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Divergence revealed by population crosses in
the red flour beetle Tribolium castaneum

Fathi A. Attia‡ and Tom Tregenza*

Ecology and Evolution Group, School of Biology, University of Leeds, Leeds LS2 9JT, UK

ABSTRACT

There is growing interest in the potential for population divergence (and hence speciation) to be

driven by co-evolutionary arms races due to conflicts of interest between the sexes over matings

and investment in offspring. It has been suggested that the signature of sexually antagonistic

co-evolution may be revealed in crosses between populations through females showing

the weakest response to males from their own population compared with males from other

populations. The rationale behind this prediction is that females will not have been able to

evolve counter-adaptations to manipulative signals from males with which they have not

co-evolved. Recent theoretical treatments suggest that this prediction is not strictly exclusive

to the sexual conflict theory, but it remains the case that population crosses can provide

insights into the evolution of mate choice within populations. We describe crosses between six

populations of the red flour beetle Tribolium castaneum. Although successful matings are no

more or less likely between populations compared to within populations, females do increase

their oviposition rate in response to males from other populations, relative to males from their

own population. Our results are therefore consistent with the proposition that sexual conflict

has driven population divergence in this species. However, we argue that the available evidence

is more supportive of the hypothesis that increased female investment in response to males from

other populations is a side-effect of inbreeding avoidance within populations.

Keywords: cryptic female choice, differential investment, heterosis, inbreeding, outbreeding,

sexual conflict, speciation.

INTRODUCTION

The potential for sexual selection to drive speciation has traditionally been considered from

the point of view of the potential for mate recognition and choice to create pre-mating

isolation between populations. However, there is growing interest in the potential for

divergence between populations to be manifest in processes occurring after mating

(Rice, 1997; Parker and Partridge, 1998; Howard, 1999). Males may be able to manipulate

female investment in their offspring (sexual conflict; Parker, 1979), or females may adjust
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their own investment according to the quality of their mate (differential allocation; Burley,

1986). If either of these types of post-copulatory effects occurs, then there is the potential

for divergence between populations in the signal–receptor systems that underlie such

processes. Divergence between populations may tend to promote isolation if cross-

population matings produce fewer offspring than intra-population matings, or may tend

to retard isolation if matings between populations tend to produce more offspring than

those within populations (Parker and Partridge, 1998). To date, relatively few studies have

examined the effects of crosses between populations on female fecundity, so it is difficult to

establish whether there is any general pattern. Recent interest has focused on the potential

for sexual conflict to drive rapid co-evolution between the sexes, with males attempting to

manipulate females into using their sperm and investing resources in their offspring and

females attempting to avoid manipulation. This has motivated several studies in which

crosses between populations have revealed differences in female fecundity post-mating

according to the population of both the male and female (Clark et al., 1999; Andres

and Arnqvist, 2001; Hosken et al., 2002; Nilsson et al., 2002, 2003). Here we describe a

study examining crosses between six populations of the flour beetle Tribolium castaneum,

examining post-copulatory female fecundity and attempting to understand the high level of

copulations that do not result in sperm transfer.

Tribolium castaneum is a worldwide pest of stored products. Females mate multiply: up to

15 times per hour (Sokoloff, 1977), even though after a single mating they can continue to

fertilize eggs for up to 140 days (Bloch-Qazi et al., 1996). Tribolium castaneum has been

observed to show high levels of mating failures (copulations that do not result in sperm

transfer) (Bloch-Qazi et al., 1996). Insight into the reasons for these failed matings would be

valuable in understanding female polyandry in this and other species.

For successful copulation to occur in Tribolium, the female must lower her last sternite

to allow intromission (Lewis and Iannini, 1995). Bloch-Qazi et al. (1996) found that in 20

out of 130 T. castaneum copulations, no spermatophore was transferred and no sperm

were observed in any region of the female reproductive tract. Bloch-Qazi et al. (1998)

found that both anaesthetized females and dead females had fewer stored sperm after

mating than unanaesthetized females, suggesting that females play an active role in

moving sperm from the site of deposition into storage in the spermatheca. Hence mating

failures may be due to failure of intromission or failure by females to store sperm. Either

way, one explanation for the high incidence of mating failures seen in this species is that

there is a conflict of interests between mates, and that females are effectively rejecting

sperm from certain males, even when they have no sperm already stored. Such conflicts

are predicted to drive rapid co-evolutionary arms races between the sexes, with males

evolving adaptations to increase sperm transfer success, and females evolving counter-

adaptations to continue to choose between males through rejection of sperm. If such a

process is ongoing in T. castaneum, we might expect to see either increased or decreased

numbers of successful matings in crosses between populations relative to pairings within

populations.

