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Abstract. As technological advances allow us to fabricate smaller autonomous self-
propelled devices, it is clear that at some point directed propulsion could not come
from pre-specified deterministic periodic deformation of the swimmer’s body and we
need to develop strategies to extract a net directed motion from a series of random
transitions in the conformation space of the swimmer. We present a theoretical
formulation to describe the “stochastic motor” that drives the motion of low Reynolds
number swimmers based on this concept, and use it to study the propulsion of a simple
low Reynolds number swimmer, namely, the three-sphere swimmer model. When the
detailed-balanced is broken and the motor is driven out of equilibrium, it can propel
the swimmer in the required direction. The formulation can be used to study optimal
design strategies for molecular-scale low Reynolds number swimmers.
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1. Introduction

Biological molecular motors [1] are ingenious nano-scale machines that convert chemical

energy into directed mechanical work amid strong thermal fluctuations. With the

current miniaturization trend in technology, one naturally wonders if it is possible to

synthesize devices with similar functionalities [2]. In particular, it is desirable as a first

step to design autonomous small scale swimmers, which could later on be steered by

coupling to a guiding network or system. These swimmers could be used in carrying

cargoes or stirring up fluids at small scales.

There is a significant complication in designing swimmers at small scale as they

have to undergo non-reciprocal deformations to break the time-reversal symmetry

and achieve propulsion at low Reynolds number [3]. While it is not so difficult

to imagine constructing motion cycles with the desired property when we have a

large number of degrees of freedom at hand—like nature does, for example—this

will prove nontrivial when we want to design something with only a few degrees of

freedom and strike a balance between simplicity and functionality, like most human-

engineered devices [4]. Recently, there has been an increased interest in such designs

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and two interesting

examples of such robotic micro-swimmers have been realized experimentally using

magnetic colloids attached by DNA-linkers [24, 25]. Among others, a simple swimmer

model based on spheres connected by arms that do not interact with the fluid [5] has

been recently used for a number of studies including scattering of two swimmers [17, 19],

collective hydrodynamic coupling of swimmers [18, 20], general feasibility of various

design properties of swimmers [21], and the effect of large cargos on the performance

of swimmers [22]. While constructing small swimmers that generate surface distortions

is a natural choice, it is also possible to take advantage of the general class of phoretic

phenomena to achieve locomotion—as they become predominant at small scales—as

recent experimental [26, 27, 28, 29] and theoretical [30, 31, 32] works have demonstrated.

Here we construct a general statistical mechanical formulation for studying low

Reynolds number swimmers that undergo conformational changes in a stochastic

manner pertinent to systems of molecular scale. We attribute transition rates to

each deformation move or swimming stroke, and calculate the propulsion velocity as

a function of these rates. Our formulation provides a general prescription on how to

construct the relevant portions of the configurational space of swimmers, and how to take

advantage of the complexities in this space to maximize the efficiency of the swimmer.

We apply the formulation to the specific example of the three-sphere swimmer model,

which yields interesting results.

The rest of the paper is organized as follows: Section 2 describes the general

formulation of hydrodynamics of low Reynolds number swimmers, and it is followed

by Section 3 that is devoted to the statistical mechanics of the conformational changes

in swimmers. The formulation is applied to the example of three-sphere swimmer model

in Section 4, which is followed by concluding remarks in Section 5.
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2. Hydrodynamics of Low Reynolds Number Swimming

We consider a deformable extended body as a system composed of N point-like solid

components described by their position vectors rα(t). The deformation is related to

internal forces exerted between these solid components, so that on component α is

exerted a net force fα(t), that is in turn applied oton the fluid at rα(t). In our description

of point-like objects, the hydrodynamic interactions between the objects relate these

force to the velocities of the components vα(t) = ṙα(t) via the Oseen tensor Hij(r, r
′)

[33] (roman indices describe spatial components), namely

vα
i =

∑

β

Mαβ
ij fβ

j , (1)

where Mαβ
ij = Hij(r

α, rβ) and summation over repeated roman indices that define the

vector components is understood. The Oseen tensor is the Green function for the Stokes

equation with the appropriate boundary conditions and its explicit form depends on the

problem we are considering. For example, in the simplest case we can treat the solid

particles as point-like and use the 1/r-type expressions for the off-diagonal components

of the Oseen tensor, while putting in 1/(6πηa) for the diagonal components where a is

the radius of the particles and η is the viscosity of water. If necessary, one could also

incorporate finite size corrections and the effect of confining boundaries by using the

appropriate form of the Green function.

