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Abstract

Recent results on the unity feedback control analysis of multivariable
first-order type systems are extended to provide an analytic solution for
a unity feedback controller producing different response speeds from each

channel.

(1

In a recent paper the concept of a multivariable first-order type
system has been introduced, and closed-form solutions derived for
proportional and proportional plus integral unity feedback controllers
capable of producing a high performance feedback system with fast response
speeds and small interaction effects. For the purpose of this letter a
multivariable first-order system is described by an mxm transfer function
matrix of the form
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This implies that {aj}lsjsm_and {Bj}lsj<m are sets of linearly
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independent vectors and
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exists and is non-singular. Note that this definition extends the
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previous to include the possibility of open~loop plant integrators and

open—loop unstable systems.

The suggested proportional controller(l) for such a class of system
takes the form
_1 —
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which produces a closed-loop transfer function matrix
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where M(k) is a frequency independent matrix satisfying the relation
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As k increases, the speed of response increases and closed-loop interaction
effects and steady state errors become arbitrarily small.

An important observation in the above analysis is that the proposed
controller (eqn (3)) produces identical response speeds from each loop
(eqn (4)) whereas, in practical applications, a large spread in system
time constants {bj_l} and the use of the controller of eqn (3) may require
the use of unrealistically high gains. Alternatively, a low interaction
feedback system may be required and different response speeds from each
loop. The following analysis indicates that this objective cannot be
achieved, in general, by a dyadic controller(l’z).

Consider the dyadic proportional controller,
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where(l) Y.+ak = ajk' This controller reduces to previous results if(l)
kj =k, L&) &0, Also
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Taking, for example, the case of m = 2 and k1>>k2, then the response to

a unit step demand in channel one can be approximated at t = O+ by
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so that a time constant of kl_l in channel one with small interaction
effects can only be obtained if o e, - Hence, in general, a dyadic
controller of the formof equation (6) cannot achieve the objectives of
different response speeds in each channel and low interaction effects.
The following analysis provides a solution to this problem.

If K(s) is a general mxm forward path controller, then the step
response of the closed-loop system is represented by the mxm matrix Y(s)

where Yij(s) represents the response in loop i to a unit step demand in

output-j. “iAlso,
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Setting K(s) = 6 'K, (s), noting'") that ¢ ™ (s) = 56, '+¢ (s)| _ and
defining
A =60 S (11)
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To illustrate that the desired objective has been achieved, consider the

case of proportional control with kj(s) = Pj_Ajj’ 1$jsm, then

¢ [Aij(l—aij)'] 644 (15D

]

o - T
sY(s) = diag h%;Eii{ - diag}
i §

/

S+p.
pJ

That is, the response to a step demand in output j, is expressed as
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and if p = min{pj},
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Examination of equations (16),(17) indicates that, provided gains are high,
the proposed controller produces a low interaction system with different
response speeds from each channel. Choice of any particular pole set
{—pj} does not guarantee a low interaction system unless p is large.
However, the above analysis does indicate that it is possible to choose
relative response speeds and obtain a low interaction feedback system.

To illustrate the result, consider the multivariable first order

system
1 155+159 -36 ]
Glg) = wowi(18)
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Note that GDo = 12 so that K(g) = Kl(s) and (equation (13)),
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and the interaction term in equation (15) takes the form
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Here, for example, if p = min(pl,p2)>12, interaction effects will be less
than 207 and an arbitrary relative loop response speed plfp2 can be
obtained. Interaction effects can be reduced by increasing p and

introducing integral action into the controller (see equation (14)).
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