Equation E1.  

 ݉ଵ =  ݉ଶ                                                                                          (E1) 

The quantity of COD in wastewater (݉ଵ) equals the total volume of wastewater (v1) 

multiplied by the concentration of COD in the wastewater (1ߩ). Furthermore, the 

quantity of COD after dilution (݉ ଶ) equals the total volume of water needed to dilute 

the COD content in wastewater (v2) multiplied by the standard concentration of COD8 

 .Thus, Equations E2 and E3 are derived and they are depicted as follows .(2ߩ)

 ݉ଵ = ଵݒ  × ଵ                                                                                     (E2) ݉ଶߩ = ଶݒ  ×  ଶ                                                                                    (E3)ߩ 

 

Since ݉ ଵ =  ݉ଶ in Equation E1, we have  

ଵߩଵݒ  =  ଶ                                                                                      (E4)ߩଶݒ 

 

                                                        

 

 
8 Standard concentrations of COD follow the stipulation of industrial wastewater 
discharge standards by the General Administration of Quality Supervision, Inspection 
and Quarantine of the People’s Republic of China in 1996. Details of the standard are 
discussed later. 
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The sectoral COD discharge data (݉ଵ) and wastewater discharge data (ݒଵ) for 37 

industries are extracted from the Inner Mongolia Statistical Yearbook [52]. Then, we 

calculate the concentration of COD in the wastewater (ߩଵ), which can be found in 

Appendix C. COD discharge data is not given for agriculture in the Inner Mongolia 

Statistical Yearbook (2008); so, we adopt the COD discharge coefficients from Guan 

and Hubacek [57].  

 

The General Administration of Quality Supervision, Inspection and Quarantine of the 

People’s Republic of China [73] has promulgated industrial wastewater discharge 

standards (referred to as the standard thereafter), which classify the contents of COD 

into three grades (See Table S1 below).  

 

Table S1: Industrial wastewater discharge standard for COD content (grams per 

cubic metre)  

Industry  Grade I Grade II  Grade III  

Beet sugar manufacturing, fatty acid synthesis, 

wet fibreboard processing, dye manufacturing, 

organophosphorus pesticides industry 

100 200 1000 

Monosodium glutamate, ethanol, medicines, 

medicines, biochemistry, fur industry, pulp 

purification industry 

100 300 1000 

Petroleum refinery  60 120 150 

Secondary wastewater treatment plant 
60 120 Not 

available 

Other wastewater discharge 100 150 500 

Source: [73] 

 

The concentration of COD in wastewater needs to achieve the concentration shown in 

Grade I industrial wastewater discharge standard (regarded as the standard 

concentration of COD, ߩଶ, in this study) in Appendix D.  
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As shown in Appendix D, the concentration of COD in wastewater for most industries 

is higher than the Grade I industrial wastewater discharge standard. Grade I industrial 

wastewater discharge standard is adopted due to the following reasons:  

1) Industries that fulfil the requirements of Grade II are only allowed to discharge 

wastewater to Class IV or Class V water bodies. The water quality of Class IV and 

Class V is considered as a poor quality of water resource, which are only available for 

agricultural purposes. Thus, higher standard should be used.   

2) The Inner Mongolia Statistical Yearbook [52] provides COD discharge data as 

COD removal and COD discharge. We assume that the COD discharge data are 

derived after the removal of COD content in secondary wastewater treatment plants. 

Our assumption is based on two reasons: firstly, the COD removal figures are an 

order of magnitude higher than COD discharge figures; secondly, primary wastewater 

treatment plants use physical methods to remove tangible waste in the water body, 

which cannot remove COD content. Hence, Grade III in the wastewater standard is 

not considered in this study. 

3) The standard is stipulated in 1996, which needs to be revised because of the 

improvement of wastewater treatment technology in the past decade. 

 

Hence, in order to achieve the Grade I standard, additional water (estimated by ݒଶ െ   .ଵ) is required to dilute the COD concentrationݒ 

 

Appendix D: COD discharge and COD discharge standard by sectors 

Economic Sectors 
Wastewater 

discharge 

COD 

discharge 

Average 

COD 

level 

COD discharge 

standard 

(Grade I) 

Unit  10,000 m3  tonne g/m3 g/m3 

Agriculture 8807.46  25541.64  290.000 100 

Coal Mining & 

Processing 
2829.56  4038.91  142.740 100 

Petroleum & Natural 

Gas Pumped 
1.70  0.09  5.318 60 

Mining & Dressing of 

Ferrous Metals 
240.42  107.04  44.520 100 
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Mining & Dressing of 

Non-ferrous Metals 
2092.28  18988.36  907.545 100 

Mining & Dressing of 

Non-metal Minerals 
14.62  65.49  447.910 100 

Mining of Other 

Mineral 
0.00  0.00  0.000 100 

Processing of 

Agricultural Side-Line 

Food 

1605.55  12635.80  787.006 100 

Manufacturing of Food 1933.61  10653.12  550.946 100 

Manufacturing of 

Beverages 
1241.40  13488.52  1086.561 100 

Tobacco Products 5.88  18.04  306.718 100 

Textile Industry 303.44  2254.47  742.962 100 

Textile, Clothes, Shoes 

& Hats 
34.20  84.67  247.533 100 

Leather, Furs, Down & 

Related Products 
23.82  82.68  347.143 100 

Timber Processing, 

Bamboo, Cane 
330.15  428.49  129.789 100 

Palm Fibre & Straw 

Products 
0.00  0.00  0.000 100 

Paper-making & Paper 

Products 
3011.23  49981.95  1659.851 100 

Printing & Record 

Pressing 
0.00  0.00  0.000 100 

Petroleum Processing, 

Coke Products & 

Processing of Nuclear 

Fuel 

141.77  98.12  69.211 100 

Chemical Materials & 

Products 
1464.47  2903.29  198.249 100 

Manufacturing of 500.17  1766.53  353.188 100 
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Medicine 

Plastic Products 0.00  0.00  0.000 100 

Non-metal Mineral 

Products 
207.08  120.07  57.982 100 

Smelting & Pressing of 

Ferrous Metals 
2855.72  1777.99  62.261 100 

Smelting & Pressing of 

Non-ferrous Metals 
303.18  213.38  70.382 100 

Metal Products 0.60  1.12  186.291 100 

General-Purpose 

Equipment 
8.19  23.35  285.076 100 

Special Equipment  155.96  116.87  74.938 100 

Transported Equipment  13.88  10.81  77.871 100 

Electric Equipment & 

Machinery 
8.48  5.24  61.765 100 

Manufacturing of 

Telecoms, Computer 
7.86  10.11  128.633 100 

Instruments, Meters, 

Cultural 
0.00  0.00  0.000 100 

Production & Supply of 

Electric Power 
3516.72  2029.68  57.715 100 

Production & Supply of 

Gas 
2.92  43.42  1486.986 100 

Production & Supply of 

Water 
234.73  280.88  119.659 100 

Housing & Civil 

Construction 
0.00  0.00  0.000 100 

Railway Transport 0.00  0.00  0.000 100 

Other Sectors 120.03  515.52  429.503 100 

Total 32017.07  148285.66  463.15    

Source: Wastewater discharge data and COD discharge data are from [56]; COD 

discharge standard are from [73].  
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