We can now invert equation (1) as

fα
i =

∑

β

Nαβ
ij vβ

j , (2)

where N αβ
ij is the resistance (friction) tensor that satisfies

∑
β Mαβ

ij Nβγ
jk = δαγδik.

For a swimmer that is not subjected to external forces, the local and instantaneous

forces in the body are subject to the constraint

∑
α

fα = 0, (3)

which yields ∑

α,β

Nαβ
ij vβ

j = 0. (4)

Similarly, if the swimmer is not under the effect of a net external torque, an additional

constraint applies ∑
α

(rα − rCM)× fα = 0, (5)

where the center of mass (CM) position is defined as rCM = 1
N

∑
α rα. We note that

this condition might not in general be satisfied, as in the case of a recent experiment

on magnetic doublets [25]. When it does hold, however, it will introduce additional

constraints on the type of motion and conformations that we can prescribe for the
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system. Finally, in sufficiently symmetric systems the torque-free constraint might

automatically be satisfied [21].

We now assume that the relative positioning of the body components are prescribed,

in a reference frame that moves with the average position and orientation of the body.

This reference frame, which we call the “body frame” hereon, will be constant during

one cycle of the deformation in the body. As a result of the deformation, over the

period of one cycle the object is expected to be displaced by a small amount due to

a non-vanishing translational swimming velocity and rotated slightly if there is a non-

vanishing rotational velocity as well. The combination of the displacement and rotation

will determine the new position and orientation of the body frame, which will be used

in the calculation of the next step of the motion and so on. Therefore, in this picture

the motions are grouped into separate slow and fast degrees of freedom, in the sense

that what is happening over one deformation is cycle (fast degrees of freedom) will be

averaged to determine a net change in the slow degrees of freedom that determine the

overall average translation and rotation of the swimmer through the liquid along its

trajectory.

We now assume that the relative positioning of the body components Rαβ
i ≡ rα

i −rβ
i

are known in the body frame, which means that the relative velocities vα
i − vβ

i = Ṙαβ
i

are also known.‡ These relative positions and relative velocities need to be prescribed in

a such a way that all the necessary geometrical constraints are satisfied, as for example,

one cannot expect to have arbitrary distances between a number of points that form a

body of a given shape.

If the shape of the object and the conformational changes are sufficiently symmetric

so that the object swims on average in a rectilinear fashion, averaging the velocity of

any tagged component α over a complete cycle yields the total average translational

velocity of the body

〈vα〉 = Vtrans, (6)

as the difference between the velocity of the α component and that of the whole body

will be in the form of relative deformations that average out to zero. For a more general

case the object will have a rotational component superimposed with the translational

one, and the average velocity of the tagged body component in the body frame will have

the following form

〈vα〉 = Vtrans + Ωrot × 〈(
rα − rCM

)〉
, (7)

where Ωrot is the angular velocity vector of the body about the center of mass. We can

extract the translational velocity as

V trans
i =

1

N

∑
α

〈vα
i 〉 , (8)

‡ Note that to get the actual form of Rαβ
i (t) from the internal motion of the object may require

calculation that involve the force-free and the torque-free relations.
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and the rotational component of the velocity as

Ωrot
i = I−1

ij

∑
α

εjkl

〈(
rα
k − rCM

k

)〉 〈vα
l 〉 , (9)

where

Iij =
∑

α

δij

〈(
rα
k − rCM

k

)〉 〈(
rα
k − rCM

k

)〉− 〈(
rα
i − rCM

i

)〉 〈(
rα
j − rCM

j

)〉
, (10)

is the average moment of inertia tensor for the object.

We can single out the velocity of one of the components, say α = 1, and describe

all of the velocities in terms of this and the prescribed relative velocities, namely

vα
i = v1

i + Ṙα1
i . Putting this back in equation (4), we find

v1
i = −L−1

ij

∑

α,β

Nαβ
jk Ṙβ1

k , (11)

where Lij =
∑

α,β N αβ
ij . Note that one can also choose to specify the forces/tensions

in the links instead of the relative velocities. In this case it will be straightforward to

modify the formulation and calculate the velocities. A more general framework would

encompass prescriptions relating stresses and deformations.