A second area where we may expect co-evolution between the sexes is in signals

from males used by females to adjust their investment in eggs or their oviposition rate. This

may be characterized as a conflict where males are attempting to manipulate females into

oviposition at a higher than optimal rate, or it may be a more conventional sexual selection

scenario where females increase investment in eggs when they perceive they have mated with

a genetically superior male (differential allocation) or a male with whom they are genetically
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compatible (Zeh and Zeh, 1996). Both processes involve conflict, in the former between

females and all mates, and in the latter between females and non-preferred mates. Either

process could lead to co-evolution between male signals and female responses. If there

is a conflict between the sexes with males attempting to increase female egg-laying

rate, we might expect lower egg-laying rates in crosses within populations because

females may be better able to resist males with which they have co-evolved. A statistical

interaction per se is not evidence for sexual conflict co-evolution, since other forms of

sexual selection, such as good genes processes, also predict interactions across populations

(Panhuis et al., 2001); however, other theories do not predict that females will be least

willing to mate and will invest least in reproduction in response to males from their

own population (although they don’t rule out this possibility). In general, the theory

surrounding sexual conflict co-evolution is in the early stages of development, and

unequivocal predictions are lacking (Chapman et al., 2003). However, there is no

doubt that a body of empirical work that can indicate whether there is a general pattern of

lower rates of matings, fertilization and subsequent reproductive investment by females

paired with males from their own population will inform theoretical development in

this field.

In a previous study, Nilsson et al. (2002) investigated crosses between three strains of

T. castaneum (nine crosses) and found an interaction between male and female strain

affecting female reproductive rate, although there was no clear pattern of response to males

of the same strain as opposed to males of a different strain. Our study involves crosses

between six populations (36 crosses), with the aim of increasing the power of the test of the

prediction that females may show either maximal or minimal responses to males from

their own strain. Additionally, we explicitly examine success in sperm transfer, a major

component of male reproductive success in this species that has not previously been

examined.

METHODS

Six strains of T. castaneum were used, all of which have been isolated from one another for

hundreds of generations. These strains were: Ga1 (wild type), b (black body), Rd (reindeer

antennae), Chr-E (charcoal body colour), Det-43 (divergent elytra tips) and Oz (collected in

Australia). The first four strains were all supplied by R. Beeman, US Grain Marketing and

Production Research Center. All populations have been kept under very similar environ-

mental conditions, so it is unlikely that there will be differences in the strength of natural

selection on sexually selected traits such as female receptors and male signals. The marker

strains used are all single-locus markers that are neutral or only mildly deleterious, and

that have been back-crossed into their ancestral populations, hence they are not expected

to suffer from greater homozygosity than other populations, all of which have been

maintained in similar conditions for hundreds of generations.

A virgin male and female, aged 7–21 days post-eclosion, were placed into a 2 × 2 cm cubic

arena with filter paper on the floor to provide traction. The pair was observed until a mating

took place (typically within a few minutes). The time to mating and the duration of the

mating were recorded. Only copulations lasting longer than 40s were included in

subsequent analyses, as shorter interactions may not allow sperm transfer to occur. After

copulation, the female was placed in a 100-ml pot containing 30 ml fine organic flour for

7 days at 30�C and 65% relative humidity to lay eggs. The presence of larvae in these pots
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after 2 weeks was used to confirm that successful sperm transfer has occurred during the

copulation. Forty days after the last day of oviposition, offspring were counted (providing

ample time for all fertile eggs to hatch and reach adulthood). Males were killed by freezing

immediately after mating, females were killed after oviposition and the size of both sexes

was measured using a microscope with graticule.

All reciprocal crosses were carried out between strains with 10 replicates per cross, giving

360 crosses in total. Parametric statistics were only employed after confirming the data were

normally distributed.

RESULTS

Of a total of 360 matings, 250 resulted in the female laying fertile eggs (69.4%). The actual

numbers of successful matings in each cross can be seen in Fig. 1. Logit log-linear analysis

indicates that there was no effect of either male or female strain on sperm transfer (male

strain, χ
2

= 26.2, d.f. = 30, P = 0.66; female strain, χ
2

= 32.7, d.f. = 30, P = 0.34). There was

also no interaction between strains affecting the success or failure of matings (χ
2

= 18.8,

d.f. = 25, P = 0.81). However, this type of analysis has low statistical power. A more

powerful way of addressing the specific hypothesis that there will be differences (but no

direction) in the number of successful matings in intra-population crosses relative to

inter-population crosses is to compare directly the numbers of successful and unsuccessful

matings in these two groups. A contingency χ
2
 test of this specific hypothesis also fails

to find any support (χ
2

= 0.67, d.f. = 1, P = 0.41), with mating failures in 21/60 (35%) of

intra-population copulations and 89/300 (30%) of crosses between populations. Matings

where successful sperm transfer occurred did not differ in duration from those where

no sperm were transferred (t = 0.38, d.f. = 358, P = 0.70). The average duration of

successful matings was 136.2 ± 7.24 s and for unsuccessful matings 150.2 ± 11.8 s (bearing

in mind that copulations were only considered to have occurred when pairings lasted more

than 40 s).

