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Abstract

Recent results in the dyadic expansion of a general, square transfer
function matrix are used to extend the concepts of dyadic approximation
about s = 0 to the general case. The results make possible the systematic
approximation of linear systems whilst retaining an exact description of

system behaviour at a known frequency of interest.

(1

and the ease of
(l) to

The concept of dyadic transfer function matrix
feedback control systems design for such plants has been used
motivate the introduction of a technique for approximating a general
mxm transfer function matrix G(s). More precisely, if G-l(o) exists

and the matrix

H, = lin s“l'{G(o)G_l(s) - 1) &0
S0 ‘

has a complete set of eigenvectors {aj} and dual eigenvectors

l<j<m
+ : " G
{Yj}lstm where Yj o, = ij, then the dyadic approximation GA(S) to
G(s) is defined to be
m
+ - +
Gs) = = {y. 6(s)C T(0)a,}a.y, G(o) D)
sup i

If G(s) is a dyadic transfer function matrix (DTFM), then GA(S) = G(s).
In more general situations the Taylor series expansions of G(s) and GA(S)

about the origin agree up to the term in s, so that GA(S) is a low

frequency approximation to G(s). More precisely
i =1
lim s {G(s) - GA(S)} =0 e (3)
50

For the purposes of this letter we will term the above GA(S) a dyadic

approximation (DA) to G(s) about s = o.
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A major problem with the above analysis in many practical situations
is the possibility of significant errors in the description of inter-—
mediate to high frequency behaviour, whereas the design engineer may desire
the conceptual and computational benefits of working with a DTFM approxima-
tion to G(s) which includes an exact description of G(s) at a known (non-
zero) frequency of interest (eg. a resonant frequency, or an intercept

(1)

frequency ). With this in mind the following definition is proposed,
Definition

l A DA to G(s) at the point s = iwl is a DTFM GA(s,ml) satisfying the
relation

GA(iwl,wl) = G(iwl) s wulh)

It is the purpose of this letter to propose a systematic technique for the
construction of GA(s,ml) such that if G(s) is a DTFM then GA(s,mly = G(s).
This property is required as, a priori, the best DA to a DIFM G(s) is G(s)
itself. |
RESULT

If |G(iw1)l # 0 and GGimI)G_l(iml) has a complete set of eigenvectors

1 lsj<m,Wlth dual eigenvectors {Yj(wl)}lsj$m

+
where Yj (ml)uk(ml) = éjk’

=

) i r
G(lwl) = jZIgj(ml)aj(ml)Bj (wl) Mg (L

where {gj(ml)}1$j<m

-~

+
are non-zero complex scalars and {aj(wl)sj (ml)}lsjém

is a set of linearly independent dyads which is invariant under complex

conjugation. The decoupling matrix of G(s) at s = iml is
m " -1
K (w) =12 a,(u)B, (u)} e (6)
D1 PR i e 1
i=1
(3)

L - i + _ .
which is well defined '~ , real and Bj (wl)KD(wl)ak(wl) §,. ot, lzjsm

jk

G(iml)KD(wl)aj(ml) = gj(wl)aj(ml) - (1)
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GA(S,wl) = jil{yj (wl)G(S)KD wyloy oy }aj ml)yj (ml){<D wl)}
3 (8)
then
GA(-s:,ml) = G(s,0) s (90
GA(iwl,wl) = G(iml) 100

and if G(s) is a DTFM, GA(s,wl) = G(s).

Proof

(253)

Equations (5)~(7) follow from previous results Equation (10)

follows directly by substituting equations (6),(7) into (8) and comparing

with equation (5). If G(s) is a DTFM of the form
= +
G(s) = L g.(s)o.B. L)
5o 3 ij
then(z), o, (w ) =o, and B,(w. ) = B,, 1$j€m, for all w,. The use of
4554 3 31 k| 1

. & (2 3) + o+
3 w o = w Yo =6
equation (6) and the relations Bj ( I)KD(wl) k(wl) Bj KD( l) 1 ik
yield the result GA(s,w ) = G(s). TFinally, noting the invariance of the

(2)

set {&j(ml)} under complex conjugation ™7,

m
z

j=1

e e + - + <,
GA(s,w ) {Yj (wl)G(s)KD(ml)aj(ml)}aj(wl)yj (wl){KD(wl)}

1

GA(E,ml> O )

which completes the proof of the result.

Property (9) is required to ensure that G, is physically realizable.

A
An alternative way of calculating GA(S,N ) is to write

T(wl) = Ell(ml),...,um(wl)] and define(B),




st
H(S,wl) =T (wl)G(S)KD(ml)T(ml) e 1)
which, by eqn (7), is diagonal at s = iwl. It is easily shown that
5 +
i = 5 . : AT e
GA(S,lml) jil HJJ(s,m )aj(ml)BJ (ml) (14)

To obtain a physical interpretation of the DA, note from equation (13),
that

Mey, M
G(s) = = b

+
2 ij(S,ml)uj(ml)Bk (wl) Ear kL]

Hence, interpreting the {aj(ml)} as output modes characteristic of the
frequency Wy, @ comparison of equations (15) and (14) indicates that the
DA is obtained by neglecting interaction between the modes at all frequencies.
Finally, it is emphasized that the use of dyadic approximations will
only be of use in systems where modal interaction(l) is small in the
sense that H(s,ml)'is diagonally dominant over the frequency range of
interest. However, in those cases where dyadic approximation is a
reasonable working tool, the above analysis represents a significant

(1)

generalization of previous results .
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