We can write the relative positioning of the components in the body frame as

Rαβ
i (t) = Rαβ

0 i + uαβ
i (t), where uαβ

i denote the deformations of the body about the

average shape described by Rαβ
0 i . If we assume that the deformations of the body are

relatively small, we can expand equation (11) in powers of the deformations and obtain

an expression for the instantaneous velocity of the tagged (α = 1) component of the

body as

v1
i (t) =

∑

α,β

A
(1)αβ
ij u̇αβ

j +
∑

α,β,γ,δ

B
(1)αβγδ
ijk u̇αβ

j uγδ
k +

∑

α,β,γ,δ,µ,ν

C
(1)αβγδµν
ijkl u̇αβ

j uγδ
k uµν

l + · · · , (12)

where the coefficients A
(1)αβ
ij , B

(1)αβγδ
ijk , C

(1)αβγδµν
ijkl , etc. are purely geometrical pre-

factors (i.e. involving only the characteristic length scales describing the shape of the

body). Averaging over a full cycle, the contribution due to the linear terms u̇αβ
j and

the symmetric combinations u̇αβ
j uγδ

k + u̇γδ
k uαβ

j = d(uαβ
j uγδ

k )/dt vanish. Therefore, to the

leading order, we find the average swimming velocity as

V trans
i =

1

N

∑
µ

〈vµ
i 〉 =

1

2

∑

α,β,γ,δ

Bαβγδ
ijk

〈
u̇αβ

j uγδ
k − u̇γδ

k uαβ
j

〉
=

∑

α,β,γ,δ

Bαβγδ
ijk

〈
∆Aαβγδ

jk

∆t

〉
,

(13)

where ∆Aαβγδ
jk is the area element enveloped by the trajectory of the system in the

(uαβ
j , uγδ

k ) space, and Bαβγδ
ijk = 1

N

∑
µ B

(µ)αβγδ
ijk . Note that ∆Aαβγδ

jk /∆t is not a complete

time derivative, and its average over a a full cycle does not vanish. A similar expression

can be written for the angular velocity. The averaging here denotes time averaging if the

conformation of the system is prescribed. If, however, the system undergoes stochastic

conformational changes, the averaging needs to be performed over the distribution of the

various conformations. The formulation needed to carry out this step of the calculation

is developed in the next section.
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Figure 1. A typical conformation
subspace describing the shape of the
swimmer. Distinct conformational
states are identified and connected
to one another when transitions
are permissible, making a graph.
The swimming velocity will be
determined by the sum of the
currents in each loop of the graph
(denoted by different colors here),
weighted by the area of each loop,
correspondingly [see equation (16)].

3. Kinetics in the Conformation Space

Let us now consider a conformation subspace of the system corresponding to two

representative deformations u1 and u2 (see figure 1). Since we aim to model molecular

systems, we should take into account the stochastic nature of the conformational changes

and not prescribe a deterministic trajectory for the deformation of the system. We

identify distinct conformational states of the system, denoted as Sn, and construct a

kinetic description where the deformations of the system are described by transitions

between these states with given rates, assuming that they occur one at a time and do

not overlap with each other. We denote the probability of finding the system in Sn as

Pn and the rate for transition m → n as knm. These probabilities are normalized as∑
n Pn = 1. Connecting the states that have permissible transitions between them with

links, we find a graph that characterizes the conformational kinetics of the system in

each subspace, as seen in figure 1. To every link, we can attribute a probability current

J<nm> = kmnPn − knmPm, (14)

and at stationary state we can impose the continuity of current at every node, namely
∑
m

J<nm> = 0. (15)

Solving the system of equations, we can find all probabilities and currents, and in

particular the currents J(α) running through all the loops in the graph (see figure 1).

We can then write 〈
∆A
∆t

〉
=

∑
α

A(α)J(α), (16)

where A(α) is the area enclosed by loop α in the conformation subspace. Equation (16)

shows that the contributions from the different loops act together analogously to circuits

in parallel, and therefore, it will be the fastest route that will determine the effective

swimming velocity. In each loop, however, the different legs are connected in series, and

the slowest kinetic leg will control the contribution to the effective swimming velocity

from each loop (see the example below).
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Figure 2. Conformation space
of the three-sphere swimmer
model. This minimal model in-
volves only one loop. The con-
vention is such that a net swim-
ming to the right requires the sys-
tem to make more cycles in the
clockwise direction than in the
counterclockwise direction.