Fig. 1. The number of matings where sperm transfer was successful out of 10 copulations between

strains (360 matings in total). Arrows indicate intra-strain crosses. Lines are drawn only as an aid to

interpretation.
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The number of offspring produced by females mating to males of the different strains

(omitting females that failed to produce any offspring) can be seen in Fig. 2. Analysis of

variance indicates that there was a significant effect of the interaction between strains

of both sexes on the number of adult offspring the female subsequently produced

(female × male strain: F25,214 = 2.04, P = 0.004; female strain, F5,214 = 18.2, P < 0.001; male

strain, F5,214 = 2.33, P = 0.044). There were differences in size between strains, but when male

and female size were included in our analyses, they revealed an effect of female size on

number of adult offspring but no effect of male size, and no change in the significant

interaction between male and female strain affecting offspring production (female × male

strain, F25,212 = 2.17, P = 0.002; female size, F1,212 = 10.9, P = 0.001; male size, F1,212 = 1.45,

P = 0.23). The age of beetles of either sex did not affect egg production [adding age since

eclosion into our model as a covariate (female age, F1,212 = 0.95, P = 0.33; male age,

F1,212 = 0.56, P = 0.46)].

Ignoring specific populations and simply comparing the offspring production of females

following inter- and intra-population crosses, shows that inter-population crosses (n = 39)

result in higher offspring production (mean ± standard error = 90.9 ± 1.93) than do within-

population crosses (n = 211, mean ± standard error = 79.1 ± 5.46) (t = −2.32, d.f. = 248,

P = 0.021).

DISCUSSION

Mating failures

We found that a large proportion of matings (31.6%) did not result in the female laying

fertile eggs. This is higher than the 15.4% found in a previous study (Bloch-Qazi et al.,

1996), although in that study mating success was measured as sperm being found in the

Fig. 2. The mean number of offspring produced from eggs laid in the week following mating by

10 females from each of the five different strains with males from all strains in all reciprocal

combinations (360 females) (only using data where successful sperm transfer occurred). Arrows

indicate intra-strain crosses. Error bars are omitted as they overlap completely with one another;

lines are drawn only as an aid to interpretation.
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female. There may be reasons why females that have received sperm subsequently reject it or

fail to lay any fertilized eggs. Any such effects would increase the number of apparent

mating failures in our study compared with the earlier study. We did not find any effect of

population on the rate of mating failure or any evidence for differences in failure rate in

intra-population copulations as opposed to inter-population copulations. This suggests that

the very high frequency of mating failures seen in this species is not due to a co-evolutionary

interaction between the sexes where females are attempting to avoid being fertilized

by certain males. This hypothesis is intrinsically difficult to test, as each mating can only

be categorized as failing or succeeding. Hence the lack of an effect in this study cannot be

considered strong evidence that mating success is not affected by the population of the male

and female, but it does indicate that any such effects are not very large.

Reproductive rate

The second parameter studied was offspring production in the week immediately following

matings. A week is a biologically significant period of time because the generation time is

only a few weeks and because it is likely that females will typically re-mate within a few days

in natural situations. Four female strains (Rd, b, Chr and Det) out of the six we studied

produced fewer offspring when they mated to males from their own strain than when they

mated to males from any of the other six strains (using all data, including females that failed

to lay any fertile eggs). A comparison of the average number of offspring produced by

homogamic and heterogamic crosses showed that the mean number of offspring produced

by homogamic crosses was significantly less than the mean number of offspring produced

by heterogamic crosses. It is possible that this might be because of increased larval survival

in crosses between populations compared to within populations; however, this is unlikely,

since the strains used show strong inbreeding depression in full-sib crosses (personal

observation), limiting the potential for fitness benefits of outbreeding. There is evidence

that males may be able to stimulate female oviposition; Lewis and Austad (1994) found that

polyandrous females laid more eggs in the 24 hours post-mating than monandrous females.