4. Example: Three-Sphere Swimmer Model

We now focus on the specific example of a three-sphere swimmer model [5]. We define

the conformation space of the swimmer using the two variables (u1, u2) that describe

the longitudinal deformation of the two arms of the swimmer. We assume that the two

arms can be in the two states corresponding to either ui = 0 or ui = δi, and transit from

one to the other in an almost instantaneous fashion. This means that the configuration

space of the swimmer will be made of four distinct states as shown in figure 2, defined

by different values of the pair (u1, u2), namely: state A for (δ1, δ2), state B for (δ1, 0),

state C for (0, 0), and state D for (0, δ2). We then assign transition rates to the system,

corresponding to the average rate of opening and closing of the arms along the cycle

A
kBA−−⇀↽−−
kAB

B
kCB−−⇀↽−−
kBC

C
kDC−−⇀↽−−
kCD

D
kAD−−⇀↽−−
kDA

A. (17)

Note that in this simple example there is only one loop in the conformation space graph

of the system (figure 2).

We can now calculate the swimming velocity as a function the transition rates.

Using the general formulation described in Sections 2 and 3, we find

V = Kδ1δ2J. (18)

where K = a
3

[
1
`21

+ 1
`22
− 1

(`1+`2)2

]
with `1 and `2 being the undeformed lengths of

the two arms and a being the radius of the spheres [21]. The probability current

J is a function of the transition rates, which can be obtained from the following

straightforward algebra. At steady state, the current conservation equations can be

written as J = kBAPA−kABPB = kCBPB−kBCPC = kDCPC−kCDPD = kADPD−kDAPA,

which provide us with four equations for the current and the four probabilities, which

are also normalized as PA + PB + PC + PD = 1. Solving the system of linear equations,

we find

J =
kADkDCkCBkBA − kABkBCkCDkDA∑

replace A by B, C, D(kADkDCkCB + kABkBCkCD + kABkADkDC + kADkABkBC)
. (19)

Equations (18) and (19) give the swimming velocity of the three-sphere swimmer [23].
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From equation (19) it is clear that if detailed balance holds, then J vanishes as the

numerator is zero. Using the average steady state current, we can deduce the average

period of completing one full cycle of the motion along the A→B→C→D→A loop as

T = J−1. (20)

We can gain a useful insight by looking at the particular limit where the forward rates

are all much higher than the corresponding backward ones (kBA À kAB, etc.). In this

limit, we find

T = k−1
AD + k−1

DC + k−1
CB + k−1

BA, (21)

which means that the period for a full cycle is the sum of the time intervals needed to

complete each leg of the cycle.

As another example, we can assume that all of the equilibrium kβα’s are equal to 1

(for simplicity), and that by external action only one of them is modified as kBA = 1+ε.

In this case, one can show that equation (19) yields

J =
ε

16 + 6ε
, (22)

which leads to a velocity proportional to the perturbation for small values of ε and

independent of it if the perturbation is very large. The linear dependence can be easily

understood for a system that is only slightly driven out of equilibrium, and the saturation

at large perturbations is because the cycling will then be limited by the other three

unperturbed transitions. In general, one can see that the slowest leg of the reaction

controls the average rate of full cyclic motion, which suggests the interpretation that in

each loop the different legs are connected in series, in analogy to circuits.

5. Conclusion

We have presented a general formulation that can be used in studying the swimming of a

small object that undergoes stochastic deformations. The program to follow to this end

has two stages: (1) treat the deformations as prescribed and follow the hydrodynamic

formulation of Section 2 to calculate the average swimming velocity in terms of the

relevant deformation variables. (2) Construct the conformation space of the system

based on the deformation variables and follow the statistical mechanical description of

Section 3 to work out the contributions to the net swimming velocity by various modes

of swimming defined as loops in the conformation space. We found that a useful circuits

analogy can be invoked to describe the efficiency of the swimming, with two notable

features: (1) the different modes of swimming can be effectively considered to act in

parallel, which means that their contributions will be independently added to each other

to yield the net swimming velocity and therefore the fastest route will be the dominant

mode of swimming controlling the velocity. (2) In each loop, the different kinetic legs

could be considered as acting in series with respect to one another, which means that

the slowest kinetic leg will control the net contribution to the velocity by the loop.
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The formulation also allows us to study the effect of an external force or load on the

performance of swimmers. External forces both add to the hydrodynamic drag and also

affect the performance of the swimming strokes as activated moves, as the deformations

will involve doing work against or being helped by forces endured by the arms. These

forces will modify the transition rates, and their effects can be readily accommodated by

using the force-dependent rates in the kinetic formulation. This effect has been studied

for the three-sphere swimmer model, which has revealed that the performance of the

motor strongly depends on where the force is exerted [23]. This shows that for such

small swimmers, the concept of a generic force–velocity response breaks down, which

might have interesting implications for designing molecular swimmers.
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