This effect is unlikely to have been due to sperm limitation in monandrous females, since

a singly mated female can lay fertilized eggs for several weeks (Bloch-Qazi et al., 1996). Our

analysis reveals that the number of offspring produced by females in the week following

a single mating depended on an interaction between the female’s genotype and that of

her mate, and that overall females mating to males from their own population produced

fewer offspring in the following week than those mating to males from other populations.

When an interaction effect is significant, interpretation of main effects is problematic.

Nonetheless, the much larger effect of female population on oviposition rate, relative to

male population, is as would be expected, since females are more likely to affect their own

oviposition rate than are their mates.

Our results are consistent with those of Nilsson et al. (2002), who found that in crosses

between three populations, female T. castaneum differed in lifespan, reproductive rate and

lifetime fecundity according to interactions between the genotypes (populations) of males

and females. This interaction was complex and depended on female mating frequency.

Nilsson et al. argue that female reproductive rate and lifetime offspring production were

significantly lower with males with which females had co-evolved than with any other

genotype. However, differences between male genotypes in their effect on females were

significant in only two of three female genotypes in the high mating frequency treatment
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and in no case in the low mating frequency treatment. In the third female genotype of the

high frequency treatments and all genotypes of the low mating frequency treatments, males

did not produce less offspring when they mated to females with which they have co-evolved.

More recently, Nilsson et al. (2003) studied the effect of genotype on fertilization success in

three different wild-type genotypes of T. castaneum (the same strains used in Nilsson et al.,

2002). They conducted a double mating experiment in which all females mated twice, once

to a wild-type male and once to a phenotypic marker (black) male in all possible reciprocal

combinations. They examined female refractory period and the fertilization success of

the first and second male to mate. A successful mating was defined as lasting more than

35 s, although such copulations do not always involve successful sperm transfer. Therefore,

their measures of post-mating success include cases in which one male failed to transfer

sperm. After the female mated, offspring were collected over two consecutive weeks. They

found that female genotypes differed in the proportion of offspring sired by the first

male to mate (P1) and the overall interaction showed that the females showed the shortest

average refractory period when previously mated to males of their own genotype. Male

and female genotypes also interacted strongly in influencing the proportion of offspring

sired by the second male (P2) – that is, high P2 in one genotype depended on the genotype

of his mate. Nilsson et al. (2003) concluded that female genotype influenced male success

in both male offence (P2) and defence (P1), suggesting that cryptic female choice is

important in shaping male fertilization success in T. castaneum, and that females may

have co-evolved resistance to post-copulatory manipulations of males with which they are

co-evolved.

Our study supports the findings of Nilsson et al. (2002, 2003), and studies of Musca

domsetica (Andres and Arnqvist, 2001) and Scathophaga stercoraria (Hosken et al., 2002),

all of which found tendencies for lower mating rates or lower reproductive investment by

females paired with homogamic males. However, although sexual conflict co-evolution may

result in situations where females are less stimulated to mate and invest in offspring in

response to males from their own strain than to males with which they have not co-evolved,

it is not clear that this will always be the case (Rowe et al., 2003). A possible alternative

explanation for the observation that females increase reproductive investment following

matings to heterogamic males across species is that this could be the signature, not of sexual

conflict arms races, but of female adaptations to avoid inbreeding (Clark et al., 1999).

Reduced fitness of offspring from matings with relatives creates selection for adaptations

that decrease female investment in such offspring. This could lead to females reducing

reproductive investment in genetically similar males compared to more divergent males as

a method of avoiding inbreeding (Tregenza and Wedell, 2000). A side-effect of such

adaptations might be increased female reproductive investment following matings to

heterogamic males. This explanation is arguably more consistent with the situation in

Tribolium, where the available evidence suggests that females benefit from the higher

oviposition rate that non-population males induce. Females increase their lifetime

reproductive success when mating with non-population males and when mating more

frequently (Nilsson et al., 2002), which is the opposite of what would be expected under the

conflict hypothesis. Similar to the inbreeding avoidance hypothesis is the possibility that

females can take advantage of heterosis through preferentially investing in offspring of

males from other populations (Bateson, 1983). This hypothesis of selection for mate

preference in relation to outbreeding differs crucially from the inbreeding avoidance

hypothesis, which predicts preference for outbred males as an unselected side-effect of
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inbreeding avoidance. It is difficult to see how a strategy for preferring non-population

mates can evolve, since it requires frequent matings between populations, which in itself will

erode genetic differentiation (Tregenza and Wedell, 2000). Our finding that females invest

more in reproduction following matings to males from populations other than their own is

consistent with the idea that there are conflicts of interest between the sexes in T. castaneum,

but it is clear that the system would benefit from further investigation, particularly into the

nature of the signals and receptors used by the two sexes